用于样品光学检查的装置和方法

文档序号:6213644阅读:141来源:国知局
用于样品光学检查的装置和方法
【专利摘要】使用光谱干涉测量进行样品光学检查的方法和装置,其中由辐射源(1)发射的光束(2”)被引导到样品(5)上,而参考光束(2’)被引导到参考样品(4)上,这两个光束在所述样品处反射之后或经过所述样品之后的光谱干涉通过光谱仪(6)记录;关于角频率ω对如此获得的干涉图I(ω)进行数值求导。对于如此获得的函数I'(ω),将零点ωi数值计算为等式I'(ω)=0的解,然后根据等式τ(ωn)=π/(ωi+1-ωi)从零点ωi计算依赖于频率的群延迟τ(ω),其中i=1,2…,并且ωn=(ωi+1+ωi)/2。
【专利说明】用于样品光学检查的装置和方法

【技术领域】
[0001]本发明涉及一种通过光谱干涉测量对样品进行光学检查的方法以及用于执行这种方法的装置。

【背景技术】
[0002]光谱干涉测量法是用于光学和激光技术的非常重要的测量方法。这种方法特别用来确定在光谱学中用于色散测量的光学器件的表面质量(V.N.Kumar和D.N.Rao, "Using interference in the frequency domain for precise determinat1nof thickness and refractive indices of normal dispersive materials"美国光学会志B 12,1559-1563〈1995>),但是在非线性效应方面也用于表征脉冲时长(C.1aconis和 1.A.Walmsley, "Spectral Phase Interferometry for Direct Electric-fieldReconstruct1n of Ultrashort Optical Pulses, 〃 光学快报 23, 792_794〈1998>)。
[0003]相对于彼此在时间上延迟的两个光束在空间上被叠加,并且以光谱分辨的方式测量被叠加的光束。测量到的光谱具有调制(光谱干涉图案)。两个光信号之间的延迟以及两个光信号的光谱相位之间的差能够根据该光谱干涉图案来确定。该信息通过本身已知并基于快速傅立叶变换(FFT)的数值方法从光谱干涉图确定(“干涉图分析”,D.W.Robinson和G.T.Reid, Eds.,物理出版协会,布里斯托尔〈1993〉,第141-193页)。
[0004]然而,对于一些应用(例如色散测量),必须确定的不仅仅是光谱相位,而且还有群延迟色散(GDD,根据角频率的相位的二阶导数)。显然,该GDD可以通过所测量的光谱相位的二次数值求导来确定。然而,已知数值求导是不稳定的数值方法,并且误差传播分析表明,光谱相位中的小的测量误差都会导致GDD中的不可靠的高误差率(A.N.Tikhonov和V.Y.Arsenin, "Solut1ns of Ill-Posed Problems", Wiley〈1977>)。


【发明内容】

[0005]因此,有利的是,从测量值直接确定GDD或至少GD (根据角频率的光谱相位的一阶导数),并且本发明的目的是以简单方式实现这一点。
[0006]为了实现该目的,本发明提供了像开头规定的方法,该方法的特征在于,从辐射源发射的光束被引导到样品上,而参考光束被引导到参考样品上,这两个光束在所述样品处反射或经过所述样品之后的光谱干涉通过光谱仪记录,并且其特征还在于,根据角频率ω对如此获得的干涉图1 (ω)进行数值求导,由此针对如此获得的函数I’ (ω)将零点Coi数值计算为等式I’ (ω) = O的解,然后根据等式τ (ωη) = ^/(ω^-ω,)从零点ω i计算依赖于频率的群延迟τ (ω),其中i = 1,2...,并且ωη = ((^+(Oi)/2。
[0007]这里,此外还可能的是,通过根据所述角频率ω对所述群延迟τ (ω)进行数值求导来计算依赖于频率的群延迟色散。
[0008]如果通过在所述角频率上对所述群延迟τ (ω)进行数值积分来确定光谱相位,则也是有益的。在这种情况下,如果通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位;或者如果通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度,则是进一步有利的。
[0009]例如使用激光(脉冲)源或灯泡否则使用发光二极管作为辐射源或光源。
[0010]本发明的一个有利应用的特征在于,作为样品来研究基板上的薄层涂层,通过被参考反射器反射的光束来记录被基板上的薄层反射的光束的光谱干涉。
[0011]根据本发明的用于执行本发明的方法的装置的特征相应地在于,干涉仪设备具有辐射源、具有用于产生参考光束和测量光束的部件(例如辐射分束器)、并具有光谱仪,计算单元连接至该光谱仪,该计算单元被配置成根据角频率ω对借助于所述光谱仪获得的干涉图进行数值求导,由此针对如此获得的函数I’ (ω)将零点(^数值计算为等式I’ (ω)=O的解,然后根据等式τ (ωη) = π/(ω?+1-ω?)从零点ω i计算依赖于频率的群延迟τ (ω),其中 i = I, 2...,并且 ωη = (ω?+1+ω?)/2(即,ωη 是 ω i+1 和 Coi 的平均值)。
[0012]在这种情况下,如果所述计算单元还被设置成通过根据所述角频率ω对所述群延迟τ (ω)进行数值求导来计算依赖于频率的群延迟色散,则是有利的。
[0013]此外,如果所述计算单元被设置成通过在所述角频率上对所述群延迟τ (ω)进行数值积分来确定光谱相位,则是有益的。
[0014]如果所述计算单元还具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位,则也是有利的。此外,所述计算单元可以具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度。
[0015]在样品的反射研究的情况下,可以设置用于反射所述参考光束的参考镜。
[0016]因此,本发明基于直接光谱评估(DSE)技术,相比于传统的基于FFT的方法(参见上面的“ Interferogram Analysis", D.ff.Robinson 和 G.T.Reid”),这种直接光谱评估还具有如下优点:
[0017](I)无需使用FFT,并且数学操作数量少得多,因而DSE方法更快。不必使用FFT这一事实还意味着不必为了实现FFT所需的条件而对所测量的干涉图进行插值和外推。结果,必须处理的值的数量少近似4倍。此外,双FFT被替换为数值求导和插值。结果,DSE方法比传统的方法快了至少100倍。由于该计算速度,该方法可以用于在动态处理中准实时地表征色散,例如用于在涂覆过程期间对色散镜的层厚的生长进行检测之目的。
[0018](2)所提供的方法允许对群延迟(GD,光谱相位根据角频率的一阶导数)进行直接求导。因而,为了获得GDD仅需要使用一次数值求导。结果,显著地降低了测量误差通过相位求导而不利地传播。

【专利附图】

【附图说明】
[0019]下面参照附图基于优选示例性实施方式更详细地描述本发明。在附图中:
[0020]图1示出了在波长λ (单位为nm)上光谱干涉图即强度I (ω)(单位任意)的示例;
[0021]图2不出了在角频率ω(单位为rad/fs)上根据角频率的该干涉信号I (ω)的导数 I’ (ω),即 I’ (ω) = dl/dco ;
[0022]图3以曲线图示出了在角频率ω上从图1的干涉信号Ι(ω)计算的群延迟τ (单位为fs);
[0023]图4以曲线图示出了在波长λ (单位为nm)上从干涉信号Ι(ω)计算的总的群延迟色散⑶Dt (单位为fs2);
[0024]图5以曲线图示出了从Ι(ω)计算的群延迟OTDs,该群延迟是针对每个反射通过样品镜产生的;以及
[0025]图6示意性示出了具有干涉仪的装置。

【具体实施方式】
[0026]图1示出了典型的光谱干涉图,即干涉信号I (ω),具体说,单位任意(“arb.u”)。该光谱干涉信号I (ω)是根据角频率ω导出的。在图1的示例光谱的基础上,在图2图示了作为结果产生的函数I’(ω)。函数I’ (ω)的零交点coj g卩,在与测量相关的频率范围内,Qi等于等式I’(ω) = O的所有解)通过本身已知的数值算法(例如通过线性或非线性插值)确定。
[0027]群延迟τ作为角频率ω的函数根据角频率值ω i计算如下:
[0028]τ (ωη) = ji / ( ω i+1-ω j),其中 ωη = (ω?+1+ω?)/2
[0029]在图3中图示了从图1中描绘的干涉图以这种方式计算的群延迟值τ。
[0030]如果使用需要,则可以通过数值求导从群延迟τ计算群延迟色散⑶D。对于图1中描绘的干涉图来说,该GDD在图4中图不出。
[0031]由于用于这里所示的测量的白光干涉仪的设计,总的色散⑶Dt组成如下:⑶Dt =16*OTDs+2*⑶Dfs,⑶Ds为在样品镜上反射过程中引起的色散,而⑶Dfs为由厚度为6.35mm的石英玻璃(熔融石英)制成的玻璃板的色散。因而,样品镜的色散GDDs (其是因为反射引起的)可以计算如下KDDs = (OTDt-2*OTDFS)/16。图5中示出了由此获得的待表征的样品镜的色散⑶Ds。
[0032]图6示出了用于产生干涉图1 (ω)的迈克耳逊(Michelson)干涉仪的可能实施方式。迈克耳逊干涉仪的该设计和其他实施方式(例如在样品镜上具有多次反射)以及本身已知的其他类型的干涉仪(例如,马赫一曾德尔干涉仪)都可以根据图6例如顺序地使用,以对镜5进行测量。
[0033]更详细地说,图6示出了用于光谱干涉测量的迈克耳逊干涉仪的示意性图示,使用光源I产生的光束通过分束器3分割。参考光束2’通过反射镜4(其色散特征是已知的)反射,该参考反射镜4用作后反射器。测量光束2”通过镜5反射以进行测量。镜5也可以被安装成多重折叠镜,以便增加由此产生的GDD并且因而提高测量精度。使参考光束2’和测量光束2”被返回以通过分速器3进行空间重叠,参照光束22。通过光谱仪6从该光束22记录光谱干涉图。
[0034]参考光束2’的群延迟和测量光束2”的群延迟之间的差可以从如此获得干涉信号Ι(ω)计算出,如上所述。为此,将相应地构造的计算单元7连接至光谱仪6。结果,例如,⑶、⑶D等通过输出单元8输出,例如显示和/或打印。
[0035]由于高的测量和评估速度,所描述的技术例如可以用于在基板的薄层涂覆的情况下(例如在生产色散镜时)在涂覆过程期间实时地监测涂覆过程。
【权利要求】
1.一种用于通过光谱干涉测量进行样品光学检查的方法,其特征在于,从辐射源(I)发射的光束(2”)被引导到样品(5)上,而参考光束(2’ )被引导到参考样品⑷上,这两个光束在所述样品处反射之后或经过所述样品之后的光谱干涉通过光谱仪(6)记录,并且其特征还在于,根据角频率ω对如此获得的干涉图Ι(ω)进行数值求导,由此针对如此获得的函数I’ (ω)将零点Oi数值计算为等式I’ (ω) = O的解,然后根据等式τ (ωη)=JI /(COw-COi)从零点COi计算依赖于频率的群延迟τ (ω),其中i = 1,2...,并且ωη =(O i+l+ O i) /2。
2.根据权利要求1所述的方法,其特征在于,通过根据所述角频率ω对所述群延迟τ (ω)进行数值求导来计算依赖于频率的群延迟色散(GDD)。
3.根据权利要求1所述的方法,其特征在于,通过在所述角频率上对所述群延迟τ (ω)进行数值积分来确定光谱相位。
4.根据权利要求3所述的方法,其特征在于,通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位。
5.根据权利要求3所述的方法,其特征在于,通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度。
6.根据权利要求1至5中任一项所述的方法,其特征在于,使用激光脉冲源或灯泡否则使用发光二极管作为辐射源(I)。
7.根据权利要求1至6中任一项所述的方法,其特征在于,作为样品(5)来研究基板上的薄层涂层,其中通过被参考反射器(4)反射的光束(2’)来记录被基板上的薄层反射的光束(2”)的光谱干涉。
8.一种用于执行根据权利要求1至7中任一项所述的方法的装置,其特征在于,干涉仪设备具有辐射源(I)、具有用于产生参考光束(2’)和测量光束(2”)的部件(3)、并具有光谱仪¢),计算单元(7)连接至该光谱仪¢),该计算单元(7)被配置成根据角频率ω对借助于所述光谱仪(6)获得的干涉图进行数值求导,由此针对如此获得的函数I’ (ω)将零点Oi数值计算为等式I’ (ω) = O的解,然后根据等式τ (ωη) =从零点Coi计算依赖于频率的群延迟τ (ω),其中i = 1,2...,并且ωη= (ω?+1+ω?)/2ο
9.根据权利要求8所述的装置,其特征在于,所述计算单元(7)还被设置成通过根据所述角频率ω对所述群延迟τ (ω)进行数值求导来计算依赖于频率的群延迟色散GDD。
10.根据权利要求8或9所述的装置,其特征在于,所述计算单元(7)被设置成通过在所述角频率上对所述群延迟τ (ω)进行数值积分来确定光谱相位。
11.根据权利要求10所述的装置,其特征在于,所述计算单元(7)还具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位。
12.根据权利要求10所述的装置,其特征在于,所述计算单元(7)具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度。
13.根据权利要求8至12中任一项所述的装置,其特征在于,设置激光脉冲源或灯泡否则设置发光二极管作为辐射源(I)。
14.根据权利要求8至13中任一项所述的装置,其特征在于用于反射所述参考光束(2’ )的参考镜⑷。
15.根据权利要求8至14中任一项所述的装置,其特征在于,用于产生参考光束(2’ )和测量光束(2”)的部件由辐射分束器形成。
【文档编号】G01N21/45GK104136912SQ201380009617
【公开日】2014年11月5日 申请日期:2013年1月15日 优先权日:2012年1月17日
【发明者】加布里埃尔·弗洛林·滕佩亚 申请人:费姆托激光产品股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1