制备多层质子交换膜的方法和薄膜电极组件的制作方法

文档序号:7117337阅读:251来源:国知局
专利名称:制备多层质子交换膜的方法和薄膜电极组件的制作方法
技术领域
本发明涉及制备多层质子交换膜的方法和薄膜电极组件。
背景技术
电化学装置,例如燃料电池、电解池、氯碱电池等,通常都由一个称为薄膜电极组件(MEA)的单元构成。在一个典型的电化学池中,MEA包括一张接通阴极的质子交换膜(PEM)和包含诸如Pt或Pd之类催化剂材料的阳极层。PEM作为固体电解质将阳极产生的质子传送到阴极,从而产生在连接电极的外部电路中流通的电子流。PEM不得导通电子,也不得允许反应气体通过,而且必需在正常工作条件下保持结构强度。

发明内容
内容之一,本发明涉及一种制备多层PEM的方法。对此类PEM的需求缘于可利用特定数量和特定组成的各单层此类薄膜制成具有特定化学和/或物理特性的薄膜。本发明方法包括(a)提供包含粘合于基材上的含离聚物层的制品,所述含离聚物层具有可涂覆表面;(b)将分散系或溶液(例如离聚物的分散系或溶液)施于薄膜表面;(c)使分散系或溶液干燥从而形成粘合于基材上的多层PEM;(d)将多层PEM从基材上取下。施加涂层时,粘合于基材上的含离聚物层吸收了分散系或溶液中的溶剂而膨胀。将分散系或溶液施加于仍粘合于基材上的含离聚物层上而不是施加于自持的含离聚物层可以限制该层主要沿垂直于层表面的方向膨胀。这样最大限度消除了皱缩、裂纹、不均匀等缺陷,这些缺陷常见于无基材的情况下,会降低薄膜的性能。
以上方法的另一种应用包括制备MEA和MEA前体,此时,将PEM与基材粘合,并在PEM的外露表面上施加催化剂溶液或分散系。干燥后,所述催化剂即形成电极层。将该构件与第二电极层组合即制得MEA。该方法可实现催化剂与电极之间的紧密接合,这对于离子连通性和燃料电池性能优化非常重要,同时,该方法最大限度消除了非均匀膨胀造成的皱缩、裂纹等缺陷。
本发明还提供多层PEM和包含此类PEM的MEA。例如,实施方式之一中,所述PEM包含很多层,其中至少一层是离聚物,干燥后的总厚度小于2mil(50μm)。较好的是,各层的厚度均不超过1.5mil(37.5μm),不超过1mil(25μm)更好。
附图和后文详细描述了本发明的多种实施方式,从中及权利要求中还可清楚地看出本发明的其他特征、目的和优点。


图1实施例1的MEA的极化曲线。
图2实施例2的MEA的极化曲线。
图3实施例3的MEA的极化曲线。
图4实施例4的MEA的极化曲线。
图5实施例5的MEA的极化曲线。
图6实施例6的MEA的极化曲线。
图7实施例7的MEA的极化曲线。
详细描述如下制备多层PEM在粘合于基材上的含离聚物层表面上施加宜含有离聚物的溶液或分散系,然后干燥去除溶剂。可根据需要重复以上过程制成具有所需层数的PEM。
在涂覆和此后的干燥过程中,含离聚物层与基材粘合而非仅仅置于基材上。所述粘合可通过用例如浇注和涂布等已知方法将离聚物溶液或分散系施加到基材上来实现。例如,离聚物溶液或分散系可手涂或手刷、刀涂、辊涂、浸涂或幕涂、型涂(die coated)、旋涂、挤塑或槽涂(slot coated)到基材表面。或者,可将预成型的膜通过例如层合与基材结合。然而,不论采用何种涂布方法,含离聚物层与基材之间必需具有足够强的粘合力以确保含离聚物层在涂布时吸收溶剂后基本上仅沿着垂直于该层表面的方向膨胀,从而避免皱缩和裂纹等。然而,在涂布过程结束后,含离聚物层应能从基材上取下而无残留。
所述基材可以是多孔的,也可以是基本无孔的。合适的基材包括玻璃和聚合物膜,例如聚酯(例如聚对苯二甲酸乙二酯)、聚乙烯、尼龙、聚酰亚胺、聚丙烯等制成的薄膜。也可采用多层基材。
含离聚物层的离聚物优选成膜聚合物,但也可以是非成膜聚合物。离聚物可以是氟化的,包括部分氟化的,但优选全氟化的。离聚物可含酸性侧链基团,例如膦酰基(phosphonyl),羰基更好,最好是硫酰基。可用的其他碳氟化合物型离聚物包括含芳基全氟烃基硫酰亚胺阳离子交换基团的烯烃的共聚物,此类烯烃具有通式(I)CH2=CH-Ar-SO2-N--SO2(C1+nF3+2n),其中n=0-11,以0-3为佳,最好是0,其中Ar是取代或非取代的二价含芳基基团,单环的为佳,最好是二价苯基(后文称苯基)。Ar可包括各种取代或非取代的芳性基团,包括苯、萘、蒽、菲、茚、芴、环辛二烯和芘,这一基团的分子量以不超过400为宜,不超过100更好。Ar可含各种本文所述的取代基。此类树脂之一是p-STSI,一种导离子材料,由结构式(II)苯乙烯基-SO2N--SO2CF3,所示苯乙烯基三氟甲基硫酰亚胺(STSI)经自由基聚合反应生成。最好,所述离聚物是带有磺酸侧链基团的成膜氟聚合物。优选的成膜离聚物型氟聚合物包括带有侧链磺酸基团的四氟乙烯共聚物,例如NAFION(DuPont,wilmington,DE),FLEMION(Asahi Glass Co.Ltd.,日本东京),和四氟乙烯与结构式(III)所示硫酰氟单体CF2=CF-O-(CF2)2-SO2F形成的共聚物,该共聚物可水解产生磺酸。也可采用混合物,例如Hamroke等在US6277512中所述。
施于最初的含离聚物层上以形成PEM的涂层的层数和组成取决于对PEM的化学和物理特性要求。例如,附加层中可有一层或多层是离聚物层。合适的离聚物如前所述。附加层中的离聚物可与最初的离聚物相同或不同。例如,可形成各层化学组成相同但分子量不同的多个离聚物层。
多层中的一层或多层可含有旨在改善PEM机械特性、热特性和/或化学特性的添加剂。较好的是,这些添加剂具有热稳定性而且不导电。例如,可在PEM的一层或多层中添加强化颗粒来提高PEM的机械强度。合适的强化颗粒例如二氧化硅、氧化锆、氧化铝、氧化钛等金属氧化物。还可以在PEM的一层或多层中添加此类填料和亲水性添加剂来提高PEM的水合能力。其他填料,例如氮化硼,可用来提高PEM的导热性。可在一层或多层中加入氟聚合物填料,例如六氟丙烯与二氟乙烯的共聚物,如Hamrock等在US6277512中所述。
PEM的机械强度还可通过在一层或多层中加入交联或可交联聚合物来提高。合适的交联或可交联聚合物可参见Hamrock等的US6277512。此类聚合物可用各种方法交联,例如热交联或辐射(例如UV或电子束)交联,以及用交联剂交联。所述聚合物可在加入离聚物膜之前交联,也可以在加入薄膜后原位交联。
多层中的一层或多层还可包括多孔性材料。多孔性材料可由各种合适的聚合物制成,例如聚烯烃(如聚乙烯、聚丙烯、聚丁烯),聚酰胺,聚碳酸酯,纤维素类,聚氨基甲酸酯,聚酯,聚醚,聚丙烯酸酯,卤化聚合物(例如聚四氟乙烯等氟聚合物),以及以上所述物质的混合物。此外,织造和非织造材料均可采用。
除制备PEM之外,本发明方法还可用来制备MEA取粘合于基材上的PEM,在PEM的外露表面施加催化剂溶液或分散系,然后干燥形成电极层。所述的溶液或分散系常被称为“油墨”,其中包含导电催化剂颗粒(如由碳颗粒支承的铂、钯和(Pt-Ru)Ox)与粘合剂聚合物。可用各种合适的方法将催化剂油墨沉积在薄膜表面,包括用涂刀或刮板涂布、刷涂、倾倒、溅涂或浇注。可通过反复涂覆使得涂层累积到所需厚度。
可根据以上方法将一个或两个电极层与PEM结合。或者,可用“贴花”法将一个电极层直接沉积到薄膜上。贴花法实施方式之一中,第一催化剂层用前文所述方法涂在薄膜上,然后,用贴花法加上第二催化剂层。贴花法的另一实施方式中,通过涂布、油漆、喷涂或丝网印刷将催化剂油墨施加到基材上,然后去除溶剂。然后,将形成的贴花从基材上转移到薄膜表面,并通过例如加热加压实现结合。
实施例催化剂分散系将碳支承的催化剂颗粒(用于阴极的催化剂Pt,或用于阳极的催化剂Pt加Ru)分散在NAFION 1100(DuPont,Wilmington,DE)的水分散系中,所得分散系在100℃加热3分钟,期间用标准磁力搅拌棒搅拌。然后将分散系冷却,接着,用HANDISHEAR手持搅拌仪(Virtis Co.,Cardiner,NY)以30,000rpm转速高剪切搅拌5分钟,形成催化剂分散系。
气体扩散层和涂有催化剂的气体扩散层将一份0.2nm厚的Toray碳纸(Cat.No.TGP-H-060,Toray Industies,Inc.,日本东京)手工浸渍在固体含量约1%的TEFLONTM分散系(将DuPont,Wilmington,DE编号T30含60%固体的水性分散系稀释而成)中,然后在空气烘箱中50-60℃干燥驱除水分,由此形成气体扩散层(GDL)。
如下所述以碳黑分散系涂覆GDL在用7.6cm刮板的Ross混合仪(CharlesRoss & Son Co.,Hauppauge,NY)以4500rpm进行的高剪切混合下制备VULCANTMX72(Cabot Corp.,Waltham,MA)的水分散系。另一容器中,用去离子水将TEFLONTM水分散系(T30,DuPont,Wilmington,DE)稀释至5%固含量。然后将碳黑分散系搅拌加入TEFLONTM分散系。真空过滤所得混合物,得到固含量约20%的水、TEFLONTM和碳黑的混合物。用约3.5wt%表面活性剂(TRITON X-100,Union Carbide Corp.,Danbury,CT)处理该糊状混合物,然后加入异丙醇(IPA,Aldrich Chemical Co.,Milwaukee,WI),使得IPA与糊状物的w/w之比为1.2∶1。此稀释后的混合物用三桨VERSAMIXER(Charles Ross & Son Co.,Hauppauge,NY;锚浆转速80rpm,分散桨转速7000rpm,转子-定子乳化桨转速5000rpm)在10℃再次高剪切混合50分钟。
然后用槽棒涂布器(notch bar coater)将所得分散系涂在已干燥的Toray碳纸上形成约0.050mm的湿厚度。涂后的碳纸23℃干燥过夜去除IPA,接着380℃烘箱干燥10分钟制成厚度约0.025mm和基础重量(碳黑加TEFLONTM)约15g/m2的涂碳GDL。
在涂碳GDL上手工刷以前述催化剂分散系达到每平方厘米0.5毫克催化剂金属,然后干燥形成涂有催化剂的气体扩散层(CCGDL)。
燃料电池性能评价将MEA固定在一个测试装置(Fuel Cell Technologies,Inc.,Albuquerque,NM)内。该测试装置包括可变电负荷和分别控制气体流量、压力和湿度的阳极和阴极气体控制系统。电负荷和气体流量由计算机控制。在以下测试参数下获得燃料电池极化曲线电极面积50cm2;电池温度70℃,阳极气体压力0psig;阳极流量800标准cc/min;阴极气体压力0psig;阴极流量1800标准cc/min。如下为阴极和阳极增湿蒸汽喷射(喷射器温度为140℃),实施例1-5的阳极和阴极在100%RH下平衡过夜,实施例6-7的阳极在120%RH下平衡,阴极在100%RH下平衡。
每个燃料电池在70℃,在氢气流和空气流存在下工作。工作12小时后进行测试。
实施例1用槽棒涂布器将20wt%的NAFION 1000醇溶液涂在6.8mil的PVC-打底的聚对苯二甲酸乙二酯(PET)基材上制备成基础离聚物薄膜。此基础薄膜的干燥厚度为1.0mil。用Gardner刀在该基础薄膜上浇注一层含有10wt%离聚物即四氟乙烯与CF2=CF-O-(CF2)2-SO2F(当量重量=800g/mol酸)所成共聚物的水溶液(湿厚度为4mil)。干燥后得到总干燥厚度(NAFION加离聚物)为1.2mil的两层质子交换膜。注意不要将溶液浇注到基础膜边界之外,以免在基础膜边界造成分层和皱缩。
将所得质子交换膜夹在两层前述CCGDL之间制成MEA,其中,催化剂涂层朝向薄膜。两面各放一个涂有TEFLONTM的玻璃纤维垫圈。因为CCGDL的表面面积小于质子交换膜,正好嵌入垫圈的开孔内。垫圈的高度为CCGDL高度的70%,这样,在压合整个组件时,CCGDL压缩30%。在两面各放一张50μm厚、15cm×15cm的聚酰亚胺厚片。然后用Carver压机(Fred Carver Co.,Wabash,IN)以30kg/cm2的压力和130℃温度压合10分钟,形成成品MEA。然后揭去聚酰亚胺片,留下5层的MEA。
如前文燃料电池性能评价方法所述对4个增湿后的MEA进行了测试。图1显示了本实施例所制MEA的电势动态扫描(PDS)极化图。图中显示了质子交换膜相对于阳极(H2电极)和阴极(空气电极)的取向。将MEA在0.6-0.8V之间的性能与质子交换膜的性能相关联。总的说来,在此电压区间内电流密度(A/cm2)越大越好。
图1表明,所制MEA在0.6-0.8V区间内具有高电流密度。
实施例2如实施例1所述,用NAFION 1000制备干燥厚度为0.7mil的基础离聚物膜。用Gardner刀在该基础薄膜上浇注第二层即含有10wt%离聚物即四氟乙烯与CF2=CF-O-(CF2)2-SO2F(当量重量=800g/mol酸)所成共聚物的水溶液(湿厚度=2mil)。然后在这第一层上再涂一层此离聚物水溶液作为第三层(湿厚度=2mil),由此制成干燥厚度为1.0mil的三层质子交换膜。
如实施例1所述制备4个两表面都分散有催化剂的MEA,并按照前文燃料电池性能评价方法所述进行测试。图2显示本实施例所制MEA的PDS极化图。图中显示了质子交换膜相对于阳极(H2电极)和阴极(空气电极)的取向。图2表明,所制MEA在0.6-0.8V区间内具有高电流密度。
实施例3将20wt%的NAFION 1000醇溶液手工涂布在粘合于玻璃板上的0.5mil厚的多孔聚四氟乙烯薄膜(Tetratex 06258-4,购自Tetratec,Feasterville,PA)上,制成基础离聚物膜。由Tetratex和NAFION构成的该基础膜湿厚度为2mil。
将20wt%的NAFION 1000醇溶液与A130(表面积为130m2/g的AEROSIL火成二氧化硅,购自Degussa,Ridgefield Park,NJ)的10%乙醇分散系混合,在振荡仪上振荡过夜。然后用Gardner刀在基础膜上浇注一层NAFION 1000/A130混合物,制成总干燥厚度为0.7mil的质子交换膜。
如实施例1所述制备两个两面都分散有催化剂的MEA,并按照前文燃料电池性能评价方法所述进行测试。图3显示本实施例所制MEA的PDS极化图。图中显示了质子交换膜相对于阳极(H2电极)和阴极(空气电极)的取向。“1X/0.5X”表示阳极和阴极的增湿量。图3表明,所制MEA在0.6-0.8V区间内具有高电流密度。
实施例4如实施例1所述制备湿厚度为10mil的基础离聚物膜,所不同的是该膜手工涂在玻璃板上。如实施例3所述制备NAFION 1000/A130混合物,用Gardner刀在基础膜上浇注成湿厚度2mil的一层,由此制成干燥厚度1.1mil的3层质子交换膜。
如实施例1所述制备4个两面都分散有催化剂的MEA,并按照前文燃料电池性能评价方法所述进行测试。图4显示本实施例所制MEA的PDS极化图。图中显示了质子交换膜相对于阳极(H2电极)和阴极(空气电极)的取向。图4表明,所制MEA在0.6-0.8V区间内具有高电流密度。
实施例5用50∶50的甲醇/乙醇混合物,反复蒸发将20%的NAFION 1000醇溶液中的残存水分去除,直至溶液变得十分粘稠。在与15%的FLUOREL FC 2145氟弹性体树脂(Dyneon,Oakdale,MN)甲醇溶液混合时重复以上过程,直至混合物稳定。
如实施例4所述采用手工涂布制备湿厚度为15mil的基础离聚物膜,并按照前文燃料电池性能评价方法所述进行测试。图5显示本实施例所制MEA的PDS极化图。图中显示了质子交换膜相对于阳极(H2电极)和阴极(空气电极)的取向。
图5表明,所制MEA在0.6-0.8V区间内具有高电流密度。
实施例6以每分钟3英尺的速度将20%的NAFION 1000醇溶液浇注在乙烯基打底的7mil厚PET衬料上,通过一个8英尺的125℃烘箱,得到粘合于衬料上的1mil厚NAFION膜。如前所述制备含Pt和Ru的催化剂分散系,用#48Meyer棒浇注在NAFION膜上。涂层经空气干燥后形成平整的黑色连续薄膜,仍粘合在乙烯基打底的衬料上。接着,将层合件从乙烯基打底的衬料上揭下。如前所述制备含Pt的第二催化剂分散系,以贴花转移法贴在NAFION膜的另一面,所述贴花转移法包括用#28Meyer棒将催化剂浇注在Mao等的US6238534所述125线/英寸的微构造衬料上。然后用6吨的力、270℃、3分钟将该具有涂层的衬料压合到NAFION外露的一面上。接着,以270℃、1.5吨力、用10分钟将前文制备的GDL热粘合到所得三层构件的两面。
按照前文燃料电池性能评价方法所述测试所得的5层MEA。图6显示本实施例所制MEA的PDS极化图。图6表明,所制MEA在0.6-0.8V区间内具有高电流密度。
实施例7如实施例6所述制备MEA并测试,所不同的是按照实施例1所述将阴极催化剂涂料手工刷涂到质子交换膜上。图7显示本实施例所制MEA的PDS极化图。
图7表明,所制MEA在0.6-0.8V区间内具有高电流密度。
以上描述了本发明的几种实施方式。但是,还有许多符合本发明构思和属于本发明范围内的修改形式。所以,这些其他实施方式也在权利要求范围之内。
权利要求
1.制备多层质子交换膜的方法,包括(a)提供包含粘合于基材上的含第一离聚物层的制品,所述含第一离聚物层具有可供涂覆的表面;(b)将分散系或溶液施于所述含第一离聚物层的所述表面;(c)使分散系或溶液干燥以形成粘合于基材上的多层质子交换膜;(d)将所述多层质子交换膜从所述基材上取下。
2.如权利要求1所述的方法,所述第一离聚物包含带有侧链磺酸基团的氟聚合物。
3.如权利要求1所述的方法,所述分散系或溶液包含第二离聚物。
4.如权利要求3所述的方法,所述第二离聚物包含带有侧链磺酸基团的氟聚合物。
5.如权利要求1或3所述的方法,所述分散系或溶液包含填料。
6.如权利要求5所述的方法,所述填料包含二氧化硅填料。
7.如权利要求5所述的方法,所述填料包含氟聚合物填料。
8.如权利要求1所述的方法,所述分散系或溶液包含交联或可交联聚合物。
9.如权利要求1所述的方法,还包括在所述质子交换膜中包含多孔性材料。
10.如权利要求1所述的方法,所述基材选自聚酯,聚酰亚胺,聚烯烃,和它们的混合物。
11.如权利要求1所述的方法,所述基材包含聚四氟乙烯。
12.如权利要求1所述的方法,所述基材包含玻璃。
13.如权利要求1所述的方法,所述基材基本上无孔。
14.一种多层质子交换膜,由权利要求1所述方法制成。
15.一种制备多层制品的方法,包括(a)提供粘合于基材上的质子交换膜,所述质子交换膜具有可供涂覆的表面;(b)将包含催化剂的分散系或溶液施于所述质子交换膜的所述表面;(c)干燥所述分散系或溶液,形成粘合于所述基材上的多层制品,该制品包含所述质子交换膜和催化剂层;(d)将所述制品从所述基材上取下。
16.如权利要求15所述的方法,还包括将所述制品与第二催化剂层组合成薄膜电极组件。
17.如权利要求15所述的方法,所述质子交换膜是多层膜。
18.如权利要求15所述的方法,所述基材选自聚酯,聚酰亚胺,聚烯烃,和它们的混合物。
19.如权利要求15所述的方法,所述基材包含聚四氟乙烯。
20.如权利要求15所述的方法,所述基材包含玻璃。
21.如权利要求15所述的方法,所述基材基本上无孔。
22.一种多层制品,由权利要求15所述方法制成。
23.一种制品,包含(a)具有含离聚物层的多层质子交换膜和(b)与所诉层粘合的基材。
24.如权利要求23所述的制品,所述基材基本无孔。
25.如权利要求23所述的制品,所述离聚物包含带有侧链磺酸基团的氟聚合物。
26.如权利要求23所述的制品,所述基材选自聚酯,聚酰亚胺,聚烯烃,和它们的混合物。
27.如权利要求23所述的制品,所述基材包含聚四氟乙烯。
28.如权利要求23所述的制品,所述基材包含玻璃。
29.一种多层质子交换膜,至少其中一层含有离聚物,所述质子交换膜的总干燥厚度小于2mil(50μm)。
30.如权利要求29所述的质子交换膜,其每一层的干燥厚度都不超过1.5mil(37.5μm)。
31.如权利要求29所述的质子交换膜,其每一层的干燥厚度都不超过1mil(25μm)。
32.如权利要求29所述的质子交换膜,所述离聚物包含带有侧链磺酸基团的氟聚合物。
33.如权利要求29所述的质子交换膜,至少包含两层。
34.如权利要求29所述的质子交换膜,至少包含三层。
35.如权利要求29所述的质子交换膜,至少其中一层含有填料。
36.如权利要求35所述的质子交换膜,所述填料包含二氧化硅填料。
37.如权利要求35所述的质子交换膜,所述填料包含氟聚合物填料。
38.如权利要求29所述的质子交换膜,还包含多孔材料。
39.一种薄膜电极组件,包含(a)多层质子交换膜,至少其中一层含有离聚物;该质子交换膜的总干燥厚度小于2mil即50μm,且具有相背的两个表面;(b)位于所述质子交换膜两表面上的催化剂层。
全文摘要
一种制备多层质子交换膜(PEM)的方法和包含该PEM的薄膜电极组件(MEA)。所述方法包括(a)提供具有粘合于基材上的离聚物膜的制品,所述离聚物膜具有可供涂覆的表面;(b)将分散系或溶液(例如离聚物的分散系或溶液)施于离聚物膜表面;(c)干燥分散系或溶液,形成粘合于基材上的多层PEM;(d)将多层PEM从基材上取下。本发明还提供多层PEM和包含该PEM的MEA。
文档编号H01M8/10GK1675292SQ03818929
公开日2005年9月28日 申请日期2003年6月26日 优先权日2002年8月21日
发明者S·J·哈姆罗克, P·E·塞兰, J·L·刘温, S·W·李 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1