节能电机控制器的制作方法

文档序号:6319243阅读:199来源:国知局
专利名称:节能电机控制器的制作方法
技术领域
本发明一般性涉及交流电机的控制,而具体涉及单相与三相感应电机的功率因数控制器。
其它传统系统与方法包括(1)不依靠精确的时基而采用基于不精确时基的计数器或易随温度、电压或负荷漂移影响或者本身也易受外部信号或干扰所阻断的通常导致低效或不适当的控制动作的控制器及方法;(2)易遭受严重的反向EMF效应或在电机或控制器本身中生成的其它电磁干扰的系统,这种反向EMF效应或其它电磁干扰可明显地干扰精确的功率因数感测与控制或由于存在高干扰程度而不能处理传感器参数或生成明确的控制信号;(3)只是在连接在控制器上的电机工作条件良好,正确地接线到电源与/或控制器上或不存在通常导致不能适当地补偿或调节功率因数或在一些情况中的电机故障的重大相位绕组不规则、不平衡或机械不平衡的负荷时才工作得良好的系统与方法;(4)必须人工调节来提供独特的应用条件的系统,它们是费力费钱的,并且由于调节范围有限而不能提供最佳调节;(5)手动设定要求的功率因数参数或一旦设定了平均功率因数便固定不变,并且最佳只能近似于希望从系统得到的潜在效率改进;以及(6)需要复杂的控制电路或对电机进行改造以便提供高效控制的系统或方法,而这也趋向于提高制造、安装系统或使用它们的成本的。
按照本发明的另一方面,触发信号发生器所提供的控制信号有选择地断开与闭合耦合在第一与第二节点之间的SCR的门驱动器。
在本发明的另一方面中,触发信号发生器包括用于感测作用在电机绕组上的交流电压的第一输入端;用于感测对应于作用在电机绕组上的交流电压的电机绕组中的交流电流的第二输入端;用于提供控制各该第一与第二SCR的触发控制信号的输出端;以及包含连续运行的时基的响应分别对应于第一与第二输入端的第一与第二中断生成触发控制信号的控制设备。
在本发明的又另一方面中,该控制设备包括用于测定出现在作用的交流电压的选择相位中的第一与第二中断之间的流逝的时间及用于计算该流逝的时间与一预定因子之积的测量系统。该控制设备具有在交流电压的选择相位期间电机中电流的过零点后面的第一时间间隔内生成触发控制信号的能力,其中该触发控制信号具有基本上等于流逝时间与该预定因子之积的持续时间;及其中进一步地该第一与第二门驱动电路对于触发控制信号的持续时间被截止。
最佳实施方式现在参见

图1,其中示出了按照本发明的三相功率因数控制器10的一个实施例的框图。图1中的各相控制部件标识为各自的相位,以符号φ1、φ2与φ3表示。单相控制部件耦合在同时示出在图1中的CPU与复合比较器的组合上并受其控制,此外DC电源为CPU与复合比较器提供工作电压。图1中还示出来自工作于50或60Hz的三相交流电源的进入连接线及到受按照本公开的功率因数控制器控制的三相感应电机的外出连接线。
在图1中所示的功率因数控制器10中,三相交流电压的进入相位是分别沿线L1、L2与L3耦合的。各相位控制部件包含标记为L1、M1、I1、T与Vcc的接线端。用参照数字11标识的线路L1耦合在节点14与相位控制部件φ1的L1接线端上。相位控制部件φ1是用参照数字13标识的。类似地标识为线路18的L2耦合在节点21及相位控制部件20(即φ2)的L2端上。类似地标识为线路25的线路L3耦合在节点28及相位控制部件27(即φ3)的接线端L3上。以类似的方式交流电压线从相位控制部件13上的接线端M1耦合到节点16并从那里沿线路12到M1端从而连接到三相感应电机。线路19从相位控制部件20的M2端耦合到节点23并从那里沿线路19到电机的M2端。线路26将相位控制部件27的M3端耦合到节点30上并沿线路26到三相感应电机的M3端。图1中还示出从输入交流电压源到用导电路径32标识的接地端到标识大地的符号的连接。
继续参见图1,在本公开的三相系统中三相的各相是相对于大地平衡的,这些相位之一被选择作为图1中所示的功率因数控制器系统的控制电路的地基准。图1中指定的控制电路地基准是在节点14处连接到线路L1上的。这一控制电路接地是用连接在节点33上的接地符号示出的,图1中节点33连接在节点14上。将会理解耦合在节点33上的这一控制电路接地是对大地的浮动接地,因为它在任何给定的时刻上呈现存在于线路L1上的电位。这是因为在低电压上工作的所有控制电路都定位到节点33上的这一特定控制电路接地线上且各控制或感测信号是通过绝缘循环(circulation)耦合在相位控制部件上。绝缘电路除了将高电压AC与低电压控制部件绝缘,还从耦合在控制部件与单个相位控制部件之间的信号中消除任何直流分量。
各相位控制部件包括一对SCR用于将交流电压切换到电机绕组上。还包含门驱动电路用于控制SCR的切换、用于获取关于相应交流电压与电流相位的过零事件的定时信息的过零感测电路、以及存在于控制与感测信号线路中的上述高压/低压绝缘。从而例如相位控制部件13包含用于接连到交流电压线路L1、电机电压线M1、还有到一部分绝缘电路的直流电压Vcc、触发控制信号的接线端T及来自用于感测电流信号的过零点的接线端I1的端点。类似地相位控制部件20具有连接到线路L2、到电机的线路M2、来自直流电源Vcc、到触发控制信号的接线端T及来自电流感测过零信号的接线端I2的端点。最后,相位控制部件27类似地包含连接到交流电压线L3的端点L3、将相位控制部件连接到电机绕组端点M3上的端点M3、以及Vcc、触发控制信号T的端点与φ3的电流感测过零信号的端点I3。
还能观察到连接在节点14、21与28上的有连接在标识的节点与大地之间的谐波抑制电容器,它们分别是电容器15、22与29。以类似的方式,节点16、23与30也通过标识为电容器17、24与31的谐波抑制电容器耦合在大地上。每个谐波抑制电容器吸收线路电压尖峰形式的瞬时能量,可能存在在各自的交流电压线路L1、L2与L3或到电机绕组M1、M2与M3的导线上的断开瞬变或其它高频噪声。
继续参见图1,其中示出了直流电源34,它在节点41上从线路L3获取交流电压通过线路42、电容器43、电阻器44与节点49到连接在控制部件CPU35的端点Vs上的节点50。电容器43连同电阻器44作为高通滤波器工作。耦合在节点49上的还有连接到控制部件接地线上的电阻器48,它与电阻器44一起提供将线路L3上的进入交流电压的幅值降压到节点49与50的分压器。设置了端点Vs来感测作用在电机上的交流电压的过零点。耦合在节点50上的还有用接帚51及端点52与53标识的双刀单掷开关S1。
端点53耦合在电源34的交流输入上。电源34包含用于将进入的交流电压转换成未调节的直流电压的整流器电路。将未校准的直流电压作用在电源34内的电压校准器电路上并在连接到线路38上的输出端37上提供+5伏直流电以便将+5伏分配给控制电路的操作部分的各种Vcc端点。电源34从其公共端39沿线路40连接到耦合在控制电路接地线上的节点33上。线路40进一步耦合在控制电路的各种其它部分上以提供控制部件的Vss端点以及与控制部件相关的电路的各个部分的对地连接。
上面描述的开关S1将降低的交流电压耦合到连通电源34的端点53或者到对触发控制信号的绝缘电路提供保持下去的偏压电流的端点52。这一保持下去的电流是对保持门控制电路起到使SCR在活跃状态所必要的。当将功率提供给电路时,便提供在进入交流电压中它们各自的半周中接通各SCR所需的门驱动电流以便在阳极相对于阴极成为正时能使它们接通。从而开关S1的端点52是通过电阻器55耦合在节点56上的,并从那里沿线路57到相位控制部件13的触发端T上。
类似地,开关S1的端点52通过电阻器58耦合在节点59上并从那里沿线路60到相位控制部件20的端点T。并且开关S1的端点52通过电阻器61耦合在节点62上并从那里沿线路63到相位控制部件27的端点T。CPU35还为上面描述的各相位控制部件包含一触发端点。将来自CPU的Trig1触发控制信号提供给节点56。将作为相位控制部件20的触发控制信号的CPU35的Trig2端点作用在节点59上。类似地将Trig3触发控制信号从CPU35的Trig3端点提供给节点62。
继续参见图1,CPU35中还示出对应于三个电流感测过零信号的中每一个的三个输入端。这些信号端输入是分别标识为中断#1(Int1)、中断#2(Int2)与中断#3(Int3)的。表示各相绕组中相应的AC电流的过零事件的信号是从各自的相位控制部件获得的。从相位控制部件13开始,I1上的输出端提供感测电机绕组电流的过零点并将该信号作用在比较器36的端点I1上。比较器36代表各相绕组的单个比较器部件的组合。各比较器部件包含其各自的电流感测线路的独立的输入滤波器及独立的比较器部件。各比较器参照公共的电压基准电路。下面将结合图2描述这些比较器与滤波器电路。
概括这一操作,一条电流感测信号线从相位控制部件13的端点I1耦合到比较器36的端点I1,一条电流感测线从相位控制部件20的端点I2耦合到比较器36的端点I2及一条电流感测线从相位控制部件27的端点I3耦合到比较器36的端点I3。对应地,跟随比较器部件36所执行的处理的信号路径是沿类似地标识的线路耦合到CPU35上的。从而,比较器36的端点I1沿线路75将用于相位控制部件13的电流感测信号耦合到CPU35的Int1上。类似地,来自比较器36的电流感测线路I2分别沿线路76提供给CPU35的Int2上而来自比较器36的端点I3沿线路77提供给CPU35的Int3。组合比较器36沿线路38接收来自电源34的直流电压并且还在节点33上连接到控制电路接地线上。
继续参见图1,其中的若干其它特征提供按照本公开的功率因数控制器的附加功能。CPU35包含受耦合在CPU35的端点X1与X2上的晶体68控制的内部振荡器。这一晶体控制的振荡器起到操作CPU35的连续时基的作用以及提供进行精确时间间隔测定的基准。CPU35的端点B7通过电阻器69与发光二极管(LED)70耦合在控制电路接地线上以提供按照本公开的功率因数控制器的操作状态的指示。LED70具有三种状态持续OFF指示CPU35关机;持续ON指示CPU35已重新起动并正在执行起动延时;以及闪烁的LED70指示电路13正在全面工作控制作用在电机上的能量。
图1中还示出CPU35的若干地址线。端点RA0示出为连接通过电阻器71与跨接片72,而后者进一步耦合在线路40上的控制电路接地线上。跨接片72提供电阻器71到地线的连接将CPU35的接通延时在这一示例性实例中从大约30秒改变到大约45至60秒。地址线RA2通过节点64与电阻器65耦合到直流电压线38上。节点64通过可变电阻器81耦合到线路40上的控制电路接地线上。地址线RA3通过节点66与电阻器67耦合在直流电压线38上。节点66通过可变电阻器82耦合在线路40上的控制电路接地线上。这些可变电阻器允许调节触发控制信号的持续时间,即削波区,如下面图6的描述中所说明的。
操作中,图1的各相位控制部件13、20与27提供沿通过包含在相位控制部件中的SCR开关的各自的交流电压线的AC电流的流动控制。例如,沿线路11施加在端点L1上及相位控制部件13的端点L1上的交流电压是在SCR在导电状态时通过内部SCR沿线路12从端点M1耦合在三相感应电机的一个端点M1上的。如下面将要说明的,相位控制部件内的SCR的控制能够按照控制部件中的CPU35的操作所导出该电机的特定相位绕组的功率因数调节施加在电机上的电压。控制部件作为出现在电机上的交流电压的过零时刻与施加电压的该特定相位在电机绕组中流动的交流电流之间的时间间隔的函数导出触发控制信号用于控制各相位控制部件内的各SCR对的各自的门驱动电路。如上所述,交流电压的过零点是在CPU35的相应端点Vs上感测的。
在这里描述的示例性实施例中,通常不需要为电压感测过零点信号设置相同的滤波器与比较器电路,因为它是从交流电压的进入相位导出的并且不太可能包含大的噪声分量或者象电流感测过零点信号那样容易遭受相移变化。然而在一些应用中有可能需要某种信号处理电路来确保干净的无噪声的电压感测信号。
继续图1的操作,在经过比较器36处理之后沿耦合在CPU35的Int1端上的线路75感测相位控制部件13的交流电流的过零点以提供干净的、精确定时与全逻辑电平的感测信号。各相应相位控制部件是受通过确定各电机绕组相位的相应过零事件之间所流逝的时间而从测定其本身的功率因数导出的其本身的触发控制信号控制的。触发控制信号在SCR上的作用为截止门驱动电路一个与在正在控制的电压的相位之前的交流电压的半周期间所测定的负荷的特定功率因数相关的时段。参照图4A、4B与4C详细描述这一点。
现在参见图2,其中示出了按照本公开的作用交流电压的一个相位的功率因数控制器的简化示意图。该图示出相位控制部件连同为该相位控制部件响应与提供控制信号的控制电路或触发信号发生器的基本内部结构。耦合在第一节点101与第二节点102之间的有第一SCR113与第二SCR114。SCR113的阳极连接在第一节点101上而SCR113的阴极连接在第二节点102上。类似地,SCR114的阳极连接在第二节点102上而SCR114的阴极连接在第一节点101上。SCR113的门端点连接在节点105上且SCR114的门端点连接在节点106上。连接在第一节点101与第二节点102之间的还有电阻器115与电容器116的串联组合。第一节点101连接在节点103上而第二节点102连接在节点104上。
包括电阻器117与换向二极管119的并联组合的门驱动电路连接在节点103与节点105之间。类似地,包括电阻器118与换向二极管120的并联组合的门驱动电路连接在节点104与节点106之间。换向二极管119的阴极连接在节点105上并进一步到SCR113的门端点上。类似地,换向二极管120的阴极连接在节点106上并进一步到SCR114的门端点上。节点105沿线路111通过电阻器139连接到光耦合器136内的光敏三端双向可控硅开关138一侧上的光耦合器136的一端上。
类似地,节点106沿路径112连接在光耦合器136内的光敏三端双向可控硅开关138的对侧。光耦合器136位于下面要描述的触发信号发生器130内。将作用交流电压作用在耦合在节点161上的端点L1上,并从那里沿线路107耦合到节点103上。节点103沿线路109进一步耦合到触发信号发生器130内的节点141上。节点161通过谐波抑制电容器121进一步耦合到大地上。提供交流电流给受图2中所示的相位控制部件控制的电机绕组的交流电压端点是沿线路108通过节点162从节点104提供给耦合在图2中所示的相位控制器上的电机绕组的交流电压端点M1的。节点162通过谐波抑制电容器122耦合在大地上。
操作中,图2中例示的代表性相位控制部件提供对连接在相位控制部件上的各自的电机绕组所作用的交流电压的切换的控制。SCR113与SCR114各与作用交流电压串联使得在作用交流电压的任何一个半周的开始时为要触发成导电的相应的SCR提供必要的阳极到阴极电压。然后将适当的电流提供给由出现在第一节点101与第二节点102之间的AC电压的极性起动成为导电的相应的门。从而,当第一节点101相对于第二节点102在正电位上且门驱动电流经由耦合在节点103与104之间门驱动电路到达时使SCR113能够导电。
类似地,当第一节点101的作用电压的极性相对于第二节点102为负时存在适当的门驱动电流时使SCR114能够导电。SCR113的相应门驱动电流是在第一节点101相对于第二节点102正的时期内通过第一门驱动电路(包括电阻器R17与换向二极管119)供给的。类似地,导致SCR114进入导电所需的门驱动是经由节点106到SCR114的门且第二节点102与节点104相对于第一节点101与节点103具有正电位时通过第二门驱动电路(包括电阻器118与换向二极管120)供给的。
如下面要详细描述的,除了在来自CPU35及跨越光耦合器136内的LED137施加的触发控制信号使其断开之外,光耦合器136内的光敏三端双向可控硅开关138永远在导电状态中。三端双向可控硅开关138与串联电阻器139的作用为保持两个节点105与106并从而第一与第二门驱动端G1与G2相对于第一节点101与第二节点102在公共的平衡电位上。这保证当作用交流电压正向偏压相应的SCR时将各门端点偏压驱动成导电的。当三端双向可控硅开关138导电时,电阻器139与导电的三端双向可控硅开关为相对于与相应的SCR阳极端相反的作用电压的极性待被偏压的各相应的SCR的门电压提供一条路径。没有通过电阻器139与导电的三端双向可控硅开关138,便不存在这一参照路径而且允许相应的门浮动;因此这时不能获得相对于相应的SCR的阴极电压正的电位。从而,使三端双向可控硅开关138进入不导电状态时,便断开了通过电阻器139的平衡路径。这一动作允许门浮动并禁止对相应SCR的门驱动,从而中断作用AC电流对电机绕组的作用。连接在第一节点101与第二节点102之间的电阻器115与电容器116的串联组合在各SCR进入不导电状态时提供缓冲作用来限制各SCR的断开瞬变。
继续参见图2,下面描述触发信号发生器130内的电路。其中示出了在其输入侧包含双向发光二极管对134及在输出侧包含光电晶体管135的光耦合器133。光电晶体管135的发射极耦合在控制电路接地线上。光耦合器133内的光电晶体管135的集电极耦合在节点142上。电阻器143通过到电源电压线38(图2中未示出)的节点151从节点142耦合到DC电源电压上。电阻器144耦合在节点142与控制电路接地线之间。节点142通过电阻器145进一步耦合在节点146上,而节点146耦合在比较器148的正输入上。节点146通过电容器147耦合在控制电路接地线上,从而构成低通滤波器用于滤掉出现在节点142上的信号上所存在的任何噪声。
比较器148的负输入端在端点149上耦合在电压基准源上。在这里所示的示例性实施例中,端点149上提供的基准电压可在+2.5伏DC的数量级上。比较器148的输出耦合在节点150上,后者又耦合在触发信号发生器130中的CPU132的电流感测输入端上。图2中的CPU132在功能上与示例性实施例中图1中的CPU35相同。节点150还通过作为连接通过节点151的上拉电阻器的电阻器152耦合到线路38上的电源电压上。
返回到图2中的光耦合器133,可看到双向发光二极管134在线路110一侧上耦合在到相位控制电路中的节点104上。双向发光二极管134的相对侧通过电阻器140耦合到节点141,后者连接在作用在电路上的AC电压的源上。操作中,当作用在双向发光二极管134的两侧上的电压在同一电位上时,没有一个双向LED能导通而因此它们都是断开的而不发出能被光电晶体管135拾取的光。每当在L1端点与M1端点之间没有电流流过时出现这一情况因为两个SCR都在不导电状态,当第一节点101与第二节点102之间的电流在过零条件中时出现这一情况。在这一瞬时上双向LED134断开并消除来自光电晶体管135的基极的驱动信号而导致其集电极上升到作用的DC电压。随着这一电压上升通过出现在端点149上的电压基准值的电平,比较器148改变状态并提供一全摆动逻辑信号给CPU132的电流感测输入端。
继续参见图2中所示的触发信号发生器130,可看到光耦合器136内的发光二极管137通过电阻器154及到LED137的阳极的节点153接收来自DC电压源的工作电流。LED137的阴极连接在控制电路接地线上。节点153进一步耦合在CPU132的触发信号输出上。如上所述,操作中CPU132提供的触发控制信号导致节点153下降到逻辑低,它断开LED137导致包括三端双向可控硅开关138与电阻器139的输出电路成为开路。示出在触发信号发生器130中的还有电压感测电路,其中CPU132的电压感测端通过节点155与电阻器160耦合到单刀双掷开关的接帚上。接帚的另一侧示出为连接在端点158上,它也耦合在节点141上并依次耦合在端点L1上的作用AC电压上。开关的端点158示出为标记成单相而端点159示出为标记成三相,带有一箭头指示当将开关设定为用于三相操作时便使用它。
在三相操作条件中,将电压感测线连接在线路L3上以获取AC电压过零信号。在任何情况中AC电压过零信号是从端点157通过电阻器160与节点155耦合到CPU132的电压感测端上的。节点155通过电阻器156接地。电阻器156与电阻器160构成分压器将相对高的作用AC电压值降低到CPU132的输入端口能承受的电平。由于电阻器156与160的降低分压器作用及作用在Vs端上的线路电压是非常小的,通常峰-峰值小于+5伏,这一事实以及是AC耦合的(经由C3),在Vs感测线路中不需要其它绝缘。操作中,CPU132计算过零信号到达电压感测端与该过零信号到达电流感测端之间的时间差来确定耦合在电机上的负荷的功率因数的测度。CPU132利用这一时间测量来计算在CPU132的触发信号端上提供的触发控制信号的持续时间。下面对照图3与4描述提供给电压与电流感测端的过零信号的关系与触发控制信号的导出。
参见图3A,其中例示了连接在电机绕组上的电功率的代表性相位的电压与电流波形。电流波形202示出为滞后于电压波形201,这是在感应电机的绕组中的通常情况。图3A中示出电压波形201与对应的电流波形202的一个周期分别从发生在时间204(电压)与205(电流)的过零点开始。这些波形示出前面结合图2相对于对电机的作用电压的降低描述的控制电路的作用。对电机的电压实际上切断作用AC电压的每一正与负半周的一个短暂部分。
每一个半周期间切断的作用AC电压的时间量是与从对应于通过电机绕组的相应作用电压与作用电流的过零点的两个接连的中断之间所出现的时间间隔计算出的功率因数成正比的。从而图3A中作用电压的OFF部分呈现为对应于触发控制信号(下面要描述)的脉冲宽度的间隔203,该触发控制信号是根据时间204上的电压过零点与时间205上的电流过零点之间流逝的时间生成的。触发控制信号在时间206上结束。触发控制信号结束时电压上升到其额定峰值并返回到其正弦波形。
在负半周中可见到相同的作用,其中在时间207上的电压过零中断与时间208上的电流过零中断之后再一次将触发控制信号作用在SCR门驱动电路上并在恢复到图3A中所示的正弦波形之前导致电压波形201断开一部分时间。以这一方式,在各周期的半周期间通过断开作用电压短暂的受控时段,降低了作用在电机绕组上的平均电压以补偿在电机轻负荷时得出的大功率因数。发送给负荷的平均功率中的这一减少趋向于将功率因数带回到高效范围。
在作用电压的各半周期间,如同电压那样从电流通过零点的时间开始,也在作用电压的OFF间隔中将对应于作用电压的滞后的电流降低到零。在图3A中还指出,在OFF时段结束而电流开始在电机绕组中流动时,电流并不瞬时升高到触发信号发生器不断开作用AC电压时它会具有的值;而是它以近似的正弦形式升高并再一次在对应于电流波形滞后于电压波形的量的时间208上过零。这是因为电感中的电流不能瞬时改变而需要一定时间量来充电绕组的电感。当然,在对应于作用AC电压的绕组中的电流的每一相继的半周中重复这一效应。
参见图3B,其中例示了对应于作用电压的代表性相位中的电压感测过零信号的一系列中断脉冲。图3B中在作用AC电压波形通过零点的每一个时间上产生非常短暂的负转变。这一负转变示出为短暂的负方向脉冲的形式,它在过零事件之后几乎立即返回到高逻辑电平。从而,波形211为各过零事件包含到逻辑低电平的负转变213并通过正转变214返回到波形211的高逻辑电平直到作用AC电压的下一个过零事件为止。从而为60个周期的AC功率得出具有每秒120个周期的重复率的负脉冲串,或者在50个周期的AC功率的情况中,重复率为100Hz。这些中断是在CPU35内根据在CPU35的电压感测端上出现的电压Vs导出的。
参见图3C,其中例示了对应于作用电压的代表性相位中的电流感测过零信号的一系列中断脉冲。图3C中的波形呈现为非常相似于图3B的中断波形,但存在下述例外,即对应于触发事件的脉冲的下降沿在电流为零期间是延时的,因为两个SCR都是断开的直到门控制结束而作用电压再一次作用在电机上为止。从而直到过零事件出现为止对应于电流过零的中断信号通常具有逻辑高电平,在出现过零事件时信号进行非常快的负转变到低逻辑电平并且除非存在着触发控制信号,将几乎立即沿非常快的正转变返回到额定高电平逻辑信号。
然而,如果作用有触发控制信号,则在电机绕组端上感测到的过零信号保持在低逻辑电平上直到该触发控制信号结束为止。图3C中,示出了接连的三个触发控制时段,三个对应于图3A中所示的波形的作用AC电压的接连的半周的每一个中一个触发控制时段。图3C中,在电机绕组中的电流的过零事件的时刻上高逻辑电平215变成负转变217并下降到低逻辑电平216直到它沿正转变218恢复到额定高电平215为止。图3C中将对应于触发控制信号活跃的时段的低逻辑电平示出为低逻辑电平219。
图3D例示触发控制信号,它在其活跃期间与对应于该触发控制信号活跃期间的作用电压与电流的过零事件的中断波形紧密地相似。再一次高逻辑电平220后面跟随着到低逻辑电平221的负转变222,其中该信号保持到后面跟随到额定高逻辑电平220的上升转变223的触发控制信号的结束为止。通过比较图3B与3C可观察到感测信号的负转变提供中断及逼近电机的功率因数所需的信息。过零事件之间的流逝的时间是通过从较晚的电流过零事件的时间减去较早的电压过零事件的时间得出的,并利用这一时间间隔来计算将平均作用AC电压降低到将轻负荷的功率因数带回到合理与高效范围内所必需的触发控制信号的持续时间。如上所述,图3D中所示的触发控制波形控制由R139与图2中所示的光耦合器136内的三端双向可控硅开关138构成的SCR门电路的断开。当SCR门电路断开时,SCR进入不导电或断路状态。
参见图4A,其中例示了三相系统的电压波形250与电流波形251,其中相位3电压波形250的一个周期示出功率因数控制器在该特定周期的电压与电流波形上的作用。作用电压的过零事件出现在图4A中的时间254与256上;类似地电流波形的过零事件的发生时间分别出现在时间255与257上。出现在相应的电压与电流过零中断之间的时间差用于作用电压波形的各半周计算控制时段的持续时间。这一控制时段,有时也在正相位3电压波形250中称作削波区252而在负相位3电压波形250中称作削波区253,表示从该相位3所连接的电机绕组中断或消除AC电压的时间。
在图4A中可再一次看到得出的相位3中的电流波形251在触发控制或削波区252的结束与在时间257上的随后的过零事件之间呈现正弦特征,时间257是在按照该电机的绕组的电流与电压之间的相位滞后的特定量的作用AC电压过零点之后。这一示例性实例中的图4B示出图4A中所示的特定相位3中的电压与电流两者的过零感测信号。在相位3的电压感测信号258在时间上后面跟着相位3的电流感测信号259。类似地,在负方向上后面的半周中相位3的电压感测信号260示出为跟随有相位3的电流感测信号261。
参见图4C,其中示出了对应于图4B中所示的过零感测信号的相位3的触发控制信号。可以容易地看出该触发控制信号的定时开始在电流过零信号起动时并为削波区252继续到在图4A中所示的作用电压波形250的相位3的正方向半周的转变263上该触发控制信号再一次返回到高逻辑电平为止。类似地在图4C中还示出相位3的负半周的触发控制信号带有跟随在返回到逻辑高额定电平的转变265上的削波区间隔后面的负转变264。
如图4C中所示可指出简单的关系,其中将电压与电流过零事件及对应的中断之间的时间标识为ΔT3并将电流过零中断后面的削波区的持续时间标识为Δφ3。ΔT3对应于电机绕组上的负荷的功率因数而Δφ3对应于削波区的持续时间,即对已进行功率因数测定的同一半周的控制时段。将看出这两个变量是用取决于正在控制的电机的种类的简单因子关联的。
参见图5,其中例示了说明本公开的功率因数控制器的主程序例程的简化流程图。这一流程从框302开始,当向系统供电或已复位系统时程序便从那里开始。流程进行到框304,在那里CPU运行通过例程来设定CPU中所有的寄存器,起动相位控制部件的所有SCR以便可在电机上作用功率,及设置预置的定时器值。这时流程进行到框306,例程读取对系统的起动延时输入并使状态LED设定成连续地发光。如上所述,框306中提到的起动延时是将电阻器71连接到控制电路接地线的跨接片72所设定的延时。跨接片去掉后的这一延时是30秒的数量级而跨接片存在时这一延时延长到45至60秒的范围。在框308中,例程进行检验来确认已完全执行这一延时而进行到框310,例程在其中设定中断并将状态LED设定成闪烁状态表示CPU正在控制功率因数控制器的操作。
框了310后面,主程序例程进行到框312并在循环中执行CPU的主要操作,该循环从在框312中清看门狗定时器开始,然后例程的流程到框314去检验模数转换器是否已计算出削波调节值,如果求出削波调节值则CPU存储该削波调节值供以后在下面讨论的适当的中断期间使用。削波调节值是要对触发控制信号的持续时间作出的改变。执行主要的程序步骤之后,主程序例程从框314进行到判断框316,在其中它检验是否已切断对系统的功率供给;如果结果是肯定的,则流程进行到框318,在其中例程结束及系统关闭。
然而,如果仍供电,则流程返回到框312中所示的步骤去清看门狗定时器并且主程序例程继续执行其主要功能活动。如上所述,在主程序例程操作期间的任何时间上都可能出现中断。已将本公开的功率因数控制器的CPU编程为在框312与314所表示的主要程序循环期间出现中断时服务于这些中断。下面将说明图6中所示的流程图中所描述的主程序例程服务的中断。
参见图6,其中例示了用于处理可能出现在本公开的功率因数控制器中的中断的例程。在出现中断时在框320上进入该例程,后面是框322,在其中例程将程序计数器与累加器保存在栈上供服务过中断后使用而流程返回到主程序。图6的中断例程提供对功率因数控制器操作的基本的三种中断的服务。这三种中断是用判定框324、326与328表示的。判定框324表示出现表示电压过零事件的信号的中断,在本示例性实施例中,出现在中断管脚感测到线路3的AC电压跨越通过零点时。如果中断不是这一类型,则流程进行到判定框326,在那里例程确定所出现的中断是否定时器中断,这便是在本示例性实例中工作在128倍功率线频率上的定时器。
这一定时器提供将功率线频率周期分成128个相等的片来为功率因数控制器确定与测定过零间隔ΔT相关的定时及计算图2中所示的触发信号发生器130中的CPU132所生成的触发控制信号(例如图4C中的266)的持续时间Δφ的操作提供时基。如果框326中正在服务的中断不是定时器中断,则流程进行到框328,在其中例程确定该中断是否对应于电机中的电流的过零事件的出现。如果这一确定的结果是否定的,则流程进行到框330,在其中中断例程恢复对程序计数器与累加器的控制并在框332中返回到主程序。
返回到判定框324,如果出现的中断表示线路3上的AC电压的过零,则流程沿标记为“是”的路径进行到框334,在其中内部计数器从零开始向表示出现电流过零的中断时间计数以便测定作用AC电压的线路3的电压过零事件与电流过零事件之间的时间间隔ΔT。当出现电流过零事件时,流程退回到中断例程中标识为点A的判定框324的入口,并在判定框324中作出关于刚才出现的中断是否线路3中的电压过零事件的判定。在这一特定实例中,流程将从判定框324进行到判定框326,因为刚才出现的中断不是线路3中的电压过零事件。
在判定框326中例程检验刚出现的中断是否是内部定时器引起的,在本例中结果是否定的,因此流程进行到框328在其中作出刚出现的中断是否是电流过零事件的判定。在本例中,结果是肯定的而流程沿标记为“是”的路径进行到第二层判定框352、362与368。在判定框352中,例程判定该中断是否表示出现在线路3中的电流的过零事件。如果判定是肯定的,则流程沿标记为“是”的路径进行到框354,在其中例程计算削波区的持续时间,如前面描述的,它与CPU132要生成的触发控制信号(如图4C中的266)的持续时间相同。
触发控制信号(如图4C中的266)的持续时间Δφ以一对一的关系确定削波区的持续时间。触发控制信号通过使各相位控制部件中的SCR的门驱动电路截止而导致相应的半周中的SCR在削波区时段中进入不导电状态。从而削波区表示中断到电机绕组的AC电压的时段。AC电压的这一削波区的持续时间是电机绕组中的电流相对于作用在该电机绕组上的AC电压的相关相位的电压过零事件的相位滞后量的函数。在本示例性实施例中,触发控制信号持续时间的关系通常是该特定相位的电压过零事件与电流过零事件之间流逝的时间的持续时间ΔT的某一预定倍数。
例如,在240伏AC、三相上工作的电机中,触发脉冲的持续时间与过零点间隔ΔT的持续时间呈现一对一的关系。从而在本实例中,中断电压波形的时间长度等于出现在受触发控制信号控制的特定相位的过零事件之间的流逝的时间。这一一对一关系可用加在削波持续时间或触发控制信号脉冲的脉冲宽度Δφ上来提前或延缓触发控制信号的下降沿的削波调节值来修正。下面描述削波调节值。类似地,在工作在480伏AC上的三相电机的另一实例中,削波区的持续时间是通过将过零点间隔ΔT除以2并加上削波调节值来提前或延缓该特定类型的电机的触发控制信号的下降沿来确定的。
对削波区的持续时间(即触发控制信号的脉冲宽度Δφ)所作出的削波调节是从将触发信号发生器中的电位计设定为连接到图1中所示的CPU35的指定的管脚上确定的。用作电位计连接点的CPU35的指定管脚为RA2与RA3。电位计构成连接在+5伏Vcc线38与线路40上的控制电路接地线之间的分压器的低一半。CPU35上的RA2连接在节点64上,它是电阻器65与电位计81之间的连接点。在本示例性实例中电位计81提供240V AC电机的削波调节值的设定。类似地,CPU35的RA3连接到节点66,它构成电阻器67与电位计82的连接点。
电位计82提供480V AC电机的削波调节值的设定。当将电位计82设定到其最大电阻时,在过零点间隔ΔT的持续时间上不加上额外的时间来设定触发控制信号(266)的脉冲宽度。随着电位计82的电阻的降低,CPU35上的管脚RA3上的电压也降低,这具有提前出现触发控制信号的下降沿的效应,即缩短触发控制信号的脉冲宽度。当将电位计81设定在其最小电阻上时,管脚RA2上的电压也设定在其最小值上。随着电位计81的电阻的增加,其效应为延缓触发控制信号的下降沿的定时;即延长触发控制信号的脉冲宽度。
继续参照上述240伏AC三相电机与480伏AC三相电机这两个实例,上面描述了用于确定对这两种类型的电机的各自的触发控制信号的脉冲宽度的削波调节值的预定设定值。应理解这两个实例只是可能确定控制发送给三相机器或甚至单相机器的各相的功率的脉冲宽度控制中的无数可能的配置中的两种的示例。从而,无论用削波调节值或其它名词来称呼这一调节值,这些实例只是可为任何特定应用确定触发控制信号的脉冲宽度的多种多样方法的示例。
返回到图6,在框356上,例程设定削波区持续时间并按照图1中所示的CPU35外部的电位计81与82的设定值调节它。然后流程进行到框358,在其中例程将相位3的触发控制信号的脉冲宽度设置到在框356中调节的削波持续时间上。然后流程进行到框360,它表示将触发控制信号作用到相位3控制部件(图1中27)内的SCR门驱动电路上,以导致相位控制部件27削波线路3,即截止相位控制部件27中的门驱动电路以便使对应于作用AC电压的特定半周的SCR在过零事件后断开到触发控制信号的下降沿恢复门驱动为止。然后流程沿该线从框360到点A,如上所述,将例程返回到对判定框324的输入。
参见图6的框352,在电流过零事件并不出现在AC线路3上的情况中,流程沿标识为“否”的路径进行到判定框362,在其中作出判定与电流过零事件关联的特定相位是否是相位2。如果框362中的判定结果是肯定的,流程便进行到框364,在其中将相位2的削波持续时间设定为等于削波持续时间加上在框356中确定的调节值。指出这一点是重要的,即框356中产生的削波持续时间调节值是用来为电机绕组的各相位确定削波持续时间的。从而,一旦在框356中为相位3确定之后,则将同一个值用于以后的相位上直到中断例程服务于相位3的电压过零点与电流过零点之间的时间间隔时在框356中更新或重新计算该值为止。
返回到框364,将相位2的削波持续时间设定为等于在框356中计算的削波持续时间之后,流程进行到框366,在那里触发信号发生器为相位2输出触发控制信号并导致相位2的相位控制部件中的对应SCR的门驱动电路截止,如上面对框360说明的。为相位2生成触发控制之后,流程再一次进行到点A,从那里返回到输入判定框324。现在返回到判定框362,如果判定相位线2并未出现电流过零事件,则流程沿标识为“否”的路径进行到判定框368,作出关于电流过零事件是否出现在相位1中的判定。
如果结果是否定的,流程沿标识为“否”的路径进行到点A,从那里返回到判定框324的输入。然而,如果框368中的判定结果是肯定的,则流程进行到框370,在其中例程将相位1的削波持续时间设定为等于在框356确定的削波持续时间,然后进行到框372,在其中生成具有在框370中确定的持续时间的相位1的触发控制信号,导致对应于作用AC电压的特定半周的SCR变成不导电,从而封闭AC电压对相应的电机绕组的作用一个触发控制信号的脉冲宽度的持续时间。此时,流程进行到点A并回到判定框324的输入去再一次评估下一个中断。
返回到判定框326,判定所接收的中断是否是由内部定时器引起的,并在判定结果是肯定的情况中,流程进行到框336,这时用对应于削波持续时间加上所提供的任何调节值的重新加载值重新加载计数构成削波区的持续时间即触发控制信号的脉冲宽度的时间增量的计数器。重新加载计时器之后,流程进行到框338,在其中例程根据要求向削波区的尾端增量或减量计数器。计数时,中断例程检验确定正在计数哪一个削波区及该削波区的该特定计数是否已到达对应于削波区的末尾的零。从而,从判定框340开始,例程判定削波区3的计数器是否已到达零而且如果在框342中结果为“是”,便停止计数来标记等价于触发控制信号脉冲的下降沿的削波区的末尾。然后触发信号发生器输出正转变来结束该半周的削波区。
然后流程进行到点A,从那里例程返回到对框324的输入。现在返回到框340,在其中确定削波区3的计数器是否已到达零的判定的答案是否定的则流程进行到判定框344,去确定正在处理的削波区是否是相位2的,而如果是,计数器是否已到达零。如果回答是肯定的,则流程进行到框346,在其中在零上停止削波区计数,并通过输出一正转变下降沿给相位2的触发控制信号脉冲来用信号通知触发信号发生器结束该削波区。然后流程再一次进行到点A并返回到判定框324。
返回到判定框344,如果正在处理的削波区不是相位2或计数未到达零,则流程进行到判定框348。在框348中作出关于正在处理的相位是否相位1及该相位的计数器是否已到达零的判定;如果结果为“否”,则流程进行到点A并回到框324的输入去继续处理中断例程。然而如果在判定框348中作出判定确定当前的削波区为相位1且已到达零,则处理流程沿“是”路径到框350,在其中停止用于向下计数削波区1的时间值的计数器并且触发信号发生器输出正向下降沿与相位1的削波区,此时流程继续回到点A及返回到判定框324的输入去继续处理后面的中断。
工业可应用性本发明的节能功率因数控制器10旨在用于控制发送给在可变机械负荷条件下工作的AC电机的电功率,例如驱动从地下沉积物抽油的泵送单元的单相与三相AC感应电机。这些泵送单元是在每一泵送周期中两次由泵送杆与对置的配重交替加载的。再者,每一周期两次,这两个对置的负荷平衡,使该泵驱动电机每一周期两次无负荷。功率因数控制器10连续地调节发送给泵驱动电机的功率在不断地改变的负荷所表示的最小与最大峰值之间保持最佳效率与经济性。
虽然已详细描述了较佳实施例,应理解可在其中作出各种改变、替换与变更而不脱离所附的权利要求所定义的发明精神与范围。
权利要求
1.一种用于动态地将AC感应电机所使用的能量与所述电机上的负荷匹配的控制器,该电机具有至少一个电机绕组及跨越其作用的AC电压,该控制器包括第一与第二SCR,各具有各自的门并互相以相反极性并联在第一节点与第二节点之间,对于所述AC电压的各相其中所述第一节点连接在所述AC电压源上而所述第二节点连接在该电机的所述至少一个电机绕组上;以及耦合在所述各自的门、所述作用电压及所述电机绕组上的触发信号发生器,用于响应对应于所述AC电压的所述电机绕组中的感测到的所述AC电压与AC电流的过零事件的各自的定时控制各所述第一与第二SCR;其中将在所述AC电压的各半周期间交替地触发到导电状态的所述第一与第二SCR交替地从所述导电状态截止一个时间,该时间是与跨接所述电机绕组的当前所述半周的所述AC电压通过第一过零点的时间与所述电机绕组中的所述当前半周的所述对应AC电流通过第二过零点的时间之间测定的时间差成正比的,将确定为所述AC电压与所述对应AC电流的所述感测到的过零事件的所述时间的接连的第一与第二中断之间的时间差的所述测定的差耦合到所述触发信号发生器上并与一连续运行的时基比较。
2.权利要求1的装置,其中所述第一与第二SCR的所述各自的门通过与响应所述触发信号发生器所生成的触发控制信号的开关串联的电阻器耦合在一起。
3.权利要求2的装置,其中所述开关为响应受所述触发控制信号控制的光信号的光敏三端双向可控硅开关。
4.权利要求1的装置,其中所述第一SCR包括耦合在所述第一节点与所述第一SCR的所述门之间的第一门驱动电路及所述第二SCR包括耦合在所述第二节点与所述第二SCR的所述门之间的第二门驱动电路。
5.权利要求4的装置,其中所述第一与第二SCR的所述各自的门通过与响应所述触发信号发生器所生成的触发控制信号的开关串联的寄存器耦合在一起。
6.权利要求5的装置,其中所述开关是响应受所述触发控制信号控制的光信号的光敏三端双向可控硅开关。
7.权利要求4的装置,其中所述第一与第二门驱动电路各包括与换向二极管并联的电阻器,其中所述换向二极管的阴极端耦合在所述SCR的各自的门上。
8.权利要求1的装置,其中所述第一与第二SCR包括用于控制所述电机绕组的各相位的匹配的对。
9.权利要求1的装置,包括耦合在所述第一节点与所述第二节点之间的串联的电阻器与电容器。
10.权利要求1的装置,其中所述触发信号发生器包括用于感测作用在所述电机绕组上的所述AC电压的第一输入;用于感测对应于作用在所述电机绕组上的所述AC电压的所述电机绕组中的所述AC电流的第二输入;用于提供控制各所述第一与第二SCR的触发控制信号的输出;以及包含所述连续运行的时基及响应分别对应于所述第一与第二输入的所述第一与第二中断生成所述触发控制信号的控制装置。
11.权利要求10的装置,其中所述第一输入包括从所述第一节点耦合到所述第一输入的用于提供所述AC电压的抽样的分压电路。
12.权利要求10的装置,其中所述第二输入包括具有耦合在所述第二节点上的输入方及用于响应电机中的所述AC电流的所述过零点提供逻辑转换的输出方的隔离装置;以及耦合在所述绝缘装置的所述输出方与所述第二输入之间的比较器装置。
13.权利要求12的装置,包括用于从耦合在所述绝缘装置的所述输出与所述比较器装置之间的所述逻辑转换中消除噪声的滤波器。
14.权利要求12的装置,其中所述绝缘装置包括具有双向LED输入方与光电晶体管输出方的光耦合器。
15.权利要求12的装置,其中所述比较器包括具有第一与第二输入的差分放大器,其中所述逻辑换向耦合在所述第一输入上;以及耦合在所述第二输入上的基准信号。
16.权利要求10的装置,其中所述控制装置包括用于测定出现在所述AC电压的选择相位中的所述第一中断与所述AC电压的所述选择相位期间的所述第二中断之间的流逝时间的装置;用于按照预定的算法计算所述流逝的时间与预定的因子之积的装置;以及用于在接收所述第二中断之后的第一时间间隔中生成所述触发控制信号的装置,所述触发控制信号具有基本上等于所述积的持续时间;其中将所述第一与第二门驱动电路截止所述触发控制信号的持续时间。
17.权利要求16的装置,其中所述触发控制信号的持续时间是可调节的。
18.权利要求10的装置,其中所述控制装置包括综合所述感应电机的各绕组的所述AC电压的所有相位的控制功能的单个处理单元。
19.权利要求1的装置,包括耦合在各所述第一节点与大地之间的第一电容器;及耦合在各所述第二节点与所述大地之间的第二电容器。
20.权利要求1的装置,包括包围所述触发信号发生器并耦合在大地上的导电屏罩。
21.权利要求20的装置,包括包围携带对应于所述第一与第二过零点的信号的各导线及携带所述触发控制信号的各导线的导电屏罩,所述导电屏罩耦合在所述大地上。
22.权利要求1的装置,其中在所述AC电压的各半周期间的所述AC电流的各过零点后面的预定时间间隔中所述触发信号发生器截止所述第一与第二SCR导电。
23.权利要求18的装置,其中所述预定时间间隔是根据所述第一与第二中断计算的。
24.权利要求19的装置,其中所述第一与第二中断定义与所述AC感应电机的功率因数成正比的时间间隔。
25.权利要求4的装置,其中在所述AC电压的各半周期间所述AC电流的各过零点后面的预定时间间隔中所述触发信号发生器截止所述第一与第二门驱动电路。
26.权利要求25的装置,其中所述预定的时间间隔是根据所述第一与第二中断计算的。
27.权利要求26的装置,其中所述第一与第二中断定义与所述AC感应电机的功率因数成正比的时间间隔。
28.权利要求1的装置,其中连接在所述第一与第二节点之间的电阻器分压电路根据所述测定的差有选择地保持断开确定的时间以将能量使用与所述电机上的所述负荷匹配。
29.权利要求1的装置,其中连接在所述第一与第二节点之间的电阻器分压电路在所述第二过零点后的第二流逝时间后面有选择地闭合。
30.一种动态地将AC感应电机所使用的能量与该电机上的负荷匹配的方法,该电机具有至少一个电机绕组及跨越其作用的AC电压,该方法包括下述步骤在连接在第一节点上的AC电压与连接在第二节点上的至少一个电机绕组之间串联耦合一双向门控制开关,其中该双向门控制开关包含第一与第二门,作用在开关与电机上的AC电压每一个极性一个门;为该双向门控制开关的第一与第二门生成触发控制信号,用于响应所述AC电压与对应于所述AC电压的所述电机绕组中的AC电流的感测到的过零事件的各自的定时控制该AC电压的各极性;在AC电压的各半周中允许将该双向门控制开关交替地触发到导电状态中;以及在该AC电压的各半周期间将该双向门控制开关的导电截止一个时间,该时间与跨越电机绕组的当前半周的AC电压通过第一过零点的时间与该电机绕组中的当前半周的对应AC电流通过第二过零点的时间之间的测定的时间差成正比,将确定为对应于感测到的AC电压与对应的AC电流的感测到的过零事件的时间的接连的第一与第二中断之间的时间差的测定的差与连续运行的时基比较。
31.权利要求30的装置,还包括下述步骤通过与响应触发控制信号的开关串联的第一电阻器将第一与第二门耦合在一起。
32.权利要求31的方法,其中该耦合步骤包括下述步骤在第一节点与第一门之间耦合第一门驱动电路;以及在第二门与第二节点之间耦合第二门驱动电路。
33.权利要求30的方法,其中该耦合步骤包括下述步骤在第一与第二节点之间以相反极性互相并联第一与第二SCR。
34.权利要求30的方法,其中该生成步骤包括下述步骤感测作用在该至少一个电机绕组上的AC电压及输出对应于第一过零点的第一中断;感测该至少一个电机绕组中对应于作用在该至少一个电机绕组上的AC电压的AC电流及输出对应于第二过零点的第二中断;以及从出现第二中断后面的第一时间间隔内开始并在与第一中断的出现与第二中断的出现之间的时间差成正比的流逝的时间之后结束,生成该触发控制信号。
35.权利要求31的装置,其中该截止步骤包括下述步骤断开与将第一门与第二门耦合在一起的第一电阻器串联的开关。
全文摘要
功率因数控制器(10)动态地将AC感应电机所使用的能量与该电机上的负荷匹配。为作用AC电压(V)的各相(φ
文档编号G05F1/70GK1411627SQ00817289
公开日2003年4月16日 申请日期2000年10月24日 优先权日1999年10月26日
发明者菲利贝托·D·加尔扎, 肯尼思·M·汉金斯 申请人:节能有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1