半导体器件及其制作方法

文档序号:6902304阅读:144来源:国知局
专利名称:半导体器件及其制作方法
技术领域
本发明涉及到半导体器件及其制作方法。
本发明特别牵涉到在混合电路和功率集成电路中可用作分立器件的高压/功率半导体器件,并特别涉及场效应晶体管,如功率MOSFET、绝缘栅双极晶体管(IGBTs)和其他类型的功率器件如二极管、晶体管和闸流管。
背景技术
对于用在集成电路中的器件设计,为了便于使用,主电极(不同场合称为阳极/阴极、漏极/源极和发射极/收集极)和控制极(称为栅极或基极)都布置在器件表面上是优选的。主回路的电流在主电极间流动,因而大体上是横向的。因此这样的器件典型地被称为横向器件。这样的器件常与CMOS型或其他标准平面型技术构成的低压器件或电路集成来制作功率集成电路。几种高压/功率器件可被集成在同一芯片中。已形成了两种主要的隔离技术,即结型隔离(JI)技术和硅/绝缘体(SOI)技术。
在JI技术中,用反偏结来隔离相邻的器件。然而,在许多情况下这种技术对于功率集成电路是不能令人满意的,因为可发生少子通过半导体衬底(器件的有源部分制作在其上)传导,因而难于防止相邻器件间的干扰。此外,JI双极型器件在开态时会受到半导体衬底中储存的寄生可动少子等离子体的影响,这在关态时是必须消除的。这就急剧降低了器件的开关速度。
在SOI技术中,用绝缘埋层纵向隔离上面的半导体层与下面的半导体层,因此,导电主要限于上面的半导体层,在任何工作模式中,下面的半导体层中实际没有电流。在SOI技术中,水平或横向的隔离典型地由填以氧化物或使用熟知的LOCOS(“硅的局部氧化”)隔离的沟槽来提供。SOI技术比JI技术提供了较好的隔离,因为绝缘埋层防止了衬底中的电流传导和形成等离子体。
高压半导体器件在器件体内加有高压结来阻挡高电压。这个结合有较低掺杂的半导体层,当器件处于关态和在电压阻断模式下工作时,这一层耐受着加在主电极间的最大部分电压。此层通称漂移区或漂移层,在这种工作模式下少子是部分或完全耗尽的。理想地,在漂移区两端间的电位是沿漂移区均匀分布的。然而,如一维泊松方程所示,对于给定的漂移区掺杂,电场分布为矩形,或当完全耗尽时为梯形的。当电场的峰值达到半导体中的临界电场时,由于电场下的区域可被近似为击穿电压,显然,对于一维结,漂移层的掺杂越低,击穿电压越高。然而,对于多子器件如MESFET型,熟知为LDMOSFETs,漂移层的开态电阻反比于漂移层的掺杂。对于高压开关器件,由于低开态电阻是所希望的,随之而来的是低掺杂浓度影响器件的开态性能。此外对于横向器件,表面的临界电场低于体内,这就更增大了设计高压横向器件的困难。
对JI器件引入RESURF(降低表面场效应)技术可通过使用制作在漂移区与半导体衬底间的附加纵向结来提高击穿电压。图1a示意地表示用RESURF效应的一种常规JI二极管。该二极管被提供作常规功率器件如横向晶体管,LDMOSFET或LIGBT的部件。图1a也表示在电压阻断模式下的电位线分布和耗尽区边缘。可注意到,漂移层1是完全耗尽的,但半导体衬底2没有完全耗尽。随着进入衬底,电位线从纵向弯至横向,这样,在高压电极3下面,电位线实际上平行于衬底2的下表面4。这是因为半导体衬底2的厚度(典型地300μm)大于耗尽区从上表面5进入衬底2的纵向扩展(对于600V的器件典型地为60μm)。因此,当器件发生击穿时,半导体衬底没有完全耗尽。已经知道,无论表面临界电场怎样减小,横向的JI二极管都可达到等于纵向二极管的击穿电压。而且,如图1a所示,尽管用RESURF概念优化电场分布,还是与理想情况(亦即,矩形分布)相去甚远。此外,如已述的,JI器件有高漏电流和隔离很差的弱点,使之很难在功率集成电路中进行集成。
图1b表示一种常规的SOI二极管,该二极管典型地作为SOI横向高压功率器件的部件。此结构可用熟知的晶片键合、单键合(Unibond)或SIMOX SOI技术来制作。也知道还有其他技术如生长在金刚石上的硅(SOD)。图1b也表示在电压阻断模式下的等位线分布。可以看到,电位线挤向漂移层1的边缘,使RESURF效应变差。增大氧化物埋层6的厚度有助于电位线在上表面5处更均匀地再分布。然而,一般说来,击穿电压仍低于图1a所示的JI器件或JI二极管。再者,在漂移层1和高压电极下面氧化硅绝缘埋层6中的电位线实际上沿水平表面排列。这是由于半导体衬底2没有完全耗尽。其结果是,对于SOI的情形,所有的电位线不得不挤入漂移层1和绝缘层6中,而且不得不排列成平行于绝缘层6/半导体衬底2的界面。这就在上表面5处产生了电位线的不均匀分布而引起高电场峰,因而降低了击穿电压。此外,对于SOI器件,在半导体层1/氧化物埋层6界面上面,电通量密度D=εE的垂直分量守恒限制了在半导体层1中的界面处达到临界电场前,绝缘埋层6所能承受的最大电压。对于给定的氧化物埋层厚度,此纵向击穿对可达到的最大电压额定值产生很强的限制。
因此,总之,对于JI和SOI器件,电位线不得不从纵向弯成水平或横向,且漂移层中的电位线分布远非理想的。
而且,当用薄SOI技术制作的功率集成电路至少包含两个工作在不同模式的功率器件半桥结构时,工作在高侧模式的器件在开态时可受到漂移区夹断的影响。这是因为在半导体衬底中对高侧器件主电极之一产生的负高电位在漂移区中引起了高电场。
因此,显然在SOI技术中半导体衬底在所有工作模式中都不是钝态的,因而在电压阻断模式下半导体衬底的存在会引起电位线的不良分布,通常就会在半导体表面或氧化物埋层/半导体上部界面处因纵向击穿而引起过早的击穿。JI方法在功率集成电路中隔离效果很差,且击穿电压虽然一般高于SOI器件,但仍低于所希望者。
对于用在高压或功率电子学线路中的分立器件或混合电路,主电极纵向地置于晶片相反侧(例如,低压端在上,高压端在下)是优选的。这种器件称为纵向高压/功率器件。与横向器件相比,在主电极间流动的电流主要是纵向的,这就产生了大的载流量和较高的击穿电压。然而这样的器件难于用在集成电路中。已知的高压/功率器件实例为DMOS与沟槽MOSFETs、DMOS与沟槽IGBTs以及冷MOS。
为了在开态/开关/击穿性能间进行优化折中,要求纵向器件有窄的漂移区,使在电压完全阻断时漂移区完全耗尽。对于标称50V-1.2kV的器件,这样一层的厚度可为6μm-180μm。通常漂移层置于高掺杂的半导体衬底上。然而半导体衬底对器件的一般性能产生了一系列的负面影响。首先,它引入了寄生电阻,使开态功耗增大。其次,对于阳极注入的双极型器件如IGBTs,由于衬底掺杂浓度高,以减小衬底电阻的功耗,从作为器件阳极(发射极)的衬底来注入在大多数情形下是过强了,从而在开态时因有大量的等离子体储存在漂移区内,导致高的瞬态开关损失和慢关断。第三,衬底引入了热阻,妨碍了向置于器件底部的外部热沉有效地散热。最后,如果纵向器件用于集成电路,厚半导体衬底的存在使相邻器件间很难隔离。
已有许多现成的建议来提高半导体器件的击穿电压,尤其是功率半导体器件。许多实例揭示在US-A-5241210,US-A-5373183,US-A-5378920,US-A-5430316,US-A-5434444,US-A-5463243,US-A-5468982,US-A-5631491,US-A-6040617,和US-A-6069396中。然而,这些现有的技术建议中没有一个能考虑到漂移区中的电位线来解决提高击穿电压的问题。
在WO-A-98/32009中揭示了一种气敏器件。气敏层制作在用来为其加热的MOSFET加热器上。制作器件的衬底在敏感区由背侧腐蚀而制成膜片。应注意,MOSFET加热器为低压器件(其本身没有漂移区),而且,膜片只制作在MOSFET加热器下面以便于将敏感区加热至很高的温度而不影响器件中的电场或电位线。
US-A-5895972揭示了一种在器件开发的检测和调试期间冷却半导体器件的方法和设备。代替常规的加热条如铜,将透红外材料的加热条装在器件中。金刚石加热条被揭示为优选的。US-A-5895972揭示,在将透红外的加热条加入器件前可将制作器件的衬底减薄。衬底减薄的目的是减少用红外线束对器件进行光学检测和调试时的透射损失。没有讨论使用加热条的半导体器件类型,也没有揭示器件是否为具有漂移区的功率器件。而且,如同所述,衬底减薄的目的和使用加热条只是为了便于用光学检测和调试来测试器件。这个过程是在器件开发期间进行的。在器件正常工作时不使用加热条。
对使用所谓膜片的半导体器件已有许多现有技术的建议。一些实例包括US-A-5420458,WO-A-94/22167,US-A-3689992和US-A-6008126。在这些现有技术建议中,每一个的半导体器件都不是功率器件,因而没有漂移区。对于每一种情形,都使用膜片来提供集成电路中半导体器件间的隔离或半导体器件中各个区域间的隔离,和/或消除或减少寄生电容耦合。对于每一种情形,由于都是低压器件,击穿电压实际上不受膜片结构的影响。

发明内容
根据本发明的第一方面,提供了一种具有有源区的功率半导体器件,有源区含有漂移区,至少有一部分漂移区被置于上、下表面相对的膜片中,膜片的上表面有直接或间接与之连接的电极,可为漂移区施加横向电压,膜片的下表面没有与之毗连的半导体衬底。
根据本发明的第二方面,提供了一种具有有源区的功率半导体器件,有源区所含的漂移区被置于设在半导体衬底上的某一层中,至少一部分漂移区下面的半导体衬底,至少有一部分被除去,使得所述至少一部分漂移区被置于下面的半导体衬底已被除去的那部分薄层所界定的膜片中,膜片的上表面有直接或间接与之连接的电极,可为漂移区施加横向电压。
根据本发明的第三方面,提供了一种具有有源区的功率半导体器件,有源区含有漂移区,至少有一部分漂移区被置于上、下表面相对的膜片中,至少有一个电极直接或间接与上表面相连,且至少有一个电极直接或间接与下表面相连,使能对漂移区纵向施加电压,膜片的下表面没有与之毗连的半导体衬底。
根据本发明的第四方面,提供了一种具有有源区的功率半导体器件,有源区所含的漂移区被置于设在半导体衬底上的某一层中,至少一部分漂移区下面的半导体衬底,至少有一部分被除去,使得所述至少一部分漂移区被置于下面的半导体衬底已被除去的那部分薄层所界定的膜片中,至少有一个电极直接或间接与上表面相连,且至少有一个电极直接或间接与下表面相连,使能对漂移区纵向施加电压。
当在器件的电极上施加电压时,所述至少一部分漂移区可动荷电载流子完全或基本完全耗尽。在本发明的第一和第二方面中,在所述至少一部分漂移区中的电位线基本上垂直于膜片的上、下表面,且基本上横向地均匀散布在所述至少一部分漂移区中。这就导致了可接近理想的或理论极限的较高击穿电压。在第三和第四方面中,在所述至少一部分漂移区中的电位线基本上平行于膜片的上、下表面,且在所述至少一部分漂移区中基本上纵向均匀间隔的。
这样,在优选的实施方式中,在横向器件的至少一部分耗尽区下面没有半导体衬底,由于在功率器件的漂移区中有更合适的电场和电位分布而导致了提高击穿性能。对于纵向器件,没有半导体衬底可形成薄的漂移区,并消除了寄生效应如寄生串联电阻和衬底热阻。
功率器件典型地工作在30V-1.2kV的电压和100mA-50A的电流范围。其应用范围可从民用器具、电动汽车、马达控制和电源至RF和微波电路以及远距离通讯系统。
要知道,“上面”和“下面”、“以上”和“以下”、以及“横向”和“纵向”各词都是按照惯例用在本说明书中的,不是器件总体上特定的实际方向。
本发明所谓的膜片功率器件可有许多不同的类型,包括例如二极管、晶体管、闸流管、MOS可控器件如MOSFET、绝缘栅双极晶体管(IGBT)、双栅器件等。
在下面还要讨论的优选实施方式中,提供了一种具有高击穿电压值并伴有良好的隔离和降低自发热的高压、功率器件。
其构造可以是这样的,即只有一部分漂移区设在膜片以内。
对于第一和第二方面,只有一部分漂移区设在膜片以内,优选地将漂移区的高压电极端也包含在膜片中;漂移区的其余部分,包括低压电极端,可留在膜片以外。
对于第三和第四方面,器件边缘端可置于膜片以外,而包含部分漂移区的有源区被置于膜片以内。
对于任何方面,全部漂移区都可设在膜片以内。
至少可有一个绝缘层包围着漂移区。此至少一个绝缘层可置于所述的膜片内或在一单独的膜片中,使之从膜片的上表面扩展至膜片的下表面。
至少可有一个绝缘层包围着漂移区,并被置于膜片以外。
这个或至少一个绝缘层可由电绝缘材料来提供。这个或至少一个绝缘层也可由高掺杂的半导体层来提供,在使用时对半导体层加偏压以提供一反偏结或低于正向偏压电平的偏置结。
可至少再配置一个功率器件,其漂移区至少有一部分设在所述膜片上或在一单独的膜片上。此单独的膜片最好制作在同一原始衬底上,并最好在器件中制作此膜片或其他各膜片的同一步骤中完成。
可配置至少一种低压器件。所述至少一种低压器件可置于所述膜片以内。作为选择,也可将所述至少一种低压器件置于所述膜片以外。对于这种情形,也可将所述至少一种低压器件置于另一个膜片中,所述另一个膜片最好制作在同一原始衬底上,并最好在器件中制作其他膜片的同一步骤中完成。无论对于哪种情形,这种结构都提供了一种功率集成电路。这种或各种低压器件可为,例如,双极型或CMOS电路。这样的低压功率器件可构成驱动、保护或处理电路。在下面讨论的优选实施方式中,膜片功率器件在纵向和横向上都与这样的低压器件很好地隔离。纵向隔离是借助于在功率器件有源区下面没有寄生衬底来达到的。横向隔离,如上面简述者,可由一个或多个隔离层来达到,隔离层最好设在膜片中从其上表面至下表面,也可设在膜片以外。
在相邻器件间至少可有一个隔离层来提供电隔离。所述隔离层可置于另一个膜片中,所述另一个膜片最好制作在同一原始衬底上,并最好在器件中制作此膜片或其他各膜片的同一步骤中完成。
在本发明的第一和第二方面中,在毗邻近膜片下表面处器件可包含电绝缘的导热层。电绝缘的导热层用来帮助散去功率器件工作时产生的大部分热量,否则这部分热量会陷在膜片中。此层可由任何合适的材料如多晶金刚石、无定形金刚石、氮化硼、氧化铝等制成。这种材料最好用溅射或化学汽相沉积或任何其他合适的技术盲淀积(blankdeposition)为一层。此层可完全填充膜片下的空间,或可在膜片下制成沿着衬底任何余下部分的侧壁和下表面的薄层。此层最好与热沉热接触。
在第三和第四方面中,下电极可为导电和导热的。下电极可由金属或多种金属如铝、铜等联合制成。下电极可填充膜片下的空间。在优选的实施方式中,下电极被制成薄膜,它在膜片下沿着衬底余下部分的向下侧壁和器件的主下表面下面。这一层最好与外部的热沉热接触。作为选择,多个下电极可以彼此绝缘的薄层形式置于一个或多个单独的膜片底部。
膜片可包含置于电绝缘层上的半导体层。此电绝缘层可为氧化层,如在熟知的SOI技术中制作者。在腐蚀掉衬底来制作膜片处,这样的氧化层通常作为止蚀层来帮助制作膜片。在第三和第四方面中,这一层被除去以提供通道使电极层制作在下表面上。
在第一和第二方面中,器件可在膜片下包含机械增强电绝缘层。此机械增强电绝缘层对膜片提供结构支撑,也起着使膜片破裂的风险减至最小的作用。
对于任何方面,漂移区都可具有非均匀的掺杂分布。这有助于确保漂移区中的电位线基本上均匀地散布在漂移区中。这就导致了可接近理想的或理论极限的较高击穿电压。在器件高压电极侧漂移区的掺杂浓度最好较高,而在器件低压电极侧漂移区的掺杂浓度最好较低。漂移区的掺杂浓度可从一侧至另一侧线性地变化。这就起着进一步改进器件击穿值的作用。
在第一和第二方面中,漂移区可包含至少两个导电类型交替的半导体层,一个置于另一个上面并彼此接触。在使用中,这两个或多个导电类型交替的半导体层在纵向上提供了半导体结,当器件电极上施加电压时,可使漂移区的可动荷电载流子完全耗尽。这又有助于确保在所述至少一部分漂移区中的电位线基本上垂直于膜片的上、下表面,且基本上在所述至少一部分漂移区中横向均匀地散布。这就导致了可接近理想的或理论极限的较高击穿电压。
对于任何方面,漂移区可包含多个横向相邻的导电类型交替的半导体区。这些横向相邻的导电类型交替的半导体区在器件的“z”方向形成了多个横向结,这又有助于确保所述至少一部分漂移区中的电位线基本上均匀地散布在所述至少一部分漂移区中。这就导致了接近理想的或理论极限的较高击穿电压。
对于任何方面,漂移区可包含多个横向相邻的导电类型交替的半导体单元,排列在器件平面周围。这些单元可排列成规则的或不规则的图形。无论哪种排列又都有助于确保所述至少一部分漂移区中的电位线基本上均匀地散布在所述至少一部分漂移区中。这就导致了可接近理想的或理论极限的较高击穿电压。
器件可包含毗邻漂移区并与之接触的端区,设置所述端区来减弱漂移区边缘的过早击穿效应。至少所述端区的一部分可置于膜片以内。至少所述端区的一部分也可置于膜片以外和任何半导体衬底之上。漂移区可比至少一部分端区掺杂得更高。漂移区也可比半导体衬底掺杂得更高。
根据本发明的第五方面,提供了一种有源区含有漂移区的功率半导体器件制作方法,此方法包括以下步骤在置于半导体衬底上的一层中制作有源区含有漂移区的功率半导体器件;并在至少一部分漂移区下面除去至少一部分半导体衬底,使得所述至少一部分漂移区被置于下面的半导体衬底已被除去的那部分薄层所界定的膜片以内。
除去衬底作为器件制作工艺过程的最后步骤或最后步骤之一是优选的。这样,在器件制作过程中衬底尽量为器件提供了支撑。
所述至少一部分半导体衬底可用湿法腐蚀来除去。
所述至少一部分半导体衬底也可用干法腐蚀来除去。
所述至少一部分半导体衬底也可用隔离埋层作为止蚀层来除去。此埋层可为部分的硅/绝缘体(SOI)结构。
可在制作膜片后从器件背面用注入、扩散或淀积引入至少一个半导体层。
可在膜片底部施加下电极层,所述下电极层与膜片中的至少一个半导体层接触。
此方法还可包括在毗邻近膜片下表面处施加电绝缘导热层。此电绝缘导热层可用淀积工艺过程(最好为盲淀积)来制作。
作为选择,此方法可包括制作导电的导热层的步骤,该层起着与膜片下表面毗连的电极(端子)的作用。所述层可用盲淀积来制作。
在制作器件和上述的方法中,一种或多种双极型、CMOS、Bi-CMOS、DMOS、SOI、沟槽技术或已知的电路制作步骤都可使用。
在上述的器件和方法中,漂移区可至少包含硅、碳化硅、金刚石、氮化镓和砷化镓材料之一。
这里所提供的至少一个隔离层可包含二氧化硅、氮化物、金刚石、氧化铝、氮化铝和氮化硼材料之一。


现在将参照附图通过实例来描述本发明的各种实施方式,其中图1a为现有技术的JI功率二极管的示意剖面图;图1b为现有技术的SOI功率二极管的示意剖面图;图2a为本发明第一种器件实例的示意透视图;图2b为本发明第二种器件实例的示意透视图;图3为本发明另一种器件实例的示意剖面图,图中说明了电位线;图4-43为本发明更多器件实例的示意剖面图或透视图。
具体实施例方式
现在参见图2a和2b,本发明的膜片功率半导体器件10的第一和第二个实例,每个都有半导体衬底11,其下表面12形成了器件10的主下表面。在衬底11上制作第一薄层13,在这些实例中第一薄层13都包含半导体层14,其上表面15形成了器件10的主上表面5。原来完整的衬底11在图2a和2b中用虚线表示。在制作期间,衬底11在薄层13下面的一部分11′被完全除去直至达到薄层13,以在薄层13下面留下一个没有衬底的区域,这个区域在这里称为膜片16(实线和虚线内所示)。衬底11的余下部分构成撑脚。膜片16具有下表面17。在这些实例中,功率器件10的有源结构18(由虚线所示)被完全设置在膜片16以内。在图2a的实例中,有源结构18由隔离层19与其他器件或电路隔离,隔离层19制作在上表面15和下表面17之间的膜片16中,使之包围着功率器件10的有源结构18。在图2b的实例中,隔离层19设在膜片16以外的薄层13中,使之包围着功率器件10的有源结构18。在图2a和2b的实例中,功率器件10含有漂移层20,它被置于第一薄层13内的半导体层14中,且完全在膜片16以内。漂移层20在功率器件关闭和阻断主电极上的电压时,承受着功率器件10主电极所加的高压。在这样的工作模式下,漂移层20变为可动载流子部分地或理想地完全耗尽。根据本发明的一种实施方式,如果主电极设在器件的上表面15上且在膜片16以内,在沿漂移层的器件剖面内,等位线实际上垂直于主上表面15和膜片下表面17。根据本发明的另一种实施方式,如果第一主电极设在器件的上表面15上且在膜片16以内,第二主电极设在毗邻膜片底部且在膜片16以内,电位线实际上平行于上、下表面15、17。
将除去衬底的一部分11′作为最后的或最后之一的制作步骤是优选的,尤其是在薄层13内或之上制作了全部或基本上全部结构之后,使得在这些制作步骤期间整个衬底可支撑全部薄层13。
这里值得指出的是现有技术的高压器件,如常规结型隔离(JI)或硅/绝缘体(SOI)隔离高压器件与本发明膜片功率器件的二维电位分布的差别。在图1a和1b中可以看到,对于常规器件,电位线实际上垂直于上表面5,但随着降入器件体内,电位线排列成平行于衬底下表面4。这样的电位线分布可导致过早的击穿。图3a和3b表示在本发明的一个简单功率器件结构的实例中电位线的二维分布,该功率器件结构是由一个单高压结构成的。在图3a的实例中,主电极23设在上表面15上,且为了简单起见漂移区20只含有一个半导体层,它比p+阳极区21和n+阴极区22掺杂得更低。在电压阻断模式下和发生击穿前此漂移区变为完全耗尽的。参见图3a,与图1a和图1b相比,可以看到电位线垂直于或接近垂直于膜片16的上表面15和下表面17,且在漂移区20内从阳极区21至阴极区22基本上均匀分布,使得击穿电压值接近其理想极限。在图3b的实例中,主电极23分别在上表面15和下表面17上,使得电位线平行于或接近平行于上表面15和下表面17,且在漂移区20内从阳极区21至阴极区22基本上均匀分布,使得对于给定的漂移层29的厚度击穿电压为理想值。
本发明的高压功率器件优选实施方式,在实现隔离的方法上也不同于现有技术的器件。在优选的膜片功率器件中的隔离,在纵向上是通过在膜片功率器件10的有源结构18下面没有衬底的理想方式来实现的,而在横向上是通过使用包围着功率器件10有源结构18的隔离层19来实现的。
这里提供的隔离层19可为高掺杂半导体层的形式,该半导体层与所配合的电压连接,使得与所述隔离层相关联的所有结都是反偏置或零偏置的。在这种情形下,隔离层起着有效导电垒的作用。图4a和4b每个都表示一个膜片功率器件10的实例,器件具有从上表面15扩展至下表面17并包围着有源结构18的p+隔离层19。p+隔离层19接地,在这些实例中接地被假定为在功率集成电路中可采用的最低电位。在图4a的实例中,隔离层19置于膜片16以内。在图4b的实例中,隔离层19置于膜片16以外。
隔离层可选择为绝缘层如氧化硅,也可为沟槽或LOCOS层的形式。还有一种代替方法,隔离层可由沟槽填以氧化物和多晶硅的夹层结构而成。也可使用其他隔离材料。另一种代替是使用空气隙(所谓的“MESA”或“沟槽”隔离)。
在同一膜片16中可使用几种隔离层来分隔多个置于同一膜片16中的功率器件10,或将双极型或CMOS型低压器件与功率器件10隔开。参见图5a,此处所示为四个置于同一膜片16中的这样的功率器件10的实例,这些功率器件10由设在膜片中的隔离层彼此隔离。参见图5b,此处所示为一实例的俯视图,在此实例中四个功率器件10置于各自分开的膜片16中,并由设在膜片16以外的隔离层彼此隔离。参见图6a,此处所示为功率集成电路40的二维剖面图,功率集成电路40含有一个膜片功率器件10及置于膜片16以外的CMOS和双极型器件41。作为选择,CMOS和双极型器件41也可与功率器件10一起置于膜片16中如图6b所示,或是置于制作在同一原始衬底11的不同膜片16上,如图6c所示。图6d的实例不同于图6c者,其隔离层19设在膜片16以外。显然,使用膜片16和隔离层19可以很有效地在功率器件10与低压电路41间以及在相邻功率器件10间进行电隔离。
现在参见图7,在此实例中考虑将所有电极都设在上表面15上,在毗邻膜片16的下表面17处设有电绝缘但又有较高热导的一层45,在功率器件10工作时这有助于散去大部分的热量,否则这部分热量会陷在膜片16中。在优选的实施方式中,这一层45可在半导体衬底11进行单背侧腐蚀后再制作,并可由盲淀积高热导介电材料的方式来实现。这样的材料,例如,可以金刚石为基础。其他材料,如氮化硼、氮化铝和氧化铝也可使用。如图8所示,绝缘层45可填充衬底11中因制作膜片而留下的全部空隙。无论哪种情形,热沉46可与绝缘层45热接触以便散热。
如图9a和9b所示,第一薄层13可包含薄绝缘层50,其底部有效地成为膜片的下表面17,且至少一个半导体层51被置于薄绝缘层50上面,这就是所知的,例如,现代的硅/绝缘体(SOI)技术。在此情形下,一种SOI技术如键合的硅、SIMOX或单键合可用于制作功率集成电路。作为选择,可使用硅或金刚石。作为高压SOI工艺过程的最终步骤之一,如上述实例中那样,在绝缘埋层50下面的半导体衬底11,可经过常规的刻图形用单背侧腐蚀来部分地除去。在此实例中,绝缘埋层50对制作膜片16有效地起着止蚀作用。重要的是,当主电极设在膜片16以内的上表面15上时,绝缘埋层50也有助于电位线在漂移层20内的均匀分布,使得膜片功率器件10的击穿电压将接近其理想值。在图9a的实例中,隔离层19设在膜片16以内。在图9b的实例中,隔离层19设在膜片16以外。
再者,具有较高热导的绝缘层45可制作在膜片16下面如图10和11所示,以有助于对衬底11的横向散热和直接对外部热沉46散热。在图10a和11a的实例中,隔离层19设在膜片16以内,而在图10b和11b的实例中,隔离层19设在膜片16以外。
在图12所示的实例中,在膜片16区域中的绝缘埋层50与电绝缘导热层45之间,还有一增强机械性能的电绝缘层55,以强化膜片16的结构,有助于使膜片16机械破裂的风险减至最小。此附加的绝缘层也可有助于补偿膜片16总的机械强度,也可增强电绝缘导热层45与绝缘埋层50的粘附。在此说明书所描述的任何其他没有绝缘埋层的实例中将会看到,此机械增强层55也可置于膜片16下面,这样的安排提高了结构的电钝化性能和/或机械性能,尤其是抗破裂能力。几种这样的机械增强绝缘层可淀积在膜片16的背侧以增强散热、电钝化和/或机械强化膜片16,和/或起着在一层与另一层间达到良好粘附的缓冲层作用。绝缘层21和缓冲层可为氮化物、氧化物、无定形材料或多晶材料。
在图13a-13c所示的实例中,当器件的主电极设在膜片16以内的上表面15上时,对于每一种情形,第一薄层13都包含两个导电类型相反的半导体层60、61,使得功率器件10中的漂移区现在包含两个导电类型相反彼此叠置和直接接触的半导体区60′、61′以形成半导体结。存在这两个不同导电类型的直接接触的半导体区60′、61′可大大提高器件的击穿电压。这是由于在半导体层60、61间的纵向上形成的水平结促使整个漂移区在比击穿电压低得多的电压下耗尽。这意味着漂移区在电压阻断模式下实际上起着本征层的作用,且在器件垂直剖面中,电位线垂直于上表面5和膜片的下表面17,并在漂移区的横向上分布得更均匀。对于这些结构,电场因此实际上均匀地沿漂移区的横向或x方向分布。如果电场达到其临界值,则发生雪崩击穿。由于此时的电场是均匀的,击穿电压最大,击穿电压由器件主电极间x方向的电场曲线下的面积来图示。应知,两个半导体层60、61的掺杂浓度和厚度,每一个对获得可能的高击穿电压都起重要作用,并优选地选择使整个漂移区在比标称击穿电压低的电压下耗尽。两个半导体层60、61的掺杂浓度和厚度的选择也受所用功率器件的类型和相关的制作工艺的影响。
图13b所示的实例为具有氧化硅绝缘层50的SOI型。图13c所示的实例是又一个具有氧化硅绝缘层50的SOI型,且在绝缘层50背侧淀积有电绝缘导热层45。要知道,电绝缘导热层也可淀积在图13a所示JI型实例的膜片16下表面17上。
在图14a-14c所示的实例中,一般相当于图13a-13c所示的实例,每种情形的漂移区由y方向上彼此叠置的导电类型交替的几个半导体层构成,使得整个漂移区在比标称击穿电压低的电压下变为完全耗尽。再者,要知道,电绝缘导热层45也可淀积在任何这些实例的膜片16下表面17上。
在图15所示的实例中,当主电极又设在膜片16以内的上表面15上时,膜片功率器件10的漂移区包含多个沿第三方向z排列的导电类型交替的相邻层70、71、72。这些z方向的相邻半导体区形成了z方向的横向半导体结,使得整个漂移区在比标称击穿电压低的电压下变为完全耗尽。在膜片16上存在纵向结平面引起电位线沿漂移区x方向均匀分布,使击穿电压提高至接近理想值。如在上述实例中那样,器件纵向(x,y)剖面中的电位线垂直于上表面15和膜片下表面17,因而排列在y方向。不同导电类型的相邻半导体层70、71、72的掺杂和厚度是这样选择的,使得漂移区在电压阻断模式下,在比标称击穿电压低的电压下就完全耗尽,这就使击穿电压提高至接近理想值。应知,尽管三个半导体层70、71、72被表示为沿z方向排列,可只使用两个或多于三个这样的层。还要知道,电绝缘导热层可淀积在膜片16下表面17上以从器件10散热。
在图16所示的实例中,漂移区由几个彼此交替排列的不同导电类型的单元80构成,这些单元制作在上表面15处沿x、z方向排成规则图形,这就使整个漂移区在电压阻断模式下又变为完全耗尽的,使电位在漂移区上均匀分布。这些不同导电类型的单元可在x、y面中制作成所示的规则图形或不规则(未示出)图形。
在图17a-17c所示的实例中(分别表示JI器件、SOI器件、以及在膜片16背面加有电绝缘导热层45的SOI器件),除去衬底11,使得只有一部分漂移区20处于膜片16以内。这样,就有部分漂移区20处于膜片16以外(因而位于衬底11的余下部分之上)。主电极设在上表面15上,但优选地,漂移区20的高压电极端置于膜片16以内,而漂移区20的低压电极端留在膜片16外面。再者,要知道,电绝缘导热层45可淀积在任何这些实例的膜片16下表面17上。
在图2-17所示的上述所有实例中,衬底11的侧壁与横向器件的x、z面有一角度。这是因为最常用的背侧腐蚀技术都是湿法各向异性腐蚀,典型地用KOH溶液来进行。硅衬底11为单晶,各向异性腐蚀剂的腐蚀速率与晶向有关。止蚀面通常为(111)面。那些有氧化物埋层的SOI型器件有个优点,即在埋层氧化物处背侧腐蚀自动停止,因为对于许多腐蚀剂(包括KOH),氧化物的腐蚀比硅慢得多。作为选择,对于体材料硅器件(亦即,非SOI型),背侧腐蚀可由时间控制或电化学控制。
可用干法背侧腐蚀而非湿法各向异性腐蚀来产生本发明的任何膜片功率器件。干法背侧腐蚀的优点是衬底11的侧壁为垂直的,如图18a和18b的实例所示。这意味着在衬底11中膜片16下面的间隙所占的体积不再与衬底11的厚度有关,于是可更容易在同一芯片或集成电路中实现多个减小其横向间距的膜片16。在图18a的实例中,隔离层19设在膜片16以内,而在图18b的实例中,隔离层19设在膜片16以外。
在图19所示的实例中,膜片16是由衬底11的前侧腐蚀(亦即,表面微机械加工)来制作的。在所示的实例中,只在器件10有源区18的下面部分除去衬底11,以在有源结构18下面的衬底11中留下一间隙,这有助于提高器件的击穿值。图20为图19实例的剖面图。图21表示图19和20实例的变型。如上述所有实例中那样,在衬底11中有源区18下面存在间隙(亦即,形成膜片),意味着漂移区20中的电位线垂直于器件的上表面15和膜片的下表面17,并基本上均匀分布在漂移区20中,使得击穿电压达到其理想极限。
在图22a和22b所示的实例中,分别为JI和SOI的变型,衬底11中的间隙只制作在部分漂移区20下面,使得只有一部分漂移区20制作在膜片16以内。再者,主电极设在上表面15上,但优选地,漂移区20的高压电极端置于膜片16以内,而低压电极端可留在膜片16以外。
图23a详细表示一种本发明的膜片高压横向DMOSFET(LDMOSFET)10的实例,其中漂移区20为n型导电的,源区90和漏区91都是n型导电的,并由施主杂质很好地掺杂以形成良好的欧姆接触,p型阱92为p型导电的。由薄绝缘层93及多晶硅和/或金属层94构成的常规绝缘栅置于p型阱92上,并由隔离层95与源金属层S隔离。厚绝缘层96,称为场氧化层,可置于绝缘栅与漏区之间的漂移层20上面。多晶硅/金属层94可在场氧化层96上延伸一短距离。在开态时,电流流过与n+漏区91接触的漏电极D和与n+源区90接触的源电极之间。此电流受施加于与绝缘栅接触的栅极G电位的控制。当栅极对源极施加较高的电位时,在绝缘栅下面的p型阱92表面形成电子沟道,使得电子从源区,通过沟道,经漂移区20流至漏极。对栅极施加适当的电位,此器件可导通或关断。高压LDMOSFET被置于上表面15和膜片下表面17所界定膜片16上。膜片的下表面17处于上表面15与半导体衬底表面12间剖面的y方向上。膜片16因而比半导体衬底11薄,使当器件工作在阻断模式下时,漂移区20变得使可动载流子完全耗尽,且电位线实际上垂直于上表面15和膜片下表面17,如图24所示。这与现有技术的JI型LDMOSFET成为对照,在JI型LDMOSFET中漂移区通常置于厚半导体衬底上,在关态时衬底没有完全耗尽,因此电位线从开始时在漂移区中的垂直方向弯折为在衬底中沿水平方向(x轴)排列。高压膜片LDMOSFET的优点在于较高的击穿电压值、电位线在表面处的更均匀分布和通过使用膜片16中的纵向隔离层19而有较好的隔离。在此实例中,隔离层19由高掺杂p+层制成,并与源电极相连。应知,图23a所示的器件可典型地包含几个条形/梳状/单元,使得器件满足电流级别和功率规格。对于600V的器件,漂移区掺杂浓度可典型地为1016/cm3,漂移区20的厚度为0.2-20μm,漂移区长度为30-50μm。漂移区20的掺杂不必是恒定的,可从源端至漏端改变。例如,在源端掺杂浓度可为8×1015/cm3,而线性地增至漏端的3×1016/cm3。
图23b表示图23a实例的SOI变型,其中绝缘层50被置于漂移区20底部作为膜片16的一部分。此绝缘层50不必像现有技术的SOI高压器件那样厚而可代之以很薄的,因为在电压阻断模式下(当器件关断时)的电位不是沿y方向施加在其上面(如常规SOI高压器件那样),而是沿着它,在x方向。这种情形下的隔离是由沟槽氧化物19构成的,但也可使用其他类型的隔离如p+层。图23c表示图23b实例的变型,其中具有良好热导的电绝缘层45被置于膜片下面以便于向热沉46散热,从而避免了过分的自加热。在此实例中,隔离层19设在膜片16以外。
再者,要知道,电绝缘导热层45可淀积在任何这些实例的膜片16下表面17上。
图25a-25c详细表示横向绝缘栅双极型晶体管(LIGBT)膜片功率器件的实例,其中的双极电流是在悬浮在膜片16上的漂移区中传导的,且一般相当于图23a-23c所示的LDMOSFET。LIGBT膜片功率器件与图23a-23c所示的LDMOSFET功率器件的主要差别是在阳极处使用高掺杂的p型空穴注入层100。LIGBT型器件中的双极型导电是以漂移层中的电导调制来表征的,以减小开态电阻。再者,要知道,电绝缘导热层45可淀积在任何这些实例的膜片16下表面17上。
图26a为一种功率二极管形式的膜片器件实例的示意透视图。对于600V的功率二极管,n型漂移区20的长度为30-50μm时,掺杂浓度为3×1015-1016/cm3的范围。漂移区20的厚度可在0.2-20μm之间。漂移区20的掺杂不必为恒定的,可由源端至漏端改变。例如,在源端掺杂浓度可为8×1015/cm3,而线性地增至漏端的3×1016/cm3。为了简单起见,只示出了二极管的一个单元。图26b示意地表示图26a所示的SOI型功率二极管,其中绝缘层50制作在漂移区20下面以使漂移区20中的电位线分布得更均匀,因而提高二极管的击穿值。此外,绝缘层50起着很好的止蚀作用,因此使膜片16的制作更为容易。为在功率器件工作时有助于散热,可在图26a和26b所示的器件膜片16背面再设置高热导的电绝缘层45(未示出)。此层45可用溅射或其他淀积方法来制作而作为上述功率集成电路制作过程的最后步骤之一。
图27a示意地表示一种膜片功率二极管的实例,二极管包含的漂移区20由纵向叠置的不同导电类型n、p的两层101、102构成。这些层101、102可用外延生长来制作,或是优选地向一层101中注入另一层102。对于600V的功率二极管,构成漂移区20的两个半导体层101、102的掺杂浓度可为1016-5×1016/cm3,长度为30-40μm。两个半导体层101、102的厚度为0.1-20μm。如果上面的半导体层101用注入法来制作,则上层101的掺杂浓度将高于下面的半导体层102,因此,当漂移区耗尽时为保持空间电荷的平衡,上层101的厚度小于下层102是优选的。图27b示意地表示图27a所示的SOI型膜片功率二极管,绝缘层50制作在漂移区101、102下面。附加的高热导电绝缘层45(未示出),如前所述,可再置于膜片下面以便散热。
图28a示意地表示一种三维膜片功率二极管的实例。三维膜片功率二极管的漂移区由几对设在x,z面的n、p区构成,使之在z方向形成横向结。这些n、p层的宽度典型地可为0.2-5μm,代表其典型长度的一小部分,这就保证了漂移区20在z方向上比x方向更快的耗尽,因而在电压阻断模式下表现得类似于本征层。对于600V的器件,漂移区20的长度(在x方向)可接近30μm。n、p区110、111的掺杂可为1015-6×1016/cm3。优选地,n、p区110、111的制作可将一层(例如,n型层)110注入另一层(例如,p型层)111而成。因此,注入层110的掺杂浓度高于本底层111,从而保持电荷平衡,注入层110的宽度优选地小于本底层111。图28b示意地表示图28a实例的SOI变型。再者,对于每种情形,都可淀积电绝缘导热层45(未示出)以便散热。
图29a示意地表示一种单栅膜片三维LDMOSFET的实例。此器件使用了上述三维膜片功率二极管的概念以在电压阻断模式下支持很高的源极-漏极电压,而在导通模式下此器件类似于常规LDMOSFET和图23a的器件。图29b示意地表示图28a实例的SOI变型。再者,对于每种情形,都可淀积电绝缘导热层45(未示出)以便散热。
图30示意地表示一种双栅膜片三维LDMOSFET的实例。此器件也使用了上述三维膜片功率二极管的概念以支持很高的源极-漏极电压。在导通模式下,此器件通过n沟道栅和p沟道栅控制,可发生经过n和p型条形的单极并行导电。向p型漂移层注入电子并向n型漂移层注入空穴也可发生双极导电。
现在参见图31,本发明的另一种膜片功率半导体器件10的实例具有半导体衬底11和薄层13,后者至少包含一个半导体层14并具有上表面15。衬底11具有下表面12,构成器件的主下表面。在制作期间,薄层13下面的一部分衬底11被除去直至达到薄层13以确定具有上表面15和下表面17的膜片16。至少一个主电极层103附加在下表面17上并与半导体层14接触。在优选的实施方式中,所述电极层103可为金属层的形式,是在用单侧背面腐蚀制作了膜片16后从器件的背侧淀积的。金属层103可从膜片下表面17延伸至器件10的主下表面12,且优选地与外部热沉接触。此器件至少包含另一个施加在上表面15上的主电极层104,它与半导体层14接触并且优选地在膜片16以内,使得在开态时在主上电极104与主下电极103间的电流通导基本上是纵向的并垂直于上表面15和膜片下表面17。此器件可有一置于表面15上的控制电极105,以控制主电极103、104间的电流。此功率器件10包含漂移层20,它置于第一薄层13内的半导体层14中。漂移层20至少有一部分置于膜片16以内。
在此功率器件关断并阻断加在主电极103、104上的电压时,漂移层20承受施加在主电极103、104上的高压。在这样的工作模式下,漂移区20变为可动载流子部分地或完全耗尽,在器件10剖面内的等位线平行于上表面15和膜片下表面17,并基本上均匀地分布在漂移层20的上、下端间。
在部分薄层13下面除去衬底11,在开态电阻与击穿性能间产生了较好的折中。电位线在膜片16内的漂移区中均匀分布,对于给定的漂移区20厚度,导致了理想的击穿电压。因为除去了薄层13下的衬底11,就没有了衬底的寄生电阻和热阻,且也较易与芯片中的其他器件和电路隔离(未示出)。电极层103优选地为高热导的,以有助于从膜片区16至外部热沉(未示出)的散热。
图32示意地表示本发明的一种膜片功率器件10的实例,其中使用干法背侧腐蚀来产生膜片16。衬底11余下部分的侧壁是垂直的,如图32所示。在用干法腐蚀制作膜片后,电极层103被施加至膜片下表面17,以形成器件10的一个主电极。如前面所说明的,干法腐蚀具有的优点是在衬底11中间隙所占的体积不再与衬底11的厚度有关,因此膜片16的面积较易控制。
图33表示图31所示器件10的剖面。在此实例中,器件10的端区106设在膜片16以外而有源区设在膜片16以内。在功率器件中,当器件阻断主电极间的电压时,用端区106来抑制器件10边缘处的过早击穿。端区106在开态时不起实际作用,因而在开态工作时端区106没有电流通过。为使开态电阻和功耗减至最小,希望漂移层尽量薄。然而,为使器件边缘处承受较高的击穿电压并迫使实际的击穿发生在有源区,端区106最好较厚。为此,有源区18设在膜片区16以内,而优选地将端区106置于膜片16以外厚于膜片16的层上。在此实例中的端区106受益于衬底11,在器件10阻断主电极上的高压时便于耗尽区在下面的较宽区域中扩展。端区106和衬底11的掺杂可与设在有源区18中的漂移层20不同。在一优选的实施方式中,衬底11比漂移区20掺杂得更低。端区106可为包围着器件10有源区18的高掺杂浮置环(floating ring)(就其本质而言),它有助于耗尽区在表面处的大面积扩展,每一对环间的间隔承受着一部分总电压,从而减小了边缘过早击穿的风险。此端区,称为浮置环端区,可包含场板(fieldplate)和沟道/耗尽限制器(channel/depletion stopper)。作为选择,端区可为结端延伸区(JTE)(junction termination extension)或场板端区(field plate termination)的已知形式。
图34详细表示本发明的一种膜片纵向功率MOSFET的实例,其中有源区18含有设在膜片16以内的n型导电的漂移区20,它带有置于膜片16以外的端区106。在此实例中,端区106是由几个同心的高掺杂p型浮置环107和最终的高掺杂n型耗尽限制环108构成的。此功率MOSFET具有高掺杂的n型源区109和漏区122,由绝缘层121和多晶硅/金属层105构成的绝缘栅作为控制极。源电极104设在上表面15上,而漏电极103附在膜片下表面17上。源电极104与源区109和P型阱120接触。漏电极103与高掺杂的n型漏区122接触。此MOSFET在开态时的工作取决于在控制极105施加栅压时p型阱120表面处形成的反型层。在此模式下,电子从源区109经p型阱120表面形成的所述反型层通过漂移区20而输运至漏区122。为使开态电阻减至最小,使漂移区20变薄并比衬底11掺杂得更高是优选的。在关态时,当高电压施加在主电极103、104上时,漂移区20的可动载流子完全耗尽,有源区承受着最大部分的电压。漂移区20中的电位线平行于上表面15和膜片下表面17,并理想地均匀分布在漂移层20中。在端区106中,耗尽区有更大的余地向衬底11扩展,从而避免了电位线拥挤在耗尽区边缘而发生过早击穿。衬底11的掺杂可比端区106表面和漂移区20更低。应注意,基本上没有开态电流流过端区106,因此厚的和较低掺杂的衬底11对开态电阻不产生负面影响,也不会增加额外的功率损耗,否则如果在膜片16下面存在衬底11预期会发生这种功率损耗。为了简单起见,图34只表示了MOSFET的二维内部结构。
图35表示一种三维膜片功率器件10的示意透视图,其电极103设在膜片16的下表面17上。此三维膜片功率器件10的漂移区包含几对设在x,z面的n,p区110、111,使之沿z方向形成横向结。如果区域110、111在z方向薄于y方向,当高电压施加于主下电极103和设在上表面15上的主上电极(未示出)上时,漂移区20在z方向的耗尽就快于y方向。这就保证了较高的击穿值,以及电位线平行于上表面15和下表面17且基本上均匀地分布在漂移区中。
图36a-36c示意地表示本发明器件10的一种制作方法的实例。在此实例中,薄层13包含半导体层14,其下面备有绝缘氧化物埋层50,埋层50下面为衬底11。如同上述实例那样(例如参见图9),绝缘埋层50下面的衬底11,以绝缘埋层50作止蚀层,用背侧腐蚀来部分地除去以制成膜片16,如图36a所示。在此实例中,如图36b所示,在半导体层14膜片部分下面的那部分绝缘埋层50然后也被除去,使得半导体层14露出的下表面成为膜片16的下表面17。在膜片16区域中除去绝缘埋层50就可以在器件背面淀积电极层103。在此实例中,如同所示,下电极层103扩展在膜片16的整个下表面17上,并向下延伸至向内相对的侧壁以及衬底11余下部分的下表面上。
图37-40示意地表示一种集成电路中的膜片功率器件10的实例,器件10的一个电极加在膜片下表面,集成电路包含低压/小功率器件和电路以及其他功率器件。
图37表示,例如,四个膜片功率器件,每个的特点都是有独立的电极,四个主电极103都加在膜片下表面上,四个主电极104设在膜片上表面上。独立的控制极105可用来控制每个独立的功率器件的工作。置于膜片16上的功率器件经隔离层19彼此隔离,如前面的实例所述。
图38a表示功率集成电路40的示意剖面图,该电路包含主电极103施加在下表面的一个膜片功率器件10和置于膜片16以外的小功率CMOS和双极型器件41。作为选择,CMOS和双极型器件41也可置于膜片16以内如图38b所示,或置于在同一原始衬底11上制作的各个独立膜片16上如图38c所示。优选地,下电极103不延伸至小功率器件和电路下面。图38d的实例与图38c者的不同在于隔离层19设在膜片16以外。
在图39a-39d中示意表示的结构为相应于图38a-38d所示的SOI型。在这些实例中,绝缘层50用作止蚀层来制作膜片16。绝缘层50也有助于使薄层13中的独立器件与衬底11隔离。
图40a-40d示意地表示将多于一个的具有独立下电极103的膜片功率器件集成在同一功率集成电路40中的可能方法。在图40a的实例中,每个都有各自主下电极103a、103b的两个功率器件10a和10b被集成在同一膜片16上。在图40b的实例中,绝缘层50用于制作膜片16,并有助于隔离功率集成电路40中的独立器件。图40c的实例与图40b者的不同在于外隔离层19设在膜片16以外。在图40c的实例中将第一功率器件10a与第二功率器件10b分隔的内隔离层19,也如图40b的实例所示,保留在膜片16以内。在图40d的实例中,具有独立下电极103a、103b的膜片功率器件10a、10b被分别置于在同一原始衬底11上分别制作的不同膜片16a、16b上。为了膜片功率器件的彼此隔离,另一个可含有隔离层19的膜片16c制作在原始衬底11上且置于相邻的膜片功率器件10a、10b之间。
图41a-41c更详细地表示一种膜片纵向功率MOSFET的实例。图41a表示本发明的一种实施方式,使用已知DMOS技术的一种膜片纵向功率MOSFET。此功率MOSFET具有高掺杂的n型源区109和漏区122,由绝缘层121和多晶硅/金属层105构成的绝缘栅作为控制极。源电极104设在上表面15上,漏电极103加在膜片下表面17上。源电极104与源区109和p型阱120接触。漏电极103与高掺杂的n型漏区122接触。此MOSFET在开态时的工作取决于在控制极105上施加栅压时p型阱120表面处形成的反型层。在此模式下,电子从源区109经p型阱120表面形成的所述反型层通过漂移区20而输运至漏区122。在关态时,当高电压施加在主电极103、104上时,漂移区20的可动载流子完全耗尽,有源区承受着最大部分的电压。漂移区20中的电位线平行于上表面15和膜片下表面17,并理想地均匀分布在漂移层20中。高掺杂的n型漏区122可为埋层,是在确定膜片16的背侧腐蚀前制作的。在这种方法中,可用n型层122作为间接手段来停止由已知的电化学技术进行的背侧腐蚀。为便于电化学腐蚀,衬底11可为p型掺杂的,以与所示n型层122形成结。
图41b的实例不同于图41a者在于制作了膜片16后用掩蔽的或盲背侧淀积来制作高掺杂的n型漏层122。在制作了膜片16并从器件背侧向膜片16中引入n型漏层122后,向膜片下表面17施加漏电极103。
图41c表示本发明的一种实施方式,使用沟槽技术的一种膜片纵向功率MOSFET实例。图41c中的结构不同于图41b所示者在于不使绝缘栅制作在结构上面。在图41c的结构中,在120中形成的反型层是纵向的,基本上垂直于上表面15。此方法的优点是提高了沟道密度和较高的封装密度。
图42a-42c详细地表示了纵向绝缘栅双极晶体管膜片功率器件(IGBT)的实例,其中使用了悬浮在膜片16上漂移区20中的双极导电结构,且一般地相当于图41a-41c所示的膜片纵向功率MOSFET。IGBT的主要差别在于使用与阳极电极103接触的高掺杂p型空穴注入阳极层123。电流的双极传导基本上垂直于上表面15,且其特征是漂移层20中的电导调制,以减小漂移层20上的开态电压降。n型缓冲层122和p型阳极层123可如图42a所示在制作膜片16之前来制作,或如图42b所示在制作膜片16后再制作。在图42a中阳极层123可直接或间接用为制作膜片16的止蚀层。
图43a和b表示功率集成电路的实例,该功率集成电路包含两个使用沟槽技术并悬浮在独立膜片16a、16b上的纵向功率MOSFET。在图43a的实例中,器件10a、10b的特点是独立的电极和使用第三个膜片16c和隔离层19来彼此隔离。三个膜片16a、16B、16c在同一步骤中制作,且在此实例中使用干法背侧腐蚀,使衬底11留下的脚部有垂直的侧壁,如前所述,这就有利于较好地控制膜片面积并在同一芯片中集成大量的器件。图43b的实例为图43a实例的SOI变种。这种情形的隔离层19设在膜片16a和16b以外,并与介电埋层50一起保证了两个功率器件10a、10b彼此间的有效隔离。图43a和43b的实例表示两个膜片功率MOSFET集成在同一芯片上,但任何其他的膜片功率器件也可如此图所示使用类似的方法彼此隔离。
虽然上述实例主要涉及的是硅,本发明的膜片功率器件也可建立在其他半导体材料上,例如碳化硅(SiC)、金刚石、GaAs、或其他III-V族材料。
作为第一薄层13一部分的漂移区可由宽带隙材料制成。例如金刚石、GaAs、GaN和SiC,或可由GaN和AlGaN组合的或其他合适材料的异质结制成。
绝缘层50主要是参照二氧化硅来描述的,但其他绝缘的或半导体材料如金刚石、氮化物或氮化物与氧化物的组合也可使用。
热沉层45可由金刚石、氮化铝、氮化硼或其他具有良好电绝缘性质和高热导的材料制成。
上面已给出了膜片16厚度的某些实例。一般地,在横向器件中,膜片16的厚度可为0.1μm-10μm或20μm左右。一般地,在纵向器件中,膜片16的厚度可为6μm或10μm-60μm或100μm或180μm左右。
本发明的实施方式已特别参照图示实例作了描述。然而,要知道,在本发明的范围内可对所述实例做出各种变动和修改。
权利要求
1.一种含有源区的功率半导体器件,其有源区包含漂移区,至少部分漂移区设在具有相对的上、下表面的膜片内,膜片的上表面有直接或间接与之连接的电极使得能够在漂移区上横向施加电压,膜片的下表面没有与之毗连的半导体衬底。
2.一种含有源区的功率半导体器件,有源区包含的漂移区设在一层中,此层置于半导体衬底上,至少在部分漂移区下面的至少部分半导体衬底被除去,使得所述至少部分漂移区被置于下面的衬底已被除去的那部分薄层所限定的膜片内,膜片的上表面有直接或间接与之连接的电极使得能够在漂移区上横向施加电压。
3.一种含有源区的功率半导体器件,其有源区包含漂移区,至少部分漂移区设在具有相对的上、下表面的膜片内,至少有一个电极直接或间接与上表面连接和至少有一个电极直接或间接与下表面连接,使得能够在漂移区上纵向施加电压,膜片的下表面没有与之毗连的半导体衬底。
4.一种含有源区的功率半导体器件,有源区包含的漂移区设在一层中,此层置于半导体衬底上,至少在部分漂移区下面的至少部分半导体衬底被除去,使得所述至少部分漂移区被置于下面的衬底已被除去的那部分薄层所限定的膜片内,且至少有一个电极直接或间接与上表面连接和至少有一个电极直接或间接与下表面连接,使得能够在漂移区上纵向施加电压。
5.根据权利要求1-4任一项的器件,其中漂移区只有部分设在膜片内。
6.根据权利要求1-4任一项的器件,其中全部漂移区设在膜片内。
7.根据权利要求1-6任一项的器件,包含至少一个包围着漂移区的隔离层。
8.根据权利要求7的器件,其中至少一个隔离层设在所述膜片中或在一单独的膜片中,从膜片的上表面延伸至膜片的下表面。
9.根据权利要求1-8任一项的器件,包含至少一个包围着漂移区的隔离层,隔离层设在膜片外。
10.根据权利要求7-9任一项的器件,其中此隔离层或至少一个隔离层由电绝缘材料来提供。
11.根据权利要求7-10任一项的器件,其中此隔离层或至少一个隔离层由高掺杂的半导体层来提供,在使用中对半导体层加偏压以提供反偏置或低于正向偏压电平的结。
12.根据权利要求1-11任一项的器件,还包含至少一个含漂移区的附加功率器件,至少部分漂移区设在所述膜片或独立的膜片上。
13.根据权利要求1-12任一项的器件,还包含至少一个低压器件。
14.根据权利要求13的器件,其中所述至少一个低压器件设在所述膜片内。
15.根据权利要求13的器件,其中所述至少一个低压器件设在所述膜片外。
16.根据权利要求15的器件,其中所述至少一个低压器件设在另一个膜片内。
17.根据权利要求12-16任一项的器件,包含至少一个隔离层,所述隔离层在相邻器件间提供电隔离。
18.根据权利要求17的器件,其中所述隔离层被置于另一个膜片上。
19.根据权利要求1或2或其任一从属权利要求的器件,在毗邻膜片下表面处含有电绝缘导热层。
20.根据权利要求1或2或其任一从属权利要求的器件,其中膜片包含置于电绝缘层上的半导体层。
21.根据权利要求1或2或其任一从属权利要求的器件,在膜片下面含有机械增强电绝缘层。
22.根据权利要求1-21任一项的器件,其中漂移区具有非均匀的掺杂剖面。
23.根据权利要求22的器件,其中在器件高压电极侧漂移区的掺杂浓度较高,而在器件低压电极侧漂移区的掺杂浓度较低。
24.根据权利要求22或23的器件,其中漂移区的掺杂浓度线性地从漂移区的一侧至另一侧改变。
25.根据权利要求1或2或其任一从属权利要求的器件,其中漂移区包含至少两个导电类型交替变化的半导体层,彼此叠置并互相接触。
26.根据权利要求1-24任一项的器件,其中漂移区包含多个横向相邻的导电类型交替变化的半导体区。
27.根据权利要求1-24任一项的器件,其中漂移区包含多个横向相邻的导电类型交替变化的半导体单元排列在器件平面周围。
28.根据权利要求1-27任一项的器件,包含毗邻漂移区并与之接触的端区,设置所述端区来减小漂移区边缘处的过早击穿效应。
29.根据权利要求28的器件,其中至少部分所述端区被置于膜片内。
30.根据权利要求28的器件,其中至少部分所述端区被置于膜片外。
31.根据权利要求28-30任一项的器件,其中漂移区比至少部分端区掺杂得更高。
32.根据权利要求28-31任一项的器件,其中漂移区比半导体衬底掺杂得更高。
33.一种制作功率半导体器件的方法,该器件具有含漂移区的有源区,此方法包括以下步骤在半导体衬底上的层中制作功率半导体器件,该器件具有含漂移区的有源区;以及至少在部分漂移区下面的至少部分半导体衬底被除去,使得所述至少部分漂移区被置于下面的衬底已被除去的那部分薄层所限定的膜片内。
34.根据权利要求33的方法,其中所述至少部分半导体衬底由湿法腐蚀来除去。
35.根据权利要求33的方法,其中所述至少部分半导体衬底由干法腐蚀来除去。
36.根据权利要求34或35的方法,其中所述至少部分半导体衬底用绝缘埋层作止蚀层来除去。
37.根据权利要求33-36任一项的方法,其中在制作膜片之后接着从器件背侧用注入、扩散或淀积引入至少一个半导体层。
38.根据权利要求33-37任一项的方法,其中下电极层被施加至膜片下表面,所述下电极层与膜片内的至少一个半导体层接触。
39.根据权利要求33-37任一项的方法,包括在毗邻膜片下表面处施加电绝缘导热层的步骤。
40.根据权利要求39的方法,其中电绝缘导热层由淀积工艺来施加。
全文摘要
功率半导体器件(10)具有包含漂移区(20)的有源区。漂移区(20)至少有部分是由上、下表面(15,17)相对的膜片(16)提供的。在一种实施方式中,膜片(16)的上表面(15)具有直接或间接与之相连的电极,以便在漂移区(20)的横向上施加电压。在另一种实施方式中,至少有一个电极直接或间接与上表面(15)相连,且至少有一个电极直接或间接与下表面(17)相连,以便在漂移区(20)的纵向上施加电压。在每个实施方式中,膜片(16)的下表面(17)都没有与之毗连的半导体衬底。
文档编号H01L21/331GK1470073SQ0181764
公开日2004年1月21日 申请日期2001年9月20日 优先权日2000年9月21日
发明者弗罗林·尤德瑞, 吉翰·安尼尔·约瑟夫·阿玛拉汤加, 安尼尔 约瑟夫 阿玛拉汤加, 弗罗林 尤德瑞 申请人:剑桥半导体有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1