使用附近的单元来提供磁存储器阵列中的场辅助切换的制作方法

文档序号:6736934阅读:109来源:国知局
专利名称:使用附近的单元来提供磁存储器阵列中的场辅助切换的制作方法
技术领域
本发明涉及使用附近的单元来提供磁存储器阵列中的场辅助切换的技术。

发明内容
本发明的各种实施例一般涉及用于将数据写入诸如自旋扭矩转移随机存取存储器(STRAM)存储器单元之类的磁性存储器单元的方法和装置。根据各种实施例,通过所选择的磁性存储器单元施加写入电流以发起所述所选择的单元磁旋进(precession)至期望磁状态。同时有场辅助电流流经相邻的存储器单元来产生磁场,所述磁场辅助所选择单元旋进至期望磁状态。以本发明各种实施例为表征的这些以及各种其它特征与优点可考虑以下具体讨论与所附附图来理解。


图1提供根据本发明的各种实施例来构造和运作的数据存储设备的功能框图。图2描绘了图1的存储器模块的一部分。图3示出了图2的磁性存储器单元的示例性构造。图4是根据一些实施例施加了场辅助写入的存储器模块的一部分的功能示图。图4A是对来自图4的单元的俯视图表示。图5示出施加到图4中的单元的各自的电流。图6是示出可施加场辅助写入的可选方式的功能框图。图7是示出可施加场辅助写入的还有另一种方式的功能框图。图8是场辅助数据写入例程的流程图。
具体实施例方式本公开以数据可被写入磁性存储器单元(诸如但不限于自旋扭矩转移随机存取存储器(STRAM)单元)的方式来阐述各种改进。固态磁存储单元阵列可被用于提供数据比特的非易失性存储。一些磁存储单元配置包括诸如磁性隧穿结(MTJ)之类的可编程电阻性元件。MTJ包括具有选定方向上的固定磁取向的钉扎基准层。自由层通过隧穿势垒与该基准层分开,其中该自由层具有可选择性变化的磁取向。自由层相对于固定层的取向建立了该单元的总电阻,该总电阻可在读取感测操作期间检测。虽然已发现磁性存储器单元能在紧凑的半导体阵列环境中高效率地存储数据,但是与此类单元有关的一个问题是产生不同的编程状态所需要的功率。例如,STRAM单元经常被配置为使用自旋扭矩来改变自由层的磁取向,藉此需要使用大量电流强度值来施加写入电流。对于每一个电池,这可继而需要相对较大的切换设备(如,nMOSFET)来容纳这么大的电流强度。
降低所需用于切换每个单元中的自由层的电流强度的一般趋于降低存储设备的总体能耗,这可降低热产生、并延展电池操作应用中的电池寿命。较低的切换电流还可容许在每个存储器单元中使用较小的转换设备,藉此催生出更高密集封装的、更高数据容量的阵列。相应地,本公开一般涉及数据至磁性存储器单元的场辅助写入来降低编程电流强度。如下所述,写入电流被施加到阵列中所选择的存储器单元来实现所选择的编程的状态。同时地在阵列中至少一个靠近的单元上施加场辅助电流。该场辅助电流并不足够大到实现靠近的单元的编程状态,但是却足够大到建立安培场,所述安培场辅助在所选择的单元上的编程作用力(programming effort) 0可预料的是,使用这样的场辅助电流将降低阵列的整体功耗并提供更快、更低电流的切换操作。图1提供根据本发明的各种实施例来构造和操作的数据存储设备100的简化框图表示。可以构想,该设备构成可与便携式电子设备配对以便为该设备提供数据存储的存储卡。然而,应当领会,所要求保护的主题内容并不如此限定。设备100被示为包括控制器102和存储器模块104。控制器102提供对该设备的顶层控制,包括与主机(未单独示出)的接口操作。控制器功能性可在硬件中或经由可编程处理器来实现,或可被直接纳入存储器模块104。其他特征也可被纳入设备100,包括但不限于I/O缓冲器、ECC电路系统和本地控制器高速缓存。存储器模块104包括如图2中一般示出的非易失性存储单元106的固态阵列。每个单元106包括电阻性感测存储元件108和切换设备110。存储元件108在图2中被表示为可变电阻器,因为其中这些元件将响应于对这些单元的编程输入而建立不同的电阻。切换器件110在读取操作和写入操作期间促成对个体单元的选择性访问。在一些实施例中,存储单元106被表征为自旋扭矩转移随机存取存储器(STRAM)单元。存储元件108被表征为磁性隧穿结(MTJ),并且切换器件被表征为nMOSFET (η沟道金属氧化物半导体场效应晶体管)。应当领会,其他单元配置也可被容易地使用。通过使用包括位线(BL) 112、源线(SL) 114和字线(WL) 116在内的各种控制线来执行对单元106的访问。沿选定的字线116的所有单元106可形成在读取和写入操作期间当前被访问的存储页。该阵列可包括以行和列安排的任何数目个MxN存储单元。可使用其中仅两条控制线直接耦合至每个单元的交叉点阵列。图2中表示的各种位线、源线和控制线112、114和116正交地跨阵列延伸,并可根据需要彼此平行或彼此垂直。合适的驱动器电路系统(未示出)耦合至各种控制线以使选定的读取和写入电流通过各个单元106。图3提供根据一些实施例的图2中被选中的存储单元106的垂直叠层表示。MTJ118由导电的顶电极和底电极120、122(分别为TE和BE)分开。MTJ 118包括具有选定方向上的固定磁取向的基准层(RL) 124。基准层IM可采取数种形式,诸如具有由毗邻的例如永磁体之类的钉扎层建立的固定磁取向的反铁磁钉扎层。替换地,可使用合成反铁磁(SAF)结构。隧穿势垒层126将基准层IM与有时亦被称为存储层的软铁磁自由层1 分开。自由层128具有可选择性编程的、响应于对元件108施加写入电流而建立的磁取向。自由层1 的经编程磁取向可以在与基准层124的取向相同的方向上(平行),或者可在与基准层124的取向相反的方向上(反平行)。平行定向提供通过存储单元的较低电阻&,而反平行定向提供通过该单元的较高电阻&。本领域技术人员可知显然可使用其他MTJ配置,包括使用多个自由和/或基准层的层叠配置。诸如106之类的存储器单元可具有对称写入特性,其中可需要更多的驱动器作用力来切换到一些编程状态(相比于其他编程的状态)。图3用箭头130标识出对于MTJ118的较难的编程方向,用箭头132标识出对于MTJ的较容易的编程方向。较难的方向130对应于穿过单元106从SLl 14到BLl 12来将MTJl 18从平行切换到反平行状态的电流的方向。较容易的方向132对应于从BLl 12到SLl 14来将MTJl 18从反平行切换到平行状态的电流的方向。实现反平行切换(以较难的方向)的电流强度有时候可显著地大于所需来实现平行切换(以较容易的方向)的电流强度。虽然在较难方向130中流动的电流被示为从SL到BL、且在较容易方向132中流动的电流被示为从BL到SL,可回想起在应用这些电流的过程中,电子流动的实际方向是处于相反方向。因此,在较难方向中的编程将引导电子从BL到自由层,而较容易方向中的编程将使电子从SL运出并穿过基准层到达自由层。存储单元106内的MTJ118和转换设备110的相对排序还可造成对称的写入特性。可注意的是在较难的方向130中,在到达MTJl 18之前,写入电流流经M0SFET110的漏-源通道。因此呈现给MTJ118的电压基本是WL116的电压(如,Vdd)减去晶体管的栅极-源极电压Ves。相反,在较容易的编程方向132中,写入电流在流到晶体管110之前穿过MTJ118,且呈现给MTJl 18的电压基本是BLl 12的电压(如,VDD)。晶体管110的大小一般将会被设置为容纳在不导致饱和或损坏晶体管的情况下,切换到自由层所需的电流的最大的大小。由于这些切换电流强度可能是极大(significant)的,本发明的各种实施例以这样的方式操作设备100,以减少每个单元106的较难的和较容易的方向中的编程电流的大小和持续时间。图4是沿x-y平面的行和列而设置的多个存储器单元106的一般示图。通过在ζ方向施加电流通过各个电池而写入单元106的编程状态。可以理解的是图中的存储器单元和其他元件的各种描绘仅是一般示图,且明显可使用其他各种形式的因子、形状、尺寸、距离等。图4中三个紧邻的单元106被称为单元A、B和C。在一些实施例中,通过对单元B施加合适的写入电流而实现将单元B写入到所选择的状态,诸如平行状态。同时,沿相关联的行(或列)对位于单元B的相对侧边的相邻单元A和C施加场辅助电流。施加到单元B的写入电流产生磁场H,其用箭头134表示且基本沿着Y轴。在至少一些实施例中,写入电流强度其大小不足以将单元B的自由层的磁性状态旋进到期望状态。然而,以相反的方向将场辅助电流施加到单元A和C,使用该场辅助电流建立具有相反旋转方向的各自的安培场136和138。由于场136、138以相同的共有方向相邻地流经中间单元B,这些场对写入电流的净增加将足以使单元B切换到期望状态。应该注意的是,施加到单元A和C的场辅助电流可能具有小于施加到单元B的写入电流,且场辅助电流不具有足以切换将单元A和C的现有编程状态的大小。通过经验分析已经发现,一些约100纳米(nm)大小(直径或者截面跨度)的磁性存储器单元的一些类型可在存储器单元的边缘产生安培场,响应于约107安培每立方厘米(A/cm2)的电流强度,具有约30奥斯特(Oe)级别的能级。在相距约500nm的紧邻的存储器单元上的安培场的强度将被减少为约30e级别的大小。
如果在图4中的单元A、B和C中位于中间的单元的相对两边产生两个这样的场,穿过单元B的结合的附加场可为约60e级别。这可构成所需来切换中间单元B的全部场强度的其中重要的一部分。可以理解的是,在其他因素都相同的情况下,将这些单元配置得更接近在一起将趋向增加中间单元所经受的场强度。图4A是来自图4的单元A、B和C的一般俯视图表示,示出了所施加的反向电场136,138,以及从其中产生的组合的附加磁场134A。场134A增加了图4中的场134。图5是来自图4的单元A、B和C的并排的描绘。施加到中间单元B的写入电流用箭头140表示且由写入驱动器电路(驱动器B) 142提供。写入电路流过单元B到基准线144,诸如电接地。第一场辅助电流146从写入驱动器电路(驱动器A) 148流过相邻单元A到接地144,而第二场辅助电流150从写入驱动器电路(驱动器C) 152流过相邻单元C到接地144。各电流140、146和150的相应的方向和大小可取决于给定应用的需要而变化。通过这样施加相应的电流,相邻安培场的总和和写入电流相结合以将中间单元旋进到期望的状态。图6示出根据本发明的进一步实施例的存储器模块104的操作。如此前在图4中所示,图6提供存储器单元106的行与列,存储器单元中被选中的一些相邻单元被图示为单元A、B、C、D和E。施加写入电流到单元B来将单元B的自由层磁化到所选择的状态,诸如反平行状态。箭头160示出在这个写入操作过程中所产生的H场,场160沿x-y平面从y轴旋转约45度。通过对相应单元A、C、D和E施加场辅助电流而辅助单元B的磁化以合适的方向施加这些电流来建立相关联的旋转的磁辅助场162、164、166和168。为简化附图,并未在图6中示出这些相应的写入电流和场辅助电流,不过可从图5的在ζ-方向中确定这些电流的相应方向。这些来自相邻单元A、C、D和E的辅助场通过汇总在一起用于提供净磁场而在单元B的自由层上操作,所述净磁场基本指向期望的旋进。因此,这些辅助电流将趋向于降低将单元B切换到期望状态所需的自旋扭矩(写入)电流的电流强度。可以理解的是可将场辅助电流提供给任何数量的相邻单元,包括形成非对称模式的单元(如,将要编程的单元的一个侧面上的三个单元,等)。由这一点可以看到,减少自旋电流的大小可容许使用更小的(低电流容量)切换设备110,且可导致存储器设备总体能耗的减少。如此处所述地使用相邻单元来产生辅助场消除了对阵列增加进一步金属化(诸如以导体或其他场产生结构的形式来辅助切换操作)的需要。可能需要为整体电路设计增加少量的附加复杂性来容许驱动器电路(如见图5)能为对每个单元上的各种读取、写入和场辅助操作而输出不同量的电流。可预料的是,基于在制造过程或随后的场使用的过程中的经验分析,可适应性地调整相应的场辅助电流的大小为合适的级别。在一些实施例中,取决于在当时哪些相邻单元正在被写入,可将不同大小的场辅助电流以同一个方向(如,较容易的或较难的方向)施加到同一个单元。接收写入辅助电流的给定单元的现有的被编程状态也可影响施加到这个单元上的辅助电流的量。电流的方向(如,较容易的或较难的方向)也可导致对辅助电流的大小的调整;例如,相比于施加在较容易的方向,如果施加在较难的方向,给定单元可接收较大的写入电流的大小来产生在邻近单元中的给定场强。尽管至今所讨论的实施例使用了将场辅助电流施加到紧邻正在被编程的单元的相邻单元(如,与被编程的单元B相关的单元A、C、D和E)中,这并不是必要的限制。可将场辅助电流附加地或可选地提供到并不是与正在被编程的单元紧邻的相邻单元。为了说明,图7示出根据进一步实施例而操作的存储器模块104。存储器单元106如上被以行和列配置,各个单元各自被图示为单元A、B、C、D、E、F和G。单元B经由在较难的方向中施加写入电流170而被编程到所选择的状态。写入电流建立可在相邻单元A、C、D和E上操作的安培场172。如上所述,可将场辅助电流施加到这些相邻单元。单元B的最终期望的磁化方向未示出,不过可如图4或6所示。相邻的单元F和G分别接收产生相应安培场178、180的场辅助电流174、176。这些安培场178、180位于由单元B中的写入电流170所产生的安培场172相反的旋转方向。因此,场178 —般地操作以取消场172在单元C上的实现,且场180—般地操作以取消场172在单元E上的实现。因此,通过允许将合适的写入电流提供给单元B,且免于来自单元B的散射场会不经意地栓牢相邻单元的磁化的风险,场辅助电流174、176的应用辅助了在单元B上的编程工作。在这样的情况下,不论是否有附加电流施加到单元A、C、D和E上,减少了这些单元旋进到不期望的状态的可能性。当施加到相邻单元(如,单元C)的场辅助电流的方向与当前所编程的方向相反的时候,施加场辅助电流174、176可能是特别有用的。尽管在图7中没有具体地示出,可以理解的是可将场辅助电流施加到阵列中的其他相邻单元上,包括在单元A和D相关于单元B的相反一侧上的单元(未示出),以及阵列中的任何其他合适的单元。图8提供了场辅助数据写入例程200的流程图,一般地示出了根据本发明的各实施例所执行的步骤。在步骤202处,接收要被写入阵列104的数据,并且设备100标识要被编程到各个状态以存储收到数据的各个单元。对于每个选定的单元,在步骤204处施加合适的写入电流Il以发起使该单元至期望状态的编程。在一些实施例中,写入电流Il不具有足够的强度来将所选择的单元的自由层旋进到期望的磁化;例如,其强度可仅为必须强度的,如,80%或其他。在步骤206处,在写入电流Il的继续施加期间同时地发起场辅助电流12的至少一个流动。将场辅助电流12施加到相邻的邻近单元(如,图7中的单元A、C、D、E、F或G)。在很多实施例中,可将分别的场辅助电流施加到多个相邻的邻近单元。选择这些场辅助电流12的大小和方向来促进步骤204中所选择的单元的编程。在一些实施例中,如步骤208所示,辅助电流12被施加在紧邻的单元,诸如图6中的A、C、D或E。在这个情况下,辅助电流产生安培场,所述安培场作用在所选择的单元上辅助该单元旋进到期望状态。可选地,如所示,如步骤210所示地,可替代地将辅助电流12施加到与步骤204中所选择的单元间隔至少一个居间单元的相邻的邻近单元(如,与单元B通过单元C和E分别间隔的单元F和G)。在后者的情况下,辅助电流建立场来帮助稳定居间单元。如所期望的,在步骤212处,可对该单元执行读取验证操作以确定该单元是否达成期望的状态。然而,此处应用的各种技术可操作来增强将所选择的单元磁性地旋进到所期望的最终状态的可能性,使得在正常操作中不需要这样的读取验证操作。响应合适的控制电路而施加各种写入和场辅助电流到相应的单元上,所述控制电
8路诸如是图1中所示的控制器102。可选地或附加地,控制电路可形成存储器模块的一部分,且可包括图5中所示的各种电流和/或电压驱动器类型。现在应当理解,以上给出的各种实施例可在将数据写入磁存储单元方面提供数种益处。如本文中所描述的场辅助磁旋进写入可显著提高存储单元将在一次写入尝试中达成期望的写入状态的概率。安培场可减少所需要的写入电流脉冲的持续时间和幅度,藉此至少潜在地提供具有较低整体功耗要求的较快速的数据存取操作。通过使用这些技术,还可获得更小的切换设备和/或更高的数据面密度。本文中所公开的各种实施例适于在一次性写入或多次性写入存储器中使用。虽然STRAM存储单元已被用作解说性实施例,但是本公开并不被如此限定,因为任何数目的不同类型的磁元件构造可纳入上述技术,包括其它类型的固态存储器和可旋转的磁性存储器。为了所附的权利要求的目的,所称存储器单元的磁状态的旋进的初始化并不一定需要在所述磁状态中的实际变化,而替代是指所述过程的初始化。要理解,即使已在前面的描述中阐述了本发明各实施例的许多特征和优势以及本发明各种实施例的结构和功能的细节,然而该详细描述仅为解说性的,并可在细节上做出改变,尤其可在术语的宽泛意思所指示的全面范围对落入本发明原理内的部分的结构与安排做出改变,其中以术语来表达所附权利要求。
权利要求
1.一种方法,包括施加写入电流通过所选择的磁存储单元以发起该所选择的单元至期望磁状态的磁旋进;以及同时地流动场辅助电流通过相邻的存储器单元来产生磁场,所述磁场辅助所选择单元至期望磁状态的所述旋进。
2.如权利要求1所述的方法,其特征在于,由所述场辅助电流产生的所述磁场以对应于所述期望的磁状态的磁取向流经所选择的单元的自由层。
3.如权利要求1所述的方法,其特征在于,所述相邻的存储器单元被表征为第一相邻存储器单元,所述场辅助电流被表征为第一场辅助电流,且所述磁场被表征为第一旋转辅助场,所述同时地流动的步骤还包括同时地流动第二场辅助电流通过第二相邻的存储器单元来产生第二旋转辅助场,其中所述第一和第二旋转辅助场穿过所选择的单元来辅助所选择的单元到期望的磁状态的旋进。
4.如权利要求3所述的方法,其特征在于,所述第一旋转辅助场以第一旋转方向旋转,而所述第二旋转辅助场以与所述第一旋转方向相反的第二旋转方向旋转。
5.如权利要求4所述的方法,其特征在于,所述第一和第二相邻的存储器单元沿着存储器阵列中的所选择的行对齐,而所选择的单元沿该所选择的行位于所述第一和第二相邻的存储器单元之间。
6.如权利要求1所述的方法,其特征在于,所述所选择的单元包括具有基准层和自由层的自旋扭矩转移随机存取存储器(STRAM)存储单元,所述自由层通过隧穿势垒层与所述基准层分开,所述基准层具有固定的磁取向,且所述自由层具有能在相对于所述基准层的取向的平行取向与反平行取向之间切换的可变磁取向,且其中所述写入电流和所述磁场协同地作用来旋进所述自由层到所述期望的磁状态。
7.如权利要求1所述的方法,其特征在于,中间存储器单元设置在所选择的单元和所述相邻单元之间,且由所述场辅助电流所建立的所述磁场的旋转方向与由所述写入电流产生的磁场的方向相反,藉此稳定所述中间单元的现有的磁取向。
8.如权利要求1所述的方法,其特征在于,通过所述相邻单元的所述场辅助电流的方向被选择为以对应于所述期望的磁状态的方向而将所述磁场施加在所选择的单元的自由层上。
9.如权利要求1所述的方法,其特征在于,在所述施加步骤过程中所施加的所述写入电流的大小不足以完成将所述磁旋进到所述期望的磁状态。
10.一种装置,包括非易失性磁数据存储单元的阵列,每一个单元各自可被编程为所选择的磁取向;以及控制电路,适于施加写入电流通过所述阵列的所选择的单元来发起所述所选择的单元至期望磁状态的磁旋进,且同时地施加场辅助电流到所述阵列的相邻的存储器单元来产生磁场,所述磁场辅助所选择单元至期望磁状态的所述旋进。
11.如权利要求10所述的装置,其特征在于,由所述场辅助电流所产生的磁场以对应于所述期望的磁取向的磁取向穿过所选择的单元的自由层,从而所述磁场与所述写入电流协同来建立所述期望的磁取向。
12.如权利要求10所述的装置,其特征在于,所述所选择的单元包括具有基准层和自由层的自旋扭矩转移随机存取存储器(STRAM)存储单元,所述自由层通过隧穿势垒层与所述基准层分开,所述基准层具有固定的磁取向,且所述自由层具有能在相对于所述基准层的取向的平行取向与反平行取向之间切换的可变磁取向,且其中所述写入电流和所述磁场协同地旋进所述自由层到所述期望的磁取向。
13.如权利要求10所述的装置,其特征在于,中间存储器单元设置在所选择的单元和所述相邻单元之间,且由所述场辅助电流所建立的所述磁场的旋转方向与由所述写入电流产生的磁场的方向相反,藉此稳定所述中间单元的现有的磁取向。
14.如权利要求10所述的装置,其特征在于,穿过所述相邻单元的所述场辅助电流的方向被选择为以对应于所述期望的磁取向的方向而将所述磁场施加在所选择的单元的自由层上。
15.如权利要求10所述的装置,其特征在于,在对所选择的单元上的磁场不进行进一步操作的情况下,在所述施加步骤过程中所施加的所述写入电流的大小不足以完成将所述磁旋进到所述期望的磁状态。
16.如权利要求10所述的装置,其特征在于,此装置被表征为适于结合便携式电子设备来提供非易失性存储器的便携式存储卡。
17.如权利要求10所述的装置,其特征在于,所述阵列中的每一个单元包括磁性隧穿结(MTJ),该磁性隧穿结响应于该单元的自由层的被编程的磁取向而可被编程为所选择的电阻,所述阵列中的每一个单元还包括连接至所述MTJ的切换设备,用于提供对所述相关联的单元的可选择的访问,每个所述切换设备具有充足载流能力来容纳所述写入电流但不具有充足的载流能力来容纳第二写入电流,该第二写入电流足以在不使所述切换设备饱和的情况下将所述相关联的MTJ转换到所选择的编程状态。
18.一种装置,包括具有含有非易失性磁性存储单元阵列的存储器模块的便携式存储卡,和控制电路,所述控制电路适于将所述存储器单元编程为不同的电阻以在其中存储数据,所述控制电路进一步适于将场辅助电流传送穿过在所述阵列中的第一所选择的单元,同时将写入电流传送通过所述阵列中的相邻的第二所选择的单元,所述场辅助电流操作来产生辅助磁场,所述辅助磁场适于与所述写入电流协同来将所述第二所选择的单元编程到所选择的编程状态。
19.如权利要求18所述的装置,其特征在于,阵列包括自旋扭矩转移随机存取存储器(STRAM)存储单元的阵列,每一个所述存储单元含有基准层和自由层,所述自由层通过隧穿势垒层与所述基准层分开,所述基准层具有固定的磁取向,且所述自由层具有能在相对于所述基准层的取向的平行取向与反平行取向之间切换的可变磁取向,且其中所述写入电流和所述磁场协同地旋进所述第二所选择的单元的自由层到所述期望的磁取向。
20.如权利要求18所述的装置,其特征在于,在无需来自所述第一所选择的单元的磁场的附加操作的情况下,所述写入电流提供的穿过所述第二所选择的单元的电流强度不足够完成所述第二所选择的单元到所选择的编程状态的旋进。
全文摘要
本发明公开了使用附近的单元来提供磁存储器阵列中的场辅助切换的技术。用于将数据写入诸如自旋扭矩转移随机存取存储器(STRAM)存储单元之类的磁存储单元的方法和装置。根据各种实施例,施加写入电流通过所选择的磁性存储器单元,以发起该所选择的单元至期望磁状态的磁旋进。同时有场辅助电流流经相邻的存储器单元来产生磁场,所述磁场辅助所选择单元至期望磁状态的旋进。
文档编号G11C11/16GK102568561SQ201110386400
公开日2012年7月11日 申请日期2011年11月18日 优先权日2010年11月19日
发明者A·K·勒洛夫斯, 习海文 申请人:希捷科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1