非水电解质二次电池的制作方法

文档序号:6838012阅读:136来源:国知局
专利名称:非水电解质二次电池的制作方法
技术领域
本发明涉及非水电解质二次电池。更详细地,本发明涉及具有电容量高、可抑制树枝状晶体产生的、高可靠性负极的非水电解质二次电池。
针对这些问题,正在研究将树枝状晶体难于生长、且可吸收、放出锂的锂一铝等的锂合金用于负极。但在使用锂合金的场合,当反复进行深度充放电时,会产生电极细微化等,在循环特性方面存在问题。
近年来,将容量比金属锂及锂合金小、但能可逆地吸收、放出锂且循环特性及安全性优异的碳材料用于负极。而且,以进一步使非水电解质二次电池的高容量化为目标,研究将氧化物用于负极。例如,晶形的SnO及SnO2是比以往的WO2等容量高的负极材料(日本专利申请特开平7-122274号公报、特开平7-235293号公报)。并且,提出通过将SnSiO3及SnSi1-xPxO3等的非晶形氧化物用于负极,以改善电池的循环特性的方案(特开平7-288123号公报)。但是,还未获得足够的特性。
本发明鉴于上述现实情况而提出,其目的在于提供一种充电时负极吸收锂从而不生长树枝状晶体且高容量充放电循环特性优异的非水电解质二次电池。
本发明涉及一种由可充放电的正极、非水电解质及可充放电的负极构成的非水电解质二次电池,所述负极将由式(1)所示的固溶体作为活性物质,LixM1yM2z…(1)(式中,M1是从由Ti、Zr、Mn、Co、Ni、Cu和Fe组成的群中选择的至少1种元素,M2是从由Si和Sn组成的群中选择的至少1种元素,0≤x<10,0.1≤y≤10,z=1)。
由式(1)所表示的固溶体的平均粒径,最好是0.5~2.3μm。并且,由式(1)所示的固溶体的平均晶粒粒径,最好是0.05~0.13μm.
另外,所述负极,对于由式(1)所示的固熔体100重量份,最好含有碳材料5~50重量份。
图2是作为本发明的非水电解质二次电池一例的圆筒形电池的剖面图。
图3是作为本发明的固溶体一个例子的Fe2Sn和α-Fe的粉末的X射线衍射图。
图4是将本发明的固溶体一个例子的Fe2Sn作为活性物质使用的负极在初始状态(a)、初次充电状态(b)、初次放电状态(c)和循环500次后的放电状态(d)的X射线衍射图。
实施发明的较佳形态本发明是由可充放电的正极、溶解了锂盐的非水溶剂组成的非水电解质和可充放电的负极构成的非水电解质二次电池,所述负极,含有作为活性物质的由式(1):LixM1yM2z所述组成的合金。并且,该合金是M2溶入M1的晶体构造中或M1溶入M2的晶体构造中的固溶体。
式(1)中的M1是从由Ti、Zr、Mn、Co、Ni、Cu和Fe组成的群中选择的至少1种元素。因此,作为M1也可以组合2种以上的元素。但是,从固溶体的结构稳定性这点出发,最好只使用它们中的1种。
另外,作为式(1)中的M2,为可获得优异的电池的充放电特性,使用从由Si和Sn组成的群中选择的至少1种元素。
这里,0≤x<10,而从有效地抑制树枝状晶体的效果出发,最好为0≤x<5。
另外,0.1≤y≤10,当y小于0.1时,固溶体的结构不稳定,在充放电反应中,作为活性物质所使用的固溶体劣化。另一方面,当y超过10时,电池的容量变低。
另外,z=1。x的值根据因电池的充放电反应所引起锂的吸收、放出而变化。对于刚制成的电池,x一般为0。
所述固溶体的晶粒,其平均晶体粒径希望是0.05~0.13μm。这样由于晶体粒径小,在固溶体中可形成较多的晶体晶粒边界。而且,该晶粒边界能起到将锂吸收时固溶体的膨胀抑制至最小限度的作用。
并且,若固熔体、即活性物质的粒径越小,则表面系数增加,电池的反应效率提高。但是,当粒径过小时,由于产生操作的不方便及电解质与固溶体的副反应等,故固溶体的平均粒径希望为0.5~2.3μm。
另外,负极最好进一步含有石墨、低结晶性碳材料、乙炔黑等碳材料,其含有量相对所述固溶体100重量份最好是5~50重量份。当将所述固熔体与碳材料混合而用于负极时,负极使电解液的稳定性提高,充放电循环特性也提高。但是,当碳材料过多时,不能应用活性物质为高能量密度这一特点,使电池的高容量化变得困难。
所述固溶体,可采用例如机械合金法、液体急冷法、离子束溅射法、真空蒸镀法、电镀法、CVD法(化学蒸镀法)中的任一种方法来合成。其中,用于本发明的固溶体,尤其采用液体急冷法或机械合金法可更容易地进行制造。例如用液体急冷法,可将原料熔融物利用单滚筒以155~106K/秒的速度进行急冷,可获得具有微小晶粒的固溶体。另外,用机械合金法在可获得微小晶粒的同时,还可获得用以往的加热方法不能获得的固溶相。
作为式(1)所示的固溶体,可例举FeSn2、FeSn、Fe2Sn、Fe3Sn、CuSn、Cu2Sn、Cu3Sn、Cu6Sn5、TiSn、Ti2Sn、Ti3Sn、ZrSn、Zr2Sn、MnSn、MnSn2、Mn2Sn、Mn3Sn、CoSn、CoSn2、Co2Sn、Co3Sn、NiSn、NiSn2、Ni2Sn、Ni3Sn、FeSi、Fe2Si、Fe2.5Si、Fe2.3Si、Fe3Si、CuSi、Cu2Si、Cu3Si、TiSi、TiSi2、Ti2Si、Ti3Si、ZrSi、Zr2Si、MnSi、MnSi2、Mn2Si、Mn3Si、CoSi、Co2Si、Co3Si、NiSi、NiSi2、Ni2Si等。
在M2溶入M1的晶体构造或M1溶入M2的晶体构造的相中,M2周围的M1与M2、或M1周围的M2与M1牢固地结合。因此,可以认为,这样的固溶体,通过锂的吸收可形成晶粒非常小的Li-M2合金。因此,在将所述固溶体用作活性物质的负极中,可以认为,除了可抑制树枝状晶体的生长外,活性的M2不容易浮置,可保持晶体构造且可有效地改善负极的循环特性。
本发明的非水电解质二次电池中所用的负极可如下述那样进行制造。首先,对于由式(1)所示的固溶体100重量份配合并混合碳材料5~50重量份、适量的粘接剂和适量的电解液及溶剂。并且,形成规定的形状。这里,作为所述碳材料可以使用例如石墨、乙炔黑、低结晶性碳材料等。另外,作为粘接剂最好使用例如聚偏二氟乙烯(聚氟化乙烯叉)、SBR(苯乙烯丁二烯共聚橡胶)、聚乙烯、聚四氟乙烯等。
本发明的非水电解质二次电池,除了使用所述负极这一点外,可与以往同样制得。因此,可不特别限制使用在以往非水电解质二次池中所用的可充放电的正极和非水电解质。
首先,对以下实施例和比较例中所用的示于

图1的试验电池和示于图2的圆筒形电池进行说明。为了评价将本发明的固溶体用作活性物质的负极的电极特性而使用试验电池。另外,为了评价具有将本发明的固溶体用作活性物质的负极的电池的循环特性而使用圆筒形电池。试验电池将负极活性物质(固溶体)的粉末8.5克与作为导电剂的石墨粉末1克和作为粘接剂的聚乙烯粉末0.5克混合并作成混合剂。将该混合剂0.1克加压成型为直径17.5mm的圆板状而作为试验电极1。接着,如图1所示将试验电极1放置于壳体2中。而且,在其上放置微孔性聚丙烯的隔板。然后,在壳体2中注入非水电解液。这里,使用下述构成的电解液,即将高氯酸锂(LiClO4)溶解于乙烯碳酸乙二醇脂和二甲氧基乙烷的等体积比的混合物,使其浓度为1克分子/升。并且,用内侧上贴有直径17.5mm的圆板状的金属锂4、在外周部附有聚丙烯的垫圈5的封口板6将壳体2封口,作成试验电池。圆筒形电池将负极活性物质(固溶体)、作为导电剂的石墨粉末和作为粘接剂的聚四氟乙烯以重量比为60∶30∶10的比例混合。并且,在其中加入石油类溶剂而作成糊剂。将所获得的糊剂涂敷在铜的芯材上,在100℃的温度下进行干燥,制成负极板。
另一方面,作为正极活性物质的LiMn1.8Co0.2O4通过将Li2CO3、Mn3O4和CoCO3以规定的克分子比混合,并在900℃的温度下加热而合成。而且,在所取得的活性物质中,对于粒子的大小,进行分级筛取100网目(筛孔)以下的活性物质。然后,将正极活性物质100克、作为导电剂的石墨粉末10克和作为粘接剂的聚四氟乙烯的水性悬浮液8克(树脂成分)进行混合。并且,在其中加入纯水作成糊剂。将所获得的糊剂涂敷在钛的芯材上,进行干燥、压延而制成正极板。
使用所获得的正极板和负极板并如下所述地装配圆筒形电池。在具有用点焊装配的芯材和相同材质的正极导线7的正极板8与具有用点焊装配的芯材和相同材质的负极导线9的负极板10之间,配置由比两极板的宽度宽的带状的多孔性聚丙烯构成的隔板11。并且,进行整体卷绕而作成电极体。接着,在电极体的上下分别配置聚丙烯制的绝缘板12和13,并插入电池外壳14内。而且,在电池外壳14的上部形成阶梯部后,在电池外壳14内注入下述构成的电解液,即将高氯酸锂(LiClO4)溶解于乙烯碳酸脂和二甲氧基乙烷的等体积比的混合物中使其浓度为1克分子/升。然后,用封口板15将电池外壳14的开口部密封。
首先,调制表1所示组成的固溶体。即,分别选择1种作为原料的M1和M2,并以规定的克分子比进行混合。然后,将所述混合物放入容积为0.5公升的不锈钢制罐形球磨机中,该球磨机内放有20个不锈钢的钢球(直径为0.5英寸),并在氩气的气氛中进行封口。使该球磨机以60rpm的转速工作一星期,可获得作为目的物的固溶体。所获得的固溶体的平均粒径,都在0.5~2.3μm的范围内。而且,从X射线衍射图算出的固溶体的平均晶体粒径,都在0.05~0.13μm的范围内。
将所获得的固溶体中,Fe2Sn的X射线衍射图示于图3。图3表示所获得的Fe2Sn具有单一的固溶相,并且不存在归属于Fe和Sn的峰值。另外,在图3中,也不能观察到归属于Fe-Sn系的金属间化合物的峰值。X射线衍射图的峰值漂移的详细分析结果,判明该固溶体虽然Sn原子进入Fe的晶体构造(bcc构造),但仍保持着bcc构造。假定Fe2Sn中的全部Sn原子进入Fe的晶体构造,并且保持bcc结构时,可以算出归属于该(100)面的峰值位置为43°。而且,该值与从图3所获得的实测值一致。.由此也可理解,实施例的Fe2Sn是Sn进入Fe的晶体构造的固溶体。并可确认,其它所有实施例的固溶体也是M2溶入M1或M1溶入M2的固溶体。
接着,将所述固溶体用于试验电极并装配成试验电池。而且,以2mA的恒定电流极化阴极,直到试验电极的电位相对于金属锂的相对极板为0伏(将试验电极看作负极时,相当于充电。)。接着,极化阳极,直到相对于金属锂的相对极板试验电极的电位为5伏(将试验电极看作负极时,相当于放电。)。然后,反复进行阴极极化、阳极极化。将与试验电极的活性物质1克相当的初次放电容量示于表1。
在阴极极化后和阴极极化、阳极极化分别重复10次后,将全部试验电池分解,取出试验电极进行观察。这时,在任一电极表面上都看不到金属锂的析出。由此可知,在将实施例的固溶体用作活性物质的电极的表面上树枝状结晶难以生长。并且,在对阴极极化后的试验电极进行元素定量分析后知道,活性物质中所含的锂的量都在式(1)中的X的范围内(0≤x<10)。
下面,将所述固溶体用于负极并装配成圆筒形电池。并且,在30℃的温度下,对所获得的电池反复进行充放电循环。并且,求出第100次循环相对第1循环的容量维持率。这里,充放电的电流为1mA/cm2、充放电的电压范围为2.6~4.3伏。将结果示于表1。
表1

比较例1~4
除了将以往所报导的Fe-Sn系金属间化合物(J.R.Dahn等、电化学协会期干(Journal of Electro-chemical Society),146(2)414-422(1999))用作活性物质以外,其余操作与所述实施例相同,同样地进行评价。
作为Fe-Sn系金属间化合物使用示于表2的FeSn2、FeSn、Fe3Sn2和Fe5Sn3组成的化合物。这些金属间化合物,如已报导的,用高速球磨机碾磨再热处理并进行调制。其评价结果示于表2。
所述比较例的金属间化合物的平均粒径,都在1.8~26μm的范围内。这可以认为,是由于通过热处理而使一次粒子凝聚的缘故。并且,由于热处理,比较例的金属间化合物的平均晶粒粒径,都增大为0.37~1.9μm的范围。
表2

由表1和表2的结果可知,将所述固溶体用于负极的实施例的电池为高容量、容量维持率高且循环特性优异。而与此相反,比较例的电池大多容量维持率显著地低且容量不足。
这里,将组成为Fe2Sn的固溶体用作活性物质的负极的初始状态(a)、初次充电状态(b)、初次放电状态(c)和经过500次循环后的放电状态(d)的X射线衍射图示于图4。图4表示,即使反复进行充放电反应,归属于固溶体的晶体构造的峰值也不偏移。并且,在图4的任何的衍射图中也看不到表示Li-Sn合金生成的峰值。因此,可以指出,固溶体即使在反复充放电后也能维持初始的晶体构造这一点,是实施例的固溶体如前所述显示高容量且具有良好的循环特性的主要因素。
另外,虽然在上述实施例中,对圆筒形电池作了说明,但本发明对于装配成硬币型、方形、扁平形等的电池,也具有完全同样的效果。
并且,在上述实施例中,对固溶体是采用机械合金法进行调制的,然而,即使用液体急冷法、离子束溅射法、真空蒸镀法、电镀法和CVD法进行调制,也可获得同样的效果。还有,在上述实施例中,将LiMn1.8Co0.2O4用于正极,然而,即使将LiMn2O4、LiCoO2、LiNiO2等用于正极也可获得同样的效果。
产业上利用的可能性如上所述,采用本发明,由于使用高容量且循环特性极优良的负极,故可获得高能量密度且不会因树枝状结晶引起短路的可靠性高的非水电解质二次电池。
权利要求
1.一种非水电解质二次电池,由可充放电的正极、非水电解质和可充放电的负极构成,其特征在于,所述负极将由式(1)所示的固溶体作为活性物质,LixM1yM2z…(1)式中,M1是从由Ti、Zr、Mn、Co、Ni、Cu和Fe组成的群中选择的至少1种元素,M2是从由Si和Sn组成的群中选择的至少1种元素,0≤x<10,0.1≤y≤10,z=1。
2.如权利要求1所述的非水电解质二次电池,其特征在于,式(1)所示的固溶体的平均粒径为0.6~2.3μm。
3.如权利要求1或2所述的非水电解质二次电池,其特征在于,式(1)所示的固溶体的平均晶粒粒径为0.05~0.13μm。
4.如权利要求1所述的非水电解质二次电池,其特征在于,所述负极,相对由式(1)所示的固溶体100重量份,含有碳材料为5~50重量份。
全文摘要
本发明揭示一种由可充放电的正极、非水电解质及可充放电的负极构成的非水电解质二次电池,作为负极的活性物质使用了式(1)所示的固溶体,Li
文档编号H01M10/04GK1316108SQ00801212
公开日2001年10月3日 申请日期2000年6月28日 优先权日1999年7月1日
发明者佐藤俊忠, 武澤秀治, 美藤靖彦, 松田宏萝, 豊口吉德 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1