具有可改变的热沉装置的老化板的制作方法

文档序号:6138610阅读:391来源:国知局
专利名称:具有可改变的热沉装置的老化板的制作方法
技术领域
本发明一般涉及集成电路芯片(IC)或其它器件的老化和测试的装置,特别涉及用于确保新制造的IC能适于使用的老化板上的IC器件的冷却技术。更具体说,本发明包括用于提供提高的冷却被测器件的能力并能容纳各种不同外观的被测器件的插座。
电子器件制造领域都知道,在将各种电子分元件组装成较大装置之前,要测试和/或“老化”它们。例如,计算机芯片通常分别连接于老化系统中,以便于确保每个芯片中的所有需要的电子电路能够工作。老化工艺可以加速芯片的老化,所以能够在制造工艺中早识别和放弃有缺陷的芯片。由于该工艺能够允许制造者避免其它情况下由于构成含有有缺陷的芯片的较大、较贵装置而浪费的费用,所以需要这样做。除老化外,计算机芯片和其它集成电路还可以进行各种其它测试操作。这里所用术语“测试”意在包含和包括老化操作。
在老化操作中,此后称为“被测器件”或“DUT”的每个芯片、集成电路(IC)或其它电子元件连接到数个电引线上。这些引线一般采取小焊料球阵列的形式,这些小焊料球定位成对应于DUT下表面上的电引线。DUT置于成阵列的引线上,以便在每个需要的点形成电连接。
老化或测试操作期间,电流通过各引线穿过DUT上的各电路时产生热。迄今为止,IC的功率较小,因而,计算机芯片老化期间的功耗量较小。为此,所产生的热量使得老化装置多数情况下能够被空气冷却。随着新的更高功率芯片的出现,老化期间产生的热量增加十倍,从约3-10瓦增加到30-100瓦或更多。
此外,芯片封装成本的增加推动了制造商去改进老化步骤,以便在最后的封装前而不是在其后进行老化。这可以使制造商节约封装有缺陷的芯片的成本,但意味着老化操作必须对部分封装的IC进行,这种封装中硅片自身可能是暴露的。与完全封装的芯片相比,部分封装的IC较不坚固,更易受损伤。所以,老化操作不能对DUT加过量的或不均匀的力。
由于老化必须在控制的温度下进行,并且由于芯片不能暴露于温度极限,所以必然要去除老化期间产生的大量热。没有非常大的热沉,空气冷却无法提供充分的冷却。已尝试利用电绝缘流体的液体冷却,但已证明对于非常高功率的DUT来说是行不通的。同时,与老化或测试完全封装的芯片相比,老化或测试部分封装芯片产生了新问题。例如,部分封装的芯片一般不适于按要求的速率集中加热。
已知,大功率晶体管产生与老化操作期间相当大的热量。然而,晶体管和常规晶体管封装结构使得为晶体管老化装置设计的冷却系统不容易适用于冷却IC器件。此外,晶体管一般密封于耐久性金属或塑料封装中,所以这种处理涉及在老化芯片中发生的事情不发生在晶体管老化装置中。而且,与需要测试的大功率晶体管的体积相比,必须测试的计算机芯片的体积大许多倍,所以与晶体管测试有关的不太高的成本因素在用于芯片测量时会变得非常高。
除了与为给定老化装置提供充分的冷却能力和提供不限制该能力热的传递表面有关的问题外,问题的原因还在于各DUT的老化或测试期间产生的热量彼此间大不相同。已发现,在某些情况下,所产生热量的不同有两个数量级之多。由于适于充分冷却产生较多热量的DUT的冷却系统,会过度冷却产生较少热量的DUT,引起它们的温度降到低于要求的老化温度范围,所以这种偏差的结果是很难同时老化数个器件。相反,适于冷却产生较少热量的DUT的冷却系统,对产生较多热量的DUT冷却不足,造成它们的温度升到高于要求的老化温度范围。
另外,除了在DUT间的操作差异,还发现DUT的物理构形变化明显。特别是,与DUT相关的各个尺寸和参数,包括硅片的厚度、器件的厚度、面积和热膨胀,一般指定为在一个规定的范围或公差内。给定DUT的整个构形反映所有参数偏离它们的目标值的累计的偏差。由于这个原因,即使各个DUT的所有参数都在它们的规定的范围和公差内,如果偏移不互相偏移,就存在出现在各个DUT上出现过度和不可接受地不重合的热传递表面的可能。
需要提供一种DUT老化装置,它能够从几个芯片中的每个上同时去除至少30-100瓦的热,并将每个DUT的温度保持在窄的需要的范围内。为了完成这种热传递,必须在每个DUT和冷却系统间提供良好的热接触。另外,为了在引线和DUT间达到合适的电接触,经常需要将一定的压力施加于每个DUT。
因此,需要提供一种老化装置,它能够提供必要的良好的热接触,同时容纳不同尺寸和形状的DUT并向各个DUT提供必要的压力。即便DUT产生的热量可能有一个数量级以上的偏差,并且即便某些DUT会产生少至3瓦的热量,优选装置也应能够将DUT保持在预定的温度范围内。优选装置还应容易引入到能够同时处理多个DUT的系统中。这些目标需要该装置能够补偿同时老化的DUT间所产生热量的偏差。优选装置应能够在老化工艺之前、期间或之后,没有损伤地处理未封装芯片。还希望提供一种从成本、劳动力和可靠性方面考虑经济实用的老化装置。
本发明包括能够同时从几个DUT的每个中去除至少30-100瓦热量的老化装置,同时补偿DUT构形和外观上的差异。本装置还能补偿在DUT间产生热量的差异并将每个DUT的温度保持在窄的需要的范围。本发明能够容易地结合到能够同时老化多个DUT的系统中。优选装置能够使DUT的损伤最小化,并且在成本、劳动力和可靠性方面更加经济实用。
本发明包括用于在老化过程中容纳并接触单个芯片的新颖的插座,和支撑并冷却多个插座的系统。插座包括冷却系统,冷却系统能够从DUT中去除先前系统中的至少3至10倍的热量。优选实施例包括高导热、机械偏移的并弹性安装的散热器和至少一个与集成电路或被测器件(DUT)保持良好热接触的高导热热沉元件。可调节的弹性安装的散热器和冷却系统之间的界面也设计成高导热并在弹性安装的散热器的位置变化的情况下也允许良好热传递。
本发明好包括用于达到与DUT的良好的热接触的设备和技术。优选实施例提供了与DUT的上表面的任何不平配合的保形界面。在第一实施例中,通过一起构成插座盖的弹性材料的热垫和散热器得到这种热接触。弹性材料的热垫较好有薄金属膜覆盖。在另一个实施例中,保形界面包括包含在有更高熔点的金属制成的表层中的低熔点金属。在次优选实施例中,界面包括超-平滑的、高抛光的金属表面。
本发明的优选实施例,还包括用于监视在DUT周围的冷却系统的温度并提供数据的温度传感系统和用于响应温度传感器的输出将受控量的热量提供给DUT的热源。温度传感器较好嵌入在散热器中靠近其与DUT的界面。热源较好也嵌入在散热器中并且较好响应温度传感器产生的信号由控制器控制。
本冷却系统的优选实施例包括与热沉和插座热接触的液-汽冷却单元(LVU)。液-汽冷却系统较好包括多个由单一控制器控制的液-汽导管,结果与现有技术相比,明显节省了成本和操作。在另一个实施例中,液-汽冷却系统有被称为是液体冷却单元的循环液体系统代替。LCU允许低于60℃的老化温度。
根据本发明,分立的插座容纳每个DUT。每个插座较好构造成能够控制使热沉和DUT间有良好热接触的偏移力并在DUT上分配,以避免对DUT的机械损伤。优选的插座也提供用于向插座基座和DUT间施加足够接触力的装置以得到良好的电接触,并同时限制压力施加到DUT以避免DUT的损伤。
在阅读了以下的详细介绍并参考各际附图的基础上,本发明的其它目的和优点将变得更清楚,其中

图1是根据本发明第一实施例构成的老化或测试插座的剖面图;图2是本发明热界面的可选实施例的放大示图;图3是图1中的插座的盖部的分解透视图;图4是图3沿线4-4的侧视图,显示部分剖视的内部元件;图5是根据本发明的第一实施例构成的老化插座的可选实施例的横截面图;图6A-6B分别是坐落于和未坐落于对应热沉的老化板的俯视图;图7是整个测试系统的主视图,显示多组插座和多个热沉。
应理解,以下详细介绍的装置可以在任何取向工作。例如“上”、“下”、“之上”或“之下”等相关术语是指图示的各元件,用于只是为了展示和讨论目的之用。并不想用这些术语来要求本发明任何实施例中的这些关系。
现参见图1,本发明的一个装置涉及满足上述要求的老化或测试插座10。具体说,本发明的老化系统包括插座10,该插座10包括插座基座12及与插座盖20、热垫22、压板24、弹簧26和散热器30一起使用的压缩挡块16。图1中,示出了DUT 40容纳于插座10中。在某些实施例中,如果插座和盖构成为可以利用其它装置给DUT加足够的压力,则可以省略压板24和弹簧26。插座插座基座12较好是由合适的例如所属领域已知的不导电材料构成,并具有嵌于其中的多个导电引线14。每个引线14较好是端接于电触点15,电触点15可以包括例如插座基座12上表面13(如图所示)上的焊料突点等表面结构。引线14可移动至与DUT 40的下表面啮合和与之脱开。
插座基座12的上表面13较好是包括用作将DUT引导到插座基座12上的位置的成斜角的法兰盖17,但不是必须这样。法兰17较好是限定一个对应于DUT的基底面的区域。该区域一般是一个面积稍大于DUT的热传递区域的的方形区。例如,由法兰17限定的区域的每侧可以比DUT一侧的长度长0.005-0.010英寸。压缩挡板16较好是固定在插座基座12的表面,由法兰17限定的区域的外边,并较好是在上表面13上比法兰17延伸更远。压缩挡块16较好是包括刚性不可压缩材料,其构成为限定或对应于插座基座12的外围。在可选实施例中,压缩挡块16由与基座12相同的片一体形成。基座12和挡块16一起构成两部分有盖的插座10的一部分。
插座10的其它部分由插座盖20、散热器30、热垫22、弹簧26及压板24构成。这些部件相互连接在一起,一起移动到与插座及DUT啮合和与它们脱开。插座盖20较好由高温塑料或其它类似材料构成。插座盖20适于支撑在压缩挡块16上,包括用于此目的的下表面23。散热器30有一个中心部分32,该部分具有其上固定有热垫22的接触表面33,从而限定一个高导热界面。散热器30还包括固定在插座盖20的上表面的突缘36。
此外,散热器30包括支撑至少两个向下延伸的弹簧26的中间肩部34。根据一个优选实施例,八个弹簧26沿中心部分32的两侧固定于肩部34上。至少一个压力分布装置例如压板24固定于每个弹簧26的相对端部。各压板24可以如图所示彼此分开,或可形成为具有任何要求结构的单片形(未示出)。提供包括弹簧26和压板24的系统为的是给DUT施加压力,从而确保DUT上的电触点和插座中的引线14间的良好电接触。也可以用除上述弹簧和压板外的各种机械系统给DUT施加压力。在共同拥有且同时申请的题为“具有高功耗的老化板”的申请__中详细记载了这些可选系统中的一些,这里引用该文献。
散热器30较好是由任何合适的刚性高导热材料构成。一种优选材料是铜,更优选的是镀有其它金属的铜,例如镀镍的铜。弹簧26较好是常规的小螺旋弹簧,但也可以是任何合适的可压缩偏移装置。压板24可以是任何能够提供非常平滑表面的刚性材料,并且较好是抛光的不锈钢。散热器30的表面33较好是抛光到至少约8微英寸。热界面根据本发明,DUT 40和散热器30间的界面设计成提供从DUT到散热器的最大热传递。为了实现最大热传递,该界面必须适应DUT的不平上表面。总之,热界面必须是保形、导热、耐久和可再利用的。此外,还必须考虑例如劳动力、材料成本和制造复杂性的因素。应理解,以下介绍的系统仅是例示,并不排除满足这些要求的各种系统。
根据第一优选实施例,热垫22固定于散热器30中心部分32的下表面上(如图所示)。热垫22较好是包括具有高导热性的材料。由于DUT的上表面容易具有一些凸凹不平,所以热垫22较好是某种程度上还能够保形或具有弹性。优选的材料类别可以是导热聚合复合材料。满足这些条件的一种优选材料是设于Bergquist Company ofMinneapolis以商品名SIL-PAD 2000销售的填氮化硼的硅弹性体,较好是使用厚约为千分之4-20英寸较好是约5/103英寸的SIL-PAD2000。另一优选材料是Thermagon,Inc.,3256 West 25thStreet,Cleveland,OH 44109以商品名T-Flex出售的填铝硅弹性体。弹性热垫22较好提供为薄片形式,热垫22的厚度较好是约4-5密耳。
由于与DUT的上表面接触的表面较好是不在DUT上留下残留物,所以较好是在构成热垫22的弹性导热体上提供薄箔敷层23(图3A)。另一优选实施例使用2密耳厚的其上电镀有50微米的金层的铜箔。再一优选实施例使用电镀有金的1密耳厚镍箔。其它次优选箔包括镀有铂的铜、镀有钯的铜和黄铜。
用于热界面的第二优选实施例包括由在系统的工作温度下熔化的低熔点金属构成的保形垫,如图2所示。如图所示,热界面包括容纳于金属箔表层37内的低熔点金属体35。表层37较好是包括1密耳的镍箔。如果需要,表层金属可以包括不同的金属,例如镀金的铜,或可以包括或可以镀有铂、金或钯。较好是用不会留下残留物或不污染DUT表面的金属镀敷金属箔。金属表层较好是用焊料垫圈39密封于散热器30的接触表面33上,或用合适的垫圈材料(未示出)夹持并密封。在其熔化时,表层37和焊料垫圈39,或垫圈一起容纳LMPM。低熔点金属(LMPM)可以是任何合适的LMPM,如在现有技术中知道的。LMPM有时是指易熔合金。它们包括铋和铅、锡、镉、镓和或铟。LMPM可以通过改变这些元素的比例设计成具有在需要温度范围内的熔点。根据本发明,形成与散热器30的热界面的LMPM在29℃至65℃间熔化。由于容纳LMPM的焊料垫圈39的熔点必须高于LMPM的熔点,所以如果使用焊料方法,较好LMPM放入之前将表层37附着在垫圈39上。一旦表层37的周围完全密封在接触表面33上,则可以熔化希望量的LMPM,并浇铸或注入到表层之下。这较好是通过穿过热沉的进入通道完成,如图2中的部分剖面41所示。要求量的LMPM置于表层37后面之后,进入通道较好是由任何能够在工作温度下保持密封的合适装置密封,例如焊料。
热界面的再一实施例可在界面处不用保形部件构成。在该实施例中(未示出),散热器30的下表面较好是如上所述直接覆盖以金属箔。该例有赖于热沉材料和金属箔的轻微保形性和因省去保形部件可以产生的较好热传递性,以确保从DUT充分传递热量。热补偿系统本发明的老化系统适用于老化具有不同容量的DUT。还已知,甚至在相同规格的各DUT内,也会具有实际的工作特性范围。同时,DUT的热容差较小,较好是在窄的温度范围内进行老化。例如,芯片制造商可规定在60℃-125℃的温度范围内进行老化或测试。如果冷却系统为每个插座提供固定冷却能力,则各DUT间不等的热量会在DUT间产生不均的温度。由于一组给定DUT的工作温度范围易超过规定的老化温度范围,所以必须包括能使一组DUT上的温度相等的系统。
在本系统中,通过提供额外的冷却能力并同时为各DUT提供补充热量达到这一目的。更具体说,以下介绍的这种冷却系统设计成和工作以从每个插座中去除比最热DUT产生的热量多约10%的热量。现参见图3和4,每个散热器30较好是包括嵌在热沉本体中靠近其接触面33的一个热耦42或其它合适的温度传感器。热耦42较好是可拆卸和可更换的,并通过热耦引线43连接到合适的信号处理设备(未示出)。热耦42可以是任何合适的热耦,例如所属领域公知的那些。热耦42较好是由固定螺丝42a固定就位。
此外,散热器30中还可以包括一小电阻加热器或其它类型的加热器44。加热器44可以是任何合适的加热器,只要具有相当快的响应时间便可。加热器44较好是相对于接触面33定位在热耦42后面,以便热耦42探测非常靠近DUT表面的点的温度。加热器44较好也是可拆卸和可更换的,并且通过加热器引线45与电源相连。给加热器44提供的电源较好是由信号处理设备响应于热耦42的输出控制。本发明中,较好是每个加热器44能够产生至少30瓦、更好是至少50瓦、最好是至少55瓦热量。加热器44较好是由固定螺丝44a固定就位。
弹性安装的散热器现在参见图5,插座的可选实施例包括一个基部212和从DUT去除热量的系统。和在插座10中一样,基部212包括压缩挡板216。同样,热量去除系统包括盖220、热界面222和热沉250。但是与插座10相比,只个实施例包括弹性安装的散热器230,该散热器代替散热器30,用作从界面222向热沉250传递热。盖220和热界面222与上面描述的大致相同,包括可得到的用于构成热界面222的各种实施例。
实施例200较好包括偏移装置232,该装置使弹性安装的散热器230必须远离热沉250。弹性安装的散热器230较好安装在盖220内使得在弹性安装的散热器230上和其周围有足够的间隔以允许弹性安装的散热器230在多个方向倾斜和/或收缩一些。例如较好如233所示使弹性安装的散热器230倾斜。较好是间隔足够以允许弹性安装的散热器230兼容在正常操作中会遇到的DUT外观的全范围。于是,较好是弹性安装的散热器230能够倾斜至多2度,并能够缩回至少0.0025英寸,更好是约0.005英寸。
偏移装置232用作使弹性安装的散热器230偏移远离热沉250并在DUT的方向上,以便不论插座内的DUT的高度如何,都能与每个DUT有良好的接触。于是,偏移装置232可以是螺旋弹簧、贝尔维尔(belleville)垫圈、直弹簧、多个上述元件的组合或任何适合在热沉250和弹性安装的散热器230之间施加力的装置。
为了最有效地控制DUT的温度,每个DUT和热沉间的界面必须是尽可能地导热。正如上面详细描述的那样,热界面222可以是弹性、导热材料、容纳在保形表层中的低熔点金属体或任何其他适合导热的部件。
类似地,为了避免一般由偏移装置和/或可压缩元件引起低导热率,在一个优选实施例中,偏移装置232容纳在低熔点金属的封套260(图5)中。低熔点金属通过合适的手段自己容纳在封套260中,上述手段包括高温密封、箔表层和/或毛细作用,但不仅限于这些。在可选实施例中,偏移装置232可以从弹性安装的散热器230和热沉250间的界面中除去。在这个实施例中,LMPM的封套260较好与可变容量的流体室(未示出)连通。流体室的容量由弹簧偏移的活塞限定使得弹性安装的散热器上的压力引起封套260内的容量减少,流体流入到可变容量室并引起活塞缩回。相反地,随着弹性安装的散热器230移动离开热沉250,封套260内的容量增加且流体流出可变容量室。室内的压力通过移动活塞保持相对恒定。在其它情况下,流体在弹性安装的散热器230和热沉250间提供高导热界面,同时允许弹性安装的散热器230在兼容DUT在构造和外形上的大的变化。液汽冷却系统现参见图6A-B,散热器30(或弹性安装的散热器230)从DUT把导热出去,而散热器由热沉50冷却。每个热沉50冷却多个插座。在优选实施例中,热沉50包括穿过其中的液—汽(LV)导管52。LV导管52用作例如为水(液态和汽态)但不限于水的冷却介质的导管。水通过包括导管52、容器、加热器、控制器和在电连接器53和54间同时形成电接触和机械热接触的机械装置的封闭回路(未示出)循环。
迄今为止,液—汽冷却系统已用于冷却大功率晶体管、可控硅整流器等的老化装置。在授予Jones的美国专利3,756,903中记载了LV冷却系统的工作原理,这里全文引用该文献。然而,如上所讨论的,与这些装置有关的处理、成本、和其它问题导致先前已知的冷却LV系统不适用于本申请中冷却集成电路芯片。
到目前为止,一直以来需要为每个导管52提供一个分开的控制器,以确保一组装置的冷却不影响系统中另一组装置的冷却。根据本发明,通过提供以一组至少两个较好是4个的方式提供都装有歧管的导管52,可以允许整个系统的高达72个插座用一个容器、加热器和控制器工作,由此实现了明显的成本和运转费用的节约。
现参见图7应理解,可以在一个老化系统100中数次重复插座和热沉组合。根据一个优选实施例,LV导管52分组,并都装有歧管,以便它们可以在一个系统中工作,并受一个控制器的控制。LV导管52可分组成使从老化系统100出来的所有导管一起受控,或可以分成含少于所有导管的小组。
尽管结合优选的LV冷却系统介绍了本发明的系统,但应理解,在不脱离本发明的范围的情况下,可以使用任何其它冷却系统。例如,空气、冷却水(例如LCU)或其它冷却流体可直接或间接与散热器30热接触,以带走要求的热量。工作在需要进行老化操作时,DUT 40置于插座基座12上由法兰7限定的区域内,以便DUT上的电触点与插座基座12上的合适触点15对准。散热器30和固定于其上的各部件然后降到基座上,直到盖20靠在压缩挡块16上。参见图1和6A-B,热沉50夹在一对或多对相对的插座10之间,作用于相对插座上的力F用作作用于包括每个插座内的DUT的各部件上的压力。每次老化操作后,相对插座从与热沉50的接触状态脱开,使每个插座打开,取出DUT。
散热器30的大小和形状设计成在力F通过热沉50作用于其上时,将热垫22压成与DUT的上表面产生良好的热接触,弹簧26稍稍受压。热垫22压在DUT和散热器30之间,但不压到其压缩度的极限。另外,弹簧26也不压到其弹性极限,并用于通过压板24从散热器30将限制的压力传到DUT。因此,加于DUT上的力控制在需要的范围内,任何过量的力都直接通过压缩挡块16传给插座基座。同时,受压热垫22在DUT和散热器30间形成良好的热接触,允许散热器30和热沉50有效地去除老化期间DUT中产生的所有热量(30瓦或更多)。
象所加的力一样,老化操作期间,每个DUT的温度被精确地控制在预定的规定范围内。如上所述,这可以通过提供额外的冷却能力,并根据需要为各DUT提供补充热量来实现。LV系统设定为从每个插座中去除多于任何一个DUT所产生的最大热量的热量。在冷却每个DUT时,热耦42探测其温度。如果给定DUT的温度降到低于规定的老化温度范围,则信号处理器使加热器44提供热量补充,从而保持DUT的温度在要求的范围内。应理解,这种控制回路可用任何合适的控制器包括微处理器实现,并可以包括任何合适的控制算法,例如所属中领域已知的那些。例1热规格以下是根据本发明的老化系统60的一个实施例的热规格和工作细节功率控制每个LVU可以控制2,500瓦的器件功耗。带有8个LVU的标准测试系统可以耗散20,000瓦。每个LCU可控制5,000瓦器件功耗,则带有8个LCU的标准LCU测试系统可以耗散40,000瓦。在其每个工作板带有4个DUT的最高功率控制结构中,每个DUT可以耗散高达100瓦的平均匀功率。每个测试系统的最大器件密度为576个器件(每个工作板12个器件,每个LVU 6个工作板,每个系统8个LVU,每个测试系统总共有48块板,含576个DUT)。该系统可以减少到允许较大器件功耗。电源可给每个器件输入高达75瓦功率,LVU可控制每个耗散75瓦的30个器件。
对于LVU来说,每个器件75瓦的优选系统密度为240个器件。对于LCU平说,每个器件75瓦的优选系统密度为480个器件。在一个LVU中,如果平均DUT功率小于27瓦,则器件密度可增大到每个工作板15个DUT。在该负载下,在相同数量的板位置的情况下,每个板上有15个器件可以使每个测试系统有720个DUT。本发明的系统DUT电源能够给每个大功率模式的DUT或给每对小功率模式的器件提供75瓦的DC功率。
板密度如上所述,工作板密度随需要的平均器件功率而改变。对于功耗高达34瓦平均功率的器件,每个工作板上允许12个部件。对于功耗35-52瓦的器件,每个工作板上允许8个部件。
权利要求
1.测试集成电路的插座,包括插座基座,能够支撑带有集成电路的DUT,所述插座基座包括用于连接DUT上的相应引线的电引线;插座盖;弹性安装在所述插座盖内的导热散热器,所述散热器包括可松开地与插座中的DUT机械和热接触的第一热界面;与冷却介质热接触的热沉,并限定与所述散热器的第二热界面。
2.根据权利要求1所述的插座,其中所述散热器向DUT偏移。
3.根据权利要求1所述的插座,其中所述散热器是通过固定在所述热沉和所述散热器间的弹簧向DUT偏移。
4.根据权利要求1所述的老化系统,其中所述第二热界面包括大量的低熔点金属。
5.根据权利要求1所述的插座,其中所述第二热界面包括大量的容纳在固定于所述热沉上的箔表层中的低熔点金属。
6.根据权利要求5所述的老化系统,其中所述箔表层是焊接在所述热沉上的。
7.根据权利要求1所述的老化系统,还包括加热器和与所述热界面临近的热偶,所述加热器响应所述热偶的输出受控。
8.根据权利要求1所述的老化系统,还包括与所述热沉热接触的液-汽冷却系统或液体冷却单元。
9.测试多个集成电路的系统,包括多个插座,每个插座适于容纳和支撑带有集成电路的DUT冷却系统;和多个导热元件,每个导热元件与定位成从每个DUT向散热器传导热的第一界面热接触且第二界面与所述冷却系统热接触;其中所述导热元件是可移动地安装在系统上并且所述第二界面包括使所述导热元件向DUT偏移的装置。
10.根据权利要求9所述的老化系统,其中所述导热元件被安装成能够倾斜。
11.根据权利要求9所述的老化系统,其中所述导热元件被安装成能够缩回。
12.根据权利要求9所述的老化系统,其中所述偏移装置包括贝尔维尔弹簧。
13.根据权利要求9所述的老化系统,其中所述偏移装置包括螺旋弹簧。
14.根据权利要求9所述的老化系统,其中所述偏移装置包括直弹簧。
15.根据权利要求9所述的老化系统,其中所述偏移装置包括容纳有压缩流体可变容积室。
16.根据权利要求9所述的老化系统,其中所述第二界面包括大量的低熔点金属。
17.根据权利要求9所述的老化系统,其中所述第二界面包括大量容纳在箔表层内的低熔点金属。
18.根据权利要求9所述的老化系统,其中所述第二界面包括大量由高温密封容纳的低熔点金属。
19.测试集成电路的方法,包括(a)提供插座,容纳和支撑带有集成电路的DUT;(b)在插座中提供电触点,用于电接触DUT上的相应引线;(c)实现DUT和具有保形热界面的弹性安装的吸热元件间的热接触;(d)为集成电路提供预定电信号,同时通过保形热界面将热量去除到热沉中,从而保持集成电路在预定的温度范围内。
20.根据权利要求19的方法,其中步骤(c)包括允许所述吸热元件根据DUT的构形重新定位的步骤。
21.根据权利要求19的方法,还包括向吸热元件施加使所述元件向DUT的方向偏移的偏移力的步骤。
全文摘要
一种老化集成电路(40)的系统和方法,包括能够容纳和支撑IC(40)的插座(12),插座(12)中用于连接芯片(40)上的相应引线的电引线(14),及与冷却介质热接触的热沉。第一热界面在插座(12)中的集成电路(40)和弹性安装的吸热元件(30)之间提供可松开的热接触。在吸热元件(30)和热沉之间提供第二热界面。
文档编号G01R31/28GK1274425SQ98809917
公开日2000年11月22日 申请日期1998年10月6日 优先权日1997年10月7日
发明者詹姆斯·E·约翰逊, 罗纳尔多·J·达西 申请人:可靠公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1