永磁体及其制造方法

文档序号:6749676阅读:192来源:国知局
专利名称:永磁体及其制造方法
技术领域
本发明涉及铁氧磁体粉末和使用该磁体粉末的磁体及它们的制造方法。
磁铅酸盐结构(M型)铁氧体的基本组成通常是用化学式AO·6Fe2O3表示的。元素A为二价的阳离子金属,可从Sr、Ba、Pb、Ca等中选择。
迄今为止,有报告提出为了提高磁化,用Ti或Zn等置换Ba铁氧体中的一部分Fe(Journal of the Magnetics Society of Japan vol.21,No.2(1997)69-72)。
另外,还已知有为了提高矫顽力和磁化,对于Ba铁氧体,用La等稀土类元素置换一部分Ba、用Co或Zn等置换一部分Fe(Joumalof Magnetism and Magnetic Materials vol.31-34,(1983)793-794,Bull.Acad.Sci.USSR(Transl.)phys.Sec.vol.25(1961)1405-1408)。
另一方面,还有报告提出为了提高矫顽力和磁化,对于Sr铁氧体,用La置换一部分Sr(IEEE Transaction on Magnetics,vol.26,No.3,(1999)1144-1148)。
另外,还有报告提出为了提高矫顽力和磁化,用La置换一部分Sr,用Co、Zn置换一部分Fe(国际申请号PCT/JP98/00764、国际公开号WO98/38654)。
另外,还有报告提出对于Ba铁氧体、Sr铁氧体等六方晶铁氧体,在制造主相为含Sr、Ba、Ca、Co、稀土类元素(包括Y)、Bi和Fe的六方晶铁氧体的磁体时,将上述构成元素的一部分或全部添加到主相为至少含Sr、Ba或Ca的六方晶铁氧体的颗粒中,然后进行烧制(国际申请号PCT/JP98/04243、国际公开号WO99/16087)。在报告中说,根据该方法,可制成具有至少二种居里温度的磁体,可提高磁化、矫顽力、矫顽力的温度特性等。
还有报告提出对于Sr铁氧体或Ba铁氧体,通过用La、Ce、Pr、Nd、Sm、Eu、Gd置换一部分Sr或Ba,用Co、Mn、V置换一部分Fe,可得到磁特性、特别是B-H曲线的矩形性优异的、且廉价的高性能铁氧磁体(特开平11-307331)。
还有报告提出通过使具有M型磁铅酸盐结构的铁氧体和具有尖晶石型结构的铁氧体共存,可得到矫顽力和磁化温度特性优异、高温区域磁化下降很少、低温区域矫顽力下降很少的铁氧磁体(特开平11-224812)。
但是,就这些铁氧磁体来说,不能充分满足改善磁特性和低成本制造两方面的要求。即,在用Ti、Zn置换一部分Fe的铁氧体的情况下,虽有报告称可使磁化有若干提高,但存在着矫顽力显著下降的问题。另外,在用La置换一部分Sr的铁氧体的情况下,虽有报告称可使矫顽力、磁化等有若干提高,但性能并不是十分好。在用La置换一部分Ba或一部分Sr、用Co、Zn置换一部分Fe的铁氧体的情况下,虽有报告称可使矫顽力、磁化等提高,但由于La等稀土类元素原料和Co原料价格较高,大量使用则增加原料成本,因此很有可能失去铁氧磁体的制造成本比稀土类磁体等低的优势。另外,在用La、Ce、Pr、Nd、Sm、Eu、Gd置换一部分Sr或一部分Ba、用Co、Mn、V置换一部分Fe的铁氧体的情况下,矩形性虽有提高,但磁化有所下降。
另一方面,对于特开平11-224812公示的具有M型磁铅酸盐结构的铁氧体和具有尖晶石型结构的铁氧体共存的铁氧体,其实施例1至3公示的铁氧体的磁特性和温度特性均分别有所改善,但La和元素M(MMg、Mn、Cu、Fe、Co、Ni、Li+Fe)的添加量较多。另外,在实施例4中,通过改变氮和氧混合气体中的氧分压来烧制组成为Sr0.8La0.2Fe11.8Co0.2O19的铁氧体,即使烧制时的气氛不一定是还原性气氛,也能得到具有M型磁铅酸盐结构的铁氧体和具有尖晶石型结构的铁氧体共存的铁氧体,但这种情况下不能得到良好的磁特性。在实施例5中,分别制作具有M型磁铅酸盐结构的铁氧体SrFe12O19和具有尖晶石型结构的铁氧体CoFe2O5,粉碎时将两者混合,用通常的方法制成烧结体,是与本发明类似的磁体,在这种情况下,虽然改善了磁化的温度系数,但磁化和矫顽力本身由于添加了CoFe2O5而显著降低。
本发明是鉴于上述诸点而开发的,其主要目的在于提供制造成本低且磁特性得到改善的铁氧磁体、以及它们的制造方法。
(1)一种氧化物磁性材料,以具有六方晶M型磁铅酸盐结构的铁氧体为主相,其中包括由选自Sr、Ba、Pb和Ca中的至少一种元素构成的A;选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含La的元素的R;以及Fe;在A、R和Fe的各自构成比率为用式1 (1-x)AO·(x/2)R2O3·nFe2O3其中,0.05≤x<0.3,5.0≤n≤6.5表示的氧化物磁性材料中,添加0.2重量%以上6.2重量%以下的以具有尖晶石型结构的铁氧体为主相的氧化物磁性材料、即当M为选自Co、Ni、Mn和Zn中的至少一种元素时,用式2 MO·Fe2O3(MFe2O4)表示的氧化物磁性材料。
(2)一种含有(1)所述的氧化物磁性材料的铁氧磁体粉末。
(3)一种铁氧煅烧体的制造方法,包括通过将选自SrCO3、BaCO3、PbO和CaCO3中的至少一种的原料粉末、选自包含Y在内的稀土类元素和Bi中的至少一种元素的氧化物且必须含La2O3的氧化物的原料粉末、以及Fe2O3的原料粉末混合来制备原料混合粉末的工序;
将上述原料混合粉末在1100℃以上1450℃以下的温度下进行煅烧、由此制成可用组成式(1-x)AO·(x/2)R2O3·nFe2O3(A为选自Sr、Ba、Pb和Ca中的至少一种元素,R为选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含有La的元素,0.05≤x<0.3,5.0≤n≤6.5)表示的、具有M型磁铅酸盐结构的铁氧煅烧体的工序;通过将选自Co、Ni、Mn和Zn中的至少一种元素的氧化物原料粉末与Fe2O3的原料粉末混合来制备原料混合粉末的工序;将上述原料混合粉末在700℃以上1450℃以下的温度下进行煅烧、由此制成可用组成式MO·Fe2O3(M为选自Co、Ni、Mn和Zn中的至少一种元素)表示的、具有尖晶石型结构的铁氧煅烧体的工序;通过向上述具有M型磁铅酸盐结构的铁氧煅烧体中添加0.2重量%以上6.2重量%以下的上述尖晶石铁氧煅烧体来制备煅烧体混合粉末的工序。
(4)一种铁氧煅烧体的制造方法,包括将选自Sr、Ba、Pb和Ca中的至少一种元素的氯化物、选自包含Y在内的稀土类元素和Bi中的至少一种元素R的氯化物且必须含有La氯化物的氯化物、以及Fe的氯化物溶解来制备pH<6的混合溶液的工序;通过将上述混合溶液向800℃以上1400℃以下的加热气氛中喷雾来进行煅烧、由此制成可用组成式(1-x)AO·(x/2)R2O3·nFe2O3(A为选自Sr、Ba、Pb和Ca中的至少一种元素,R为选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含有La的元素,0.05≤x<0.3,5.0≤n≤6.5)表示的、具有M型磁铅酸盐结构的铁氧煅烧体的工序;通过将选自Co、Ni、Mn和Zn中的至少一种元素的氧化物原料粉末与Fe2O3的原料粉末混合来制备原料混合粉末的工序;将上述原料混合粉末在700℃以上1450℃以下的温度下进行煅烧、由此制成可用组成式MO·Fe2O3(M为选自Co、Ni、Mn和Zn中的至少一种元素)表示的、具有尖晶石型结构的铁氧煅烧体的工序;通过向上述具有M型磁铅酸盐结构的铁氧煅烧体中添加0.2重量%以上6.2重量%以下的上述具有尖晶石型结构的铁氧煅烧体、制成煅烧体混合粉末的工序。
(5)一种铁氧煅烧体的制造方法,包括将用(3)或(4)所述的铁氧煅烧体的制造方法制成的煅烧体粉碎、制成用空气透过法测定的平均粒度在0.2μm以上2.0μm以下范围内的铁氧体粉碎粉末的工序;将上述铁氧体粉碎粉末在900℃以上1450℃以下的温度下再次进行煅烧的工序。
(6)如(3)~(5)中任一项所述的铁氧煅烧体的制造方法,其中用元素M的氢氧化物置换上述元素M的氧化物的一部分或全部。
(7)如(3)、(5)或(6)所述的铁氧煅烧体的制造方法,其特征在于在上述原料混合粉末中添加元素A或元素R的硫酸盐。
(8)如(4)~(6)中任一项所述的铁氧煅烧体的制造方法,其特征在于在上述混合溶液中添加元素A或元素R的硫酸盐。
(9)如(3)~(8)中任一项所述的铁氧煅烧体的制造方法,其特征在于在制备上述原料混合粉末的工序、制备上述混合溶液的工序和粉碎上述铁氧煅烧体的工序之中的至少一个工序中,添加B2O3和/或H3BO3。
(10)一种磁体粉末的制造方法,其中将用(3)~(9)中任一项所述的铁氧煅烧体的制造方法制成的煅烧体粉碎,使得用空气透过法测定的平均粒度在0.2μm以上2.0μm以下范围内。
(11)一种磁体粉末的制造方法,包括向用(3)~(9)中任一项所述的铁氧煅烧体的制造方法制成的煅烧体中、添加CaO、SiO2、Cr2O3和Al2O3(CaO0.3重量%以上1.5重量%以下,SiO20.2重量%以上1.0重量%以下,Cr2O30重量%以上5.0重量%以下,Al2O30重量%以上5.0重量%以下)来制备煅烧体混合粉末的工序;将上述煅烧体混合粉末粉碎、形成用空气透过法测定的平均粒度在0.2μm以上2.0μm以下范围内的磁体粉末的工序。
(12)一种含有(2)所述的铁氧磁体粉末的磁记录介质。
(13)一种含有用(10)或(11)所述的磁体粉末的制造方法制成的磁体粉末的磁记录介质。
(14)一种含有(2)所述的铁氧磁体粉末的粘结磁体。
(15)一种由(10)或(11)所述的磁体粉末的制造方法制成的磁体粉末制成的粘结磁体。
(16)一种含有(2)所述的铁氧磁体粉末的烧结磁体。
(17)一种由(10)或(11)所述的磁体粉末的制造方法制成的磁体粉末制成的烧结磁体。
(18)一种磁体的制造方法,包括对(10)或(11)所述的磁体粉末的制造方法制成的磁体粉末进行热处理的工序;由施行上述热处理的磁体粉末制成粘结磁体的工序。
(19)如(18)所述的磁体的制造方法,其特征在于上述热处理是在700℃以上1100℃以下的温度下进行的。
(20)一种烧结磁体,由(2)所述的铁氧磁体粉末制成,其中含有CaO、SiO2、Cr2O3和Al2O3,添加量分别为CaO0.3重量%以上1.5重量%以下;SiO20.2重量%以上1.0重量%以下;Cr2O30重量%以上5.0重量%以下;Al2O30重量%以上5.0重量%以下。
(21)一种烧结磁体的制造方法,包括制备用(10)或(11)所述的磁体粉末的制造方法制成的磁体粉末的工序;将上述磁体粉末浓缩、混炼、在磁场中成型或者在非磁场中成型、烧结的工序。
(22)一种烧结磁体的制造方法,包括制备用(10)或(11)所述的磁体粉末的制造方法制成的磁体粉末的工序;将上述磁体粉末浓缩、混炼、干燥、破碎、在磁场中成型或者在非磁场中成型、烧结的工序。
(23)如(21)或(22)所述的烧结磁体的制造方法,其中在粉碎时或混炼时,添加固含量比率在0.2重量%以上2.0重量%以下的分散剂。
(24)一种具有(14)~(17)、或(20)中任一项所述的磁体的旋转机械。
(25)一种具有包含(1)所述的氧化物磁性材料的薄膜磁性层的磁记录介质。


图1是用(1-x)SrO·(x/2)La2O3·nFe2O3+yCoFe2O4表示的本发明的烧结磁体(0≤x≤0.5、0≤y≤0.25、y/x=0.5、n=5.8)的组成比x与剩磁通密度Br及矫顽力HcJ的关系的曲线图。
图2是用(1-x)SrO·(x/2)La2O3·nFe2O3+yCoFe2O4表示的本发明的烧结磁体(x=0.2、0≤y≤0.22、0≤y/x≤1.1、n=5.8)的组成比y/x与剩磁通密度Br及矫顽力HcJ的关系的曲线图。
图3是用(1-x)SrO·(x/2)La2O3·nFe2O3+yCoFe2O4表示的本发明的烧结磁体(x=0.2、y=0.1、y/x=0.5、4.6≤n≤7.0)的组成比n与剩磁通密度Br及矫顽力HcJ的关系的曲线图。
图4是用(1-x)SrO·(x/2)La2O3·nFe2O3+yCoFe2O4表示的本发明的铁氧磁体粉末(x=0.2、y=0.1、y/x=0.5、n=5.8)的热处理温度与剩磁通密度Br及矫顽力HcJ的关系的曲线图。
图5是用Co(OH)3作为Co原料制作的用(1-x)SrO·(x/2)La2O3·nFe2O3+yCoFe2O4表示的本发明的烧结磁体(x=0.2、y=0.1、y/x=0.5、4.6≤n≤7.0)的组成比n与剩磁通密度Br及矫顽力HcJ的关系的曲线图。
在本发明中,向在具有六方晶M型磁铅酸盐结构的铁氧体(AO·6Fe2O3A为选自Sr、Ba、Pb和Ca中的至少一种元素)中用元素R(R为选自包含Y在内的稀土类元素和Bi中的至少一种元素,且必须含La的元素)置换一部分元素A的材料中,添加尖晶石结构的铁氧体(MO·Fe2O3)。其中,元素M为选自Co、Ni、Mn和Zn中的至少一种元素。
目前一般认为,在用Co、Zn等2价离子置换一部分Fe、用La等3价离子置换一部分Ba或Sr的情况下,虽可分别进行各自的置换,但从电荷补偿的观点看,希望Fe的一部分置换及Ba或Sr等的一部分置换同时进行,并且为形成电荷补偿,希望两种置换元素的置换按一定比例进行。
本发明人没有受上述技术常识的束缚,首先,在电荷补偿没有完全进行的状态下,即只用元素R置换一部分元素A,制作出没有正铁氧体(RFeO3)和赤铁矿(α-Fe2O3)等异相生成的具有六方晶M型磁铅酸盐结构的铁氧体,通过向该铁氧体中添加含元素M的尖晶石结构的铁氧体,得到的效果与目前进行电荷补偿时的相同,且元素M的添加量也比目前进行电荷补偿所需要的大幅度减少,本发明人通过上述发现,想到本发明。
除电荷补偿的概念外,有时还会由于各置换元素的比例,而导致磁特性下降,因此有必要以最佳的比例添加各置换元素。在本发明中,为了得到最佳的添加比例,通过添加规定量的各种元素,并使制造方法、组成、添加物等最优化,成功地提高了磁特性。
另外,作为本发明的特征,与目前的同时进行用元素R置换一部分元素A、用元素M置换一部分Fe的情况或不进行两者置换的情况相比较,在只用元素R置换一部分元素A的本发明的氧化物磁性材料中,铁氧煅烧体的结晶粒径小。例如,在1300℃下进行煅烧时,用目前的方法,铁氧煅烧体的平均粒径在10μm以上,而本发明则只有数μm。由于结晶粒径没有过分长大,因此可以避免后续的粉碎工序花费很长时间。另外,作为铁氧磁体粉末使用时,可将铁氧煅烧体的结晶粒径控制到几乎或完全不用粉碎的程度。
本发明的氧化物磁性材料是,向用式1 (1-x)AO·(x/2)R2O3·nFe2O3表示的实质具有M型磁铅酸盐结构的铁氧体中,添加用式2 MO·Fe2O3(=MFe2O4)表示的具有尖晶石结构的铁氧体所得到的铁氧体。其存在形式可以是煅烧体、磁体粉末、粘结磁体、烧结磁体、磁记录介质等各种状态。
作为元素A,选择Sr比选择Ba、Pb或Ca对磁特性的改善更显著。因此,优选将元素Sr作为元素A的必选成分。但是,根据用途不同,从降低成本考虑可选择Ba等元素。
作为元素R,选择La时对磁特性的改善最显著。因此,作为元素R,优选只选择La。但是,根据用途不同,从降低成本考虑,La作为必选元素,还可选择包含Y在内的稀土类元素和Bi等。
元素M,如上所述,是选自Co、Ni、Mn和Zn中的至少一种元素。作为元素M,选择Zn时可提高饱和磁化,选择Co、Ni和Mn时可提高各向异性磁场。特别是选择Co时,可使各向异性磁场显著提高。由于各向异性磁场表示了矫顽力的理论上限值,所以提高各向异性磁场对增加矫顽力很重要。
在上述式1中,x和n表示摩尔比,并满足关系式0.05≤x<0.3、5.0≤n≤6.5。x的优选范围是0.05≤x<0.3,更优选的范围是0.05≤x≤0.25。另外,n的优选范围是5.5≤n≤6.5,更优选的范围是5.8≤n≤6.3。
在上述式1中,若x小于上述范围,则元素R对元素A的置换量变小,提高磁特性的效果就小。相反,若x大于上述范围,则除磁特性下降外,还提高了成本。另外,在生成用上述式1表示的铁氧体时,还会生成正铁氧体或赤铁矿等异相,在后续的第2次煅烧和/或烧结的热处理时,产生晶粒长大等,导致磁特性下降。
另一方面,若n过小,则含元素A的非磁性相增加,相反,若n过大,由于赤铁矿等增加,所以磁特性下降。
向上述式1表示的M型磁铅酸盐结构的铁氧体中添加的用上述式2表示的尖晶石结构铁氧体的量在0.2重量%以上6.2重量%以下。尖晶石结构铁氧体的优选添加量在0.2重量%以上4.8重量%以下,更优选的添加量为0.3重量%以上4.1重量%以下。
如果尖晶石结构铁氧体的添加量过少,由于添加效果低,磁特性提高的少。相反,如果添加量过多,不仅磁特性恶化,而且成本提高。
而且,相对于1摩尔的上述式1表示的具有M型磁铅酸盐结构的铁氧体,将尖晶石结构铁氧体中的元素M的换算添加摩尔量设为y的情况下,若y/x过小,则添加效果小,因此磁特性提高小。相反,若y/x过大,则不但使磁特性下降,而且还使成本上升。因此优选y/x满足式0.2≤y/x≤1.0范围内,更优选满足式0.3≤y/x≤0.8。
下面,说明一例本发明的磁体粉末的制造方法。
首先,将SrCO3、BaCO3、PbO或CaCO3的粉末与Fe2O3的粉末以摩尔比为(1-0.05)∶5.0~(1-0.3)∶6.5的范围进行混合。此时,将选自包含Y在内的稀土类元素的氧化物和Bi2O3中的至少一种且必须含La2O3的氧化物的原料粉末添加到上述原料粉末中。
包含Y在内的稀土类元素和/或Bi的添加形式,可像上述那样添加各种氧化物粉末,但也可添加在后续的煅烧工序中能形成氧化物的化合物(如碳酸盐、氢氧化物、硝酸盐、氯化物等)的粉末或溶液。另外,还可添加由选自Sr、Ba、Pb、Ca、包含Y在内的稀土类元素、Bi和Fe中的至少二种元素构成的化合物。
对于上述粉末,根据需要可添加硼化合物(B2O3或H3BO3等)。另外,上述原料粉末的一部分也可使用选自Sr、Ba、Pb、Ca、Y、稀土类元素、Bi和Fe中的至少一种元素的硫酸盐。通过使用上述添加物,可提高在煅烧时针对具有M型磁铅酸盐结构的铁氧体相的反应性,并抑制晶粒长大,因此提高了磁特性。该效果在目前被认为不能得到M型磁铅酸盐结构的铁氧体单相及良好磁特性的上述式1的n>6的范围是显著的。
对于上述原料粉末,根据需要也可添加3重量%左右的含BaCl2等的其他化合物。
除上述原料粉末外,根据需要也可添加3重量%以下的其他化合物、例如含Si、Ca、Pb、Al、Ga、Cr、Sn、In、Co、Ni、Ti、Mn、Cu、Ge、V、Nb、Zr、Li、Mo、Bi、稀土类元素(包含Y在内)等的化合物。另外也可含有微量的不可避免成分等的杂质。
在本申请说明书中,所谓“制备原料混合粉末的工序”,不仅是指从最初开始制备上述那样的原料混合粉末的情况,还广泛包括购入并使用第三者制作的原料混合粉末的情况和将第三者制作的粉末进行混合的情况。
然后用间歇炉、连续炉、回转炉等在1100℃以上1450℃以下的温度下对混合后的原料粉末进行加热,通过固相反应,形成M型磁铅酸盐结构铁氧体化合物。在本申请说明书中,称该过程为“煅烧”,称所得到的化合物为“煅烧体”。煅烧时间可以进行1秒以上10小时以下,优选为可以进行0.5小时以上3小时以下。在煅烧工序中,随着温度上升进行固相反应,形成铁氧体相,约在1100℃结束,但在该温度以下,由于残存有未反应的赤铁矿,所以磁特性下降。虽然一超过1100℃就可产生本发明的效果,但煅烧温度在1100℃以上1150℃以下,本发明的效果较小,只有在上述温度以上效果才显著。另外,若煅烧温度超过了1350℃,晶粒将生长过大,在粉碎工序中需要大量的粉碎时间等。因此,煅烧温度优选在1150℃以上1350℃以下的温度范围内。
也可以通过将已溶解原料成分的混合溶液喷雾至加热气氛中并由此进行煅烧的喷雾热分解法制作本发明的M型磁铅酸盐结构铁氧煅烧体。此时,可通过将选自Sr、Ba、Pb和Ca中的至少一种元素的氯化物、选自包含Y在内的稀土类元素的氯化物和Bi的氯化物中的至少一种元素且必须含La氯化物的物质、Fe的氯化物进行溶解来制作上述混合溶液。
下面,说明利用喷雾热分解法制作铁氧煅烧体粉末的方法的一个例子。
首先,将氯化锶和氯化亚铁溶液按Sr和Fe元素的摩尔比为(1-0.05)∶10.0~(1-0.3)∶13.0的范围进行混合。此时,向上述混合溶液中添加La的氯化物溶液,制成喷雾溶液。
对于以下所示各原料元素组,可分别制成氯化物溶液,通过将这些溶液混合制作喷雾溶液。
1.选自Sr、Ba、Pb和Ca中的至少一种元素的碳酸盐、硫酸盐、硝酸盐、氯化物或氧化物。
2.选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含La的元素R的碳酸盐、硫酸盐、硝酸盐、氯化物或氧化物。
如上所述,可通过混合各原料元素的氯化物溶液来制作喷雾溶液,但将上述原料化合物直接溶解在氯化亚铁溶液中来制作,效率较高。
就氯化亚铁来说,可以使用钢铁厂在轧制工序对钢板等进行酸洗时产生的废酸。
对于喷雾溶液,根据需要可添加0.3重量%左右的含硼化合物(B2O3或H3BO3等)等其他化合物、或者3重量%以下的其他化合物例如含Si、Ca、Pb、Al、Ga、Cr、Sn、In、Co、Ni、Ti、Mn、Cu、Ge、V、Nb、Zr、Li、Mo、Bi、稀土类元素(包括Y)等的化合物。另外,也可含有微量的不可避免成分等的杂质。
通过将制成的喷雾溶液用焙烧炉等在800℃以上1400℃以下的加热气氛中喷雾,使干燥和煅烧同时进行,形成M型磁铅酸盐结构铁氧煅烧体。若加热气氛的温度过低,则残留有未反应的赤铁矿等,相反,若过高则生成磁铁矿,或容易使形成的铁氧煅烧体的组成产生偏析。加热气氛的温度优选在900℃以上1300℃以下的范围内,更优选在1000℃以上1200℃以下。
上述粉溶液的煅烧,如果使用钢铁厂的盐酸回收装置进行,则可高效地通过喷雾热分解制作煅烧体。
通过上述煅烧工序得到的煅烧体,是用式(1-x)AO·(x/2)R2O3·nFe2O3(A是选自Sr、Ba、Pb和Ca中的至少一种元素,R是选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须包括La的元素)表示的、实质上具有M型磁铅酸盐结构的铁氧体。
在此,对向该煅烧体中添加的尖晶石型结构铁氧体的制造方法进行说明。首先,把选自Co、Ni、Mn和Zn中的至少一种元素M的氧化物粉末与Fe2O3粉末以大致1∶1的摩尔比混合。
上述元素M的添加,如上所述可以是以各自的氧化物粉末的形式添加,也可以是以在后续的煅烧工序中会变成氧化物的化合物(如碳酸盐、氢氧化物、硝酸盐、氯化物等)的粉末或溶液的形式添加。另外,也可添加由选自Sr、Ba、Pb、Ca、Co、Ni、Mn、Zn和Fe中的至少二种元素构成的化合物。
也可用元素M的氢氧化物置换上述元素M的氧化物的一部分或全部。上述氢氧化物也可看成是元素M的水和氧化物或氧化氢氧化物。例如,当元素M为Co时,可以使用作为元素M的氢氧化物的Co(OH)2和/或Co(OH)3等氢氧化钴。Co(OH)3可以看成是Co的水和氧化物。特别是在使用氢氧化钴时,对提高磁特性有明显效果。该效果在目前被认为不能得到M型磁铅酸盐结构铁氧体单相及良好磁特性的上述式1的n>6的范围是显著的。
对于上述粉末,根据需要可添加1重量%左右的含硼化合物(B2O3或H3BO3等)的其他化合物、3重量%左右的含BaCl2等的其他化合物。
除上述原料粉末以外,根据需要可添加3重量%以下的其他化合物例如含Si、Ca、Pb、Al、Ga、Cr、Sn、In、Co、Ni、Ti、Mn、Cu、Ge、V、Nb、Zr、Li、Mo、Bi、稀土类元素(包括Y)等的化合物。另外,也可含有微量的不可避免成分的杂质。
通过用间歇炉、连续炉、回转炉等在700℃以上1450℃以下的温度下对混合后的原料粉末进行煅烧,可形成尖晶石结构的铁氧煅烧体。
向上述M型磁铅酸盐结构铁氧煅烧体中,添加尖晶石结构铁氧煅烧体,通过粉碎和/或破碎工序得到本实施方式的铁氧磁体粉末。该粉末的平均粒度优选在2.0μm以下,更优选在0.2μm以上1μm以下的范围内。平均粒度的更加优选的范围是0.4μm以上0.9μm以下。这些平均粒度是用空气透过法测定的。
在此,为了得到更均匀的铁氧磁体粉末,可将制得的铁氧磁体粉末再次进行煅烧、粉碎和/或破碎。
由于在第1次煅烧时已形成各铁氧体结构,因此第2次煅烧时的煅烧温度可以比第1次煅烧温度低,可在900℃以上1450℃以下的温度范围进行,但为抑制结晶粒长大,优选在900℃以上1200℃以下的温度范围进行。另外,煅烧时间可为1秒以上10小时以下,优选为0.5小时以上3小时以下。
另外,还可对上述铁氧磁体粉末进行热处理,与弹性橡胶或质硬量轻的塑料等各种粘结剂混合固化,制成粘结磁体。此时,将本发明的磁体粉末与粘结剂混炼,然后进行成型加工。在混炼时,优选添加固含量比率为0.2重量%以上2.0重量%以下的公知的各种分散剂和表面活性剂。成型加工可用注射成型、挤出成型、辊轧成型等方法并在磁场或非磁场中进行。
上述热处理是为了去除在煅烧体粉碎时产生的煅烧体粒子的晶格变形。通过进行700℃以上的热处理,可使煅烧体粒子中的晶格变形缓和,提高矫顽力。但是,1100℃以上的热处理,会导致粉末粒子长大,降低矫顽力。另一方面,在1000℃以下,磁化与矫顽力同时上升,但在该温度以上则取向度降低,磁化减少。这可以被认为是由于粉末粒子之间产生了熔融粘合。因此,上述热处理优选在700℃以上1100℃以下的温度范围内进行1秒以上3小时以下。热处理温度的更优选范围是900℃以上1000℃以下。
对上述铁氧磁体粉末进行热处理后,可与公知的各种粘结剂混炼,然后进行涂布,制成涂布型磁记录介质。
下面,对本发明铁氧磁体的制造方法进行说明。
首先,用上述的方法制造M型磁铅酸盐结构铁氧煅烧体和尖晶石型结构铁氧煅烧体。然后,向M型磁铅酸盐结构铁氧煅烧体中添加尖晶石型结构铁氧煅烧体,通过使用振动式磨机、球磨机和/或磨碎机的微粉碎工序,将煅烧体粉碎成微粒。微粒的平均粒度优选在0.4μm以上0.9μm以下(空气透过法)。微粉碎工序优选为干式粉碎(超过1μm的粗粉碎)和湿式粉碎(1μm以下的微粉碎)组合进行。
在此,为了得到更均匀的铁氧磁体粉末,可将制得的铁氧磁体粉末再次进行煅烧、粉碎和/或破碎。
在微粉碎工序中,为了改善磁特性,可以向煅烧体中添加CaO、SiO2、Cr2O3和Al2O3(CaO0.3重量%以上1.5重量%以下;SiO20.2重量%以上1.0重量%以下;Cr2O30重量%以上5.0重量%以下;Al2O30重量%以上5.0重量%以下)等。
在湿式粉碎时,可以使用水等水系溶剂或各种非水系溶剂。在湿式粉碎时,溶剂和煅烧体粉末混合生成为浆料。优选向浆料中添加固含量比率为0.2重量%以上2.0重量%以下的公知的各种分散剂和表面活性剂。在微粉碎工序中,也可添加1重量%以下的含Bi2O3等的其他化合物。
然后,在湿式成型时,一边去除浆料中的溶剂,一边在磁场或非磁场中进行压制成型。在干式成型时,将浆料干燥、破碎处理后,在磁场或非磁场中进行压制成型。压制成型后,经脱脂工序、烧结工序、加工工序、洗净工序、检验工序等公知的制造过程,最终制成铁氧磁体制品。烧结工序可以在空气中、1100℃以上1250℃以下进行0.5小时以上2小时以下。烧结后得到的烧结磁体的平均粒度例如在0.5μm以上2.0μm以下。
本发明的旋转机械的特征是具备有用上述方法制造的铁氧磁体。其他具体结构与公知的旋转机械相同。
另外,对于本发明的磁记录介质所用的薄膜磁性层的形成,优选使用溅射法。溅射所用的靶材也可以使用上述铁氧磁体。另外,也可以将各元素的氧化物用作靶材。通过对溅射法形成的薄膜进行热处理,可制成本发明的铁氧体薄膜磁性层。
另外,本发明的铁氧磁体的制造方法的特征是首先制作用式(1-x)AO·(x/2)R2O3·nFe2O3(A为选自Sr、Ba、Pb和Ca中的至少一种元素,R为选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含La的元素)表示的、以具有M型磁铅酸盐结构的铁氧体为主相的磁体,然后在微粉碎时添加尖晶石型结构铁氧体,因此,即使作为母体的具有M型磁铅酸盐结构的铁氧体是组分一定的材料,通过在微粉碎时适当改变添加物的添加量,可简便地分别制造出具有很宽范围的磁特性的铁氧磁体,这对于制造具有多种磁特性的铁氧磁体的制造工序是非常有利的。
(实施例1)首先,将SrCO3粉末、La2O3粉末和Fe2O3粉末的各种原料粉末混合,使得在(1-x)SrO·(x/2)La2O3·nFe2O3组成中x=0.2,n=5.8。将得到的原料粉末用湿式球磨机粉碎4小时,并进行干燥、造粒。然后,在大气中1300℃条件下煅烧3小时,制成煅烧体磁体粉末。
通过对上述煅烧体磁体粉末进行x射线衍射分析,可以确认生成了M型铁氧体单相,不存在正铁氧体相和赤铁矿相。
另一方面,将Fe2O3粉末与CoO粉末、NiO粉末、Mn3O4粉末、以及ZnO粉末的各种原料粉末进行混合,成为CoO·Fe2O3(Co-S)、NiO·Fe2O3(Ni-S)、MnO·Fe2O3(Mn-S)或ZnO·Fe2O3(Zn-S)的组成。将得到的原料粉末用湿式球磨机粉碎4小时,并进行干燥、造粒。然后,在大气中850℃条件下煅烧3小时,由此制成尖晶石型铁氧煅烧体磁体粉末。
通过对上述尖晶石型铁氧煅烧体粉末进行X射线衍射分析,可知为尖晶石型铁氧体单相。
接着,向上述M型铁氧煅烧体磁体粉末中,按照相对于1摩尔的上述M型铁氧煅烧体磁体粉末、尖晶石型铁氧煅烧体粉末中的元素M的换算添加量y为y=0.1(y/x=0.5)的条件,添加2.3重量%的Co-S煅烧体磁体粉末(试样1)、2.3重量%的Ni-S煅烧体磁体粉末(试样2)、2.2重量%的Mn-S煅烧体磁体粉末(试样3)、2.5重量%的Zn-S煅烧体磁体粉末(试样4)、1.1重量%的Co-S煅烧体磁体粉末和1.1重量%的Ni-S煅烧体磁体粉末(试样5)、1.1重量%的Co-S煅烧体磁体粉末和1.1重量%的Mn-S煅烧体磁体粉末(试样6)、1.1重量%的Co-S煅烧体磁体粉末和1.2重量%的Zn-S煅烧体磁体粉末(试样7)。
除此以外再向上述试样中添加0.7重量%的CaCO3粉末和0.4重量%的SiO2粉末,用以水为溶剂的湿式球磨机微粉碎至用空气透过法测定的平均粒度为0.55μm左右。
然后,一边去除微粉碎浆料中的溶剂一边在磁场中进行压制成型。将成型体在大气中、1200℃条件下烧结30分钟,制成烧结磁体。
另外,作为比较例,制作不添加尖晶石型铁氧煅烧体粉末的试样(比较例1)。除此以外再添加0.7重量%的CaCO3粉末和0.4重量%的SiO2粉末,用以水为溶剂的湿式球磨机微粉碎至用空气透过法测定的平均粒度为0.55μm左右。然后,一边去除微粉碎浆料中的溶剂一边在磁场中进行压制成型。将成型体在大气中、1200℃条件下烧结30分钟,制成烧结磁体。另外,作为比较例,在SrO·nFe2O3的组成中,使得n=5.8,按上述方法制成烧结磁体(比较例2)。
对所得到的烧结磁体,测定其饱和磁化(Js)、剩磁通密度(Br)、矫顽力(HcJ)。测定结果如表1所示。由表1可知,与比较例1、2相比,本发明的试样1~7的各项磁特性都提高了。
表1

(实施例2)首先,与实施例1一样,制作(1-x)SrO·(x/2)La2O3·nFe2O3组成中0≤x≤0.5、n=5.8的M型煅烧体磁体粉末和Co-S煅烧体磁体粉末。
接着,向上述M型铁氧煅烧体磁体粉末中,按照相对于1摩尔的上述M型铁氧煅烧体磁体粉末、Co-S煅烧体粉末中的Co的换算添加量y为0≤y≤0.25(y/x=0.5)的条件,添加Co-S煅烧体粉末,然后用与实施例1相同的方法制作烧结体。
对所得到的烧结磁体测定其Br和HcJ。其测定结果如图1所示。从图1可知,在0.05≤x≤0.3的范围内,Br和HcJ提高了。
与上述方法相同,对添加Ni-S煅烧体磁体粉末、Mn-S煅烧体磁体粉末和Zn-S煅烧体磁体粉末的情况进行研究,由结果可知,在0.05≤x≤0.3范围内,Ni-S煅烧体磁体粉末和Mn-S煅烧体磁体粉末可提高Br和HcJ,Zn-S煅烧体磁体粉末可提高Br。
(实施例3)首先,与实施例1一样,制作(1-x)SrO·(x/2)La2O3·nFe2O3组成中x=0.2、n=5.8的M型煅烧体磁体粉末和Co-S煅烧体磁体粉末。
接着,对上述M型铁氧煅烧体磁体粉末,按相对于1摩尔的上述M型铁氧煅烧体磁体粉末、Co-S煅烧体粉末中的Co的换算添加量y为0≤y≤0.22(0≤y/x≤1.1)的条件,添加Co-S煅烧体粉末,然后用与实施例1相同的方法制作烧结体。
对得到的烧结磁体测定其Br和HcJ。其测定结果如图2所示。从图2可知,在0.2≤y/x≤0.8的范围内,HcJ提高。
与上述方法相同,对添加Ni-S煅烧体磁体粉末、Mn-S煅烧体磁体粉末和Zn-S煅烧体磁体粉末的情况进行研究,由结果可知,在相同的y/x范围内,添加Ni-S煅烧体磁体粉末和Mn-S煅烧体磁体粉末的结果与添加Co-S煅烧体粉末相同,而添加Zn-S煅烧体磁体粉末可提高Br。
(实施例4)除了在(1-x)SrO·(x/2)La2O3·nFe2O3组成中、按x=0.2、4.6≤n≤7.0那样混合以外,其他与实施例1一样制作煅烧体磁体粉末,由该煅烧体磁体粉末,与实施例1的试样1一样制作烧结体。
对所得到的烧结磁体测定其Br和HcJ。其测定结果如图3所示。从图3可知,在5.0≤n≤6.5的范围内,HcJ和Br提高了。
与上述方法相同,对添加Ni-S煅烧体磁体粉末、Mn-S煅烧体磁体粉末和Zn-S煅烧体磁体粉末的情况进行研究,由结果可知,在n的范围相同时,添加Ni-S煅烧体磁体粉末和Mn-S煅烧体磁体粉末的结果与添加Co-S煅烧体磁体粉末相同,而添加Zn-S煅烧体磁体粉末可提高Br。
(实施例5)首先,除了微粉碎至用空气透过法测定的平均粒度在1.0μm左右以外,其他与实施例1的试样1一样制作微粉碎浆料。然后进行干燥、破碎,在500~1200℃条件下进行热处理,制成铁氧磁体粉末。
用试样振动式磁力计(VSM)测定所得粉末的Br和HcJ。结果如图4所示,由图4可知,HcJ在1100℃以下热处理时增加,在该温度以上热处理则降低。另一方面,磁化在1000℃之前与矫顽力一起上升,但在该温度以上则降低。
用上述铁氧磁体粉末制作马达用的形状的粘结磁体,用该粘结磁体代替现有材质的粘结磁体并装入马达中,在额定条件下使其工作,得到了良好的特性。并且,对转矩进行测定后可知,比使用现有材质的粘结磁体的马达的转矩高。
将上述铁氧磁体粉末用于磁记录介质时,结果可得到高输出功率和高的S/N。
(实施例6)除了如表2所示添加CaO、SiO2、Cr2O3和Al2O3、并进行微粉碎以外,其他与实施例1的试样1一样制作烧结体。所得烧结磁体的Br和HcJ的测定结果如表2所示。
表2

(实施例7)除了用Co(OH)3粉末代替CoO粉末作为Co的原料以外,其他与实施例4一样制作烧结体,对所得的烧结磁体,测定其Br和HcJ。测定结果如图5所示。由图5可知,用Co(OH)3粉末代替CoO粉末可得到优异的特性。用Co(OH)3粉末时,特别是在n>6的范围,可显示出优异的特性。其他的元素M(Ni、Mn、Zn)也可得到同样的结果。
另外,制作下面各试样8~16,对所得烧结磁体,测定其Br和HcJ。测定结果如表3所示。按与实施例1的试样1相同的方法制作各试样的烧结磁体。
试样8作为Sr原料,在一部分SrCO3中添加0.5重量%的SrSO4。
试样9作为Sr原料,在一部分SrCO3中添加1.0重量%的SrSO4。
试样10作为Sr原料,在一部分SrCO3中添加2.0重量%的SrSO4。
试样11在混合用于制作M型铁氧煅烧体磁体粉末的各种原料粉末时,添加0.2重量%的H3BO3。
试样12在混合用于制作M型铁氧煅烧体磁体粉末的各种原料粉末时,添加0.5重量%的H3BO3。
试样13在混合用于制作M型铁氧煅烧体磁体粉末的各种原料粉末时,添加1.0重量%的H3BO3。
试样14作为Co原料,用Co(OH)3粉末代替CoO粉末,并且,作为Sr原料,在一部分SrCO3中添加1.0重量%的SrSO4。
试样15作为Co原料,用Co(OH)3粉末代替CoO粉末,并且,在混合用于制作M型铁氧煅烧体磁体粉末的各种原料粉末时,添加0.5重量%的H3BO3。
试样16作为Co原料,用Co(OH)3粉末代替CoO粉末,并且,在混合用于制作M型铁氧煅烧体磁体粉末的各种原料粉末时,添加0.5重量%的H3BO3,作为Sr原料,在一部分SrCO3中添加1.0重量%的SrSO4。
表3

产业上的可利用性根据本发明,通过向用必须具有La的元素R置换一部分Sr等的六方晶的M型磁铅酸盐结构的铁氧体中添加尖晶石型结构的铁氧体,既可以降低制造成本,又可提高铁氧磁体的磁特性。
权利要求
1.一种氧化物磁性材料,以具有六方晶M型磁铅酸盐结构的铁氧体为主相,其特征在于包括由选自Sr、Ba、Pb和Ca中的至少一种元素构成的A;选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含La的元素的R;以及Fe;在A、R和Fe的各自构成比率为用式1 (1-x)AO·(x/2)R2O3·nFe2O3其中,0.05≤x<0.3,5.0≤n≤6.5表示的氧化物磁性材料中,添加0.2重量%以上6.2重量%以下的以具有具有尖晶石型结构的铁氧体为主相的氧化物磁性材料、即当M为选自Co、Ni、Mn和Zn中的至少一种元素时,用式2 MO·Fe2O3(MFe2O4)表示的氧化物磁性材料。
2.一种含有权利要求1所述的氧化物磁性材料的铁氧磁体粉末。
3.一种铁氧煅烧体的制造方法,其特征在于包括通过将选自SrCO3、BaCO3、PbO和CaCO3中的至少一种的原料粉末、选自包含Y在内的稀土类元素和Bi中的至少一种元素的氧化物且必须含La2O3的氧化物的原料粉末、以及Fe2O3的原料粉末混合来制备原料混合粉末的工序;将所述原料混合粉末在1100℃以上1450℃以下的温度下进行煅烧、由此制成可用组成式(1-x)AO·(x/2)R2O3·nFe2O3(A为选自Sr、Ba、Pb和Ca中的至少一种元素,R为选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含有La的元素,0.05≤x<0.3,5.0≤n≤6.5)表示的、具有M型磁铅酸盐结构的铁氧煅烧体的工序;通过将选自Co、Ni、Mn和Zn中的至少一种元素的氧化物原料粉末与Fe2O3的原料粉末混合来制备原料混合粉末的工序;将所述原料混合粉末在700℃以上1450℃以下的温度下进行煅烧、由此制成可用组成式MO·Fe2O3(M为选自Co、Ni、Mn和Zn中的至少一种元素)表示的、具有尖晶石型结构的铁氧煅烧体的工序;通过向所述具有M型磁铅酸盐结构的铁氧煅烧体中添加0.2重量%以上6.2重量%以下的所述尖晶石铁氧煅烧体来制备煅烧体混合粉末的工序。
4.一种铁氧煅烧体的制造方法,其特征在于包括将选自Sr、Ba、Pb和Ca中的至少一种元素的氯化物、选自包含Y在内的稀土类元素和Bi中的至少一种元素R的氯化物且必须含有La氯化物的氯化物、以及Fe的氯化物溶解来制备pH<6的混合溶液的工序;通过将所述混合溶液向800℃以上1400℃以下的加热气氛中喷雾来进行煅烧、由此制成可用组成式(1-x)AO·(x/2)R2O3·nFe2O3(A为选自Sr、Ba、Pb和Ca中的至少一种元素,R为选自包含Y在内的稀土类元素和Bi中的至少一种元素且必须含有La的元素,0.05≤x<0.3,5.0≤n≤6.5)表示的、具有M型磁铅酸盐结构的铁氧煅烧体的工序;通过将选自Co、Ni、Mn和Zn中的至少一种元素的氧化物原料粉末与Fe2O3的原料粉末混合来制备原料混合粉末的工序;将所述原料混合粉末在700℃以上1450℃以下的温度下进行煅烧、由此制成可用组成式MO·Fe2O3(M为选自Co、Ni、Mn和Zn中的至少一种元素)表示的、具有尖晶石型结构的铁氧煅烧体的工序;通过向所述具有M型磁铅酸盐结构的铁氧煅烧体中添加0.2重量%以上6.2重量%以下的所述具有尖晶石型结构的铁氧煅烧体、制成煅烧体混合粉末的工序。
5.一种铁氧煅烧体的制造方法,其特征在于包括将用权利要求3或4所述的铁氧煅烧体的制造方法制成的煅烧体粉碎、制成用空气透过法测定的平均粒度在0.2μm以上2.0μm以下范围内的铁氧体粉碎粉末的工序;将所述铁氧体粉碎粉末在900℃以上1450℃以下的温度下再次进行煅烧的工序。
6.如权利要求3~5中任一项所述的铁氧煅烧体的制造方法,其特征在于用元素M的氢氧化物置换所述元素M的氧化物的一部分或全部。
7.如权利要求3、5或6所述的铁氧煅烧体的制造方法,其特征在于在所述原料混合粉末中添加元素A或元素R的硫酸盐。
8.如权利要求4~6中任一项所述的铁氧煅烧体的制造方法,其特征在于在所述混合溶液中添加元素A或元素R的硫酸盐。
9.如权利要求3~8中任一项所述的铁氧煅烧体的制造方法,其特征在于在制备所述原料混合粉末的工序、制备所述混合溶液的工序和粉碎所述铁氧煅烧体的工序之中的至少一个工序中,添加B2O3和/或H3BO3。
10.一种磁体粉末的制造方法,其特征在于将用权利要求3~9中任一项所述的铁氧煅烧体的制造方法制成的煅烧体粉碎,使得用空气透过法测定的平均粒度在0.2μm以上2.0μm以下范围内。
11.一种磁体粉末的制造方法,其特征在于包括向用权利要求3~9中任一项所述的铁氧煅烧体的制造方法制成的煅烧体中、添加CaO、SiO2、Cr2O3和Al2O3(CaO0.3重量%以上1.5重量%以下,SiO20.2重量%以上1.0重量%以下,Cr2O30重量%以上5.0重量%以下,Al2O30重量%以上5.0重量%以下)来制备煅烧体混合粉末的工序;将所述煅烧体混合粉末粉碎、形成用空气透过法测定的平均粒度在0.2μm以上2.0μm以下范围内的磁体粉末的工序。
12.一种含有权利要求2所述的铁氧磁体粉末的磁记录介质。
13.一种含有用权利要求10或11所述的磁体粉末的制造方法制成的磁体粉末的磁记录介质。
14.一种含有权利要求2所述的铁氧磁体粉末的粘结磁体。
15.一种由权利要求10或11所述的磁体粉末的制造方法制成的磁体粉末制成的粘结磁体。
16.一种含有权利要求2所述的铁氧磁体粉末的烧结磁体。
17.一种由权利要求10或11所述的磁体粉末的制造方法制成的磁体粉末制成的烧结磁体。
18.一种磁体的制造方法,其特征在于包括对权利要求10或11所述的磁体粉末的制造方法制成的磁体粉末进行热处理的工序;由施行所述热处理的磁体粉末制成粘结磁体的工序。
19.如权利要求18所述的磁体的制造方法,其特征在于所述热处理是在700℃以上1100℃以下的温度下进行的。
20.一种烧结磁体,由权利要求2所述的铁氧磁体粉末制成,其特征在于含有CaO、SiO2、Cr2O3和Al2O3,添加量分别为CaO0.3重量%以上1.5重量%以下;SiO20.2重量%以上1.0重量%以下;Cr2O30重量%以上5.0重量%以下;Al2O30重量%以上5.0重量%以下。
21.一种烧结磁体的制造方法,其特征在于包括制备用权利要求10或11所述的磁体粉末的制造方法制成的磁体粉末的工序;将所述磁体粉末浓缩、混炼、在磁场中成型或者在非磁场中成型、烧结的工序。
22.一种烧结磁体的制造方法,其特征在于包括制备用权利要求10或11所述的磁体粉末的制造方法制成的磁体粉末的工序;将所述磁体粉末浓缩、混炼、干燥、破碎、在磁场中成型或者在非磁场中成型、烧结的工序。
23.如权利要求21或22所述的烧结磁体的制造方法,其特征在于在粉碎时或混炼时,添加固含量比率在0.2重量%以上2.0重量%以下的分散剂。
24.一种具有权利要求14~17、或20中任一项所述的磁体的旋转机械。
25.一种具有包含权利要求1所述的氧化物磁性材料的薄膜磁性层的磁记录介质。
全文摘要
本发明提供一种铁氧磁体,微粉碎时在用选自包含Y在内的稀土类元素和Bi中的至少一种且必须含La的元素置换Sr、Ba、Pb或Ca中的一部分的、具有六方晶M型磁铅酸盐结构的铁氧体中,添加尖晶石型结构的铁氧体。通过在微粉碎时分别向已具有六方晶M型磁铅酸盐结构的铁氧体中添加少量的Co、Ni、Mn、Zn等元素,可以使磁特性提高。
文档编号G11B5/706GK1462453SQ02801589
公开日2003年12月17日 申请日期2002年2月6日 优先权日2001年2月7日
发明者尾田悦志, 细川诚一, 丰田幸夫 申请人:住友特殊金属株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1