凸块形成方法、半导体器件及其制造方法、基板处理装置和半导体制造装置的制作方法

文档序号:7121098阅读:218来源:国知局
专利名称:凸块形成方法、半导体器件及其制造方法、基板处理装置和半导体制造装置的制作方法
技术领域
本发明涉及在基板的表面上形成用于与外部进行电连接的微细凸块的方法、半导体器件及其制造方法、基板处理装置和半导体制造装置。
背景技术
现有技术中,在半导体基板的表面上用于进行与外部电连接的微细金属端子使用了金(Au)凸块等。该Au凸块用电镀形成,表面的粗糙度大。为了平整化这样的金属端子,使用化学机械抛光(Chemical Mechanical PolishingCMP)法。该方法是预先形成比较平整的成为被加工面的金属和树脂,接触平整的抛光焊盘后,使用料浆(化学抛光材料)化学性地机械性地精致地平整加工表面。预先设置的硬树脂或金属面成为制止层,从而结束CMP。CMP法是不依存于TTV(Total Thickness Variation)的方法,该TTV由半导体基板的厚度偏差或半导体基板的最大厚度与最小厚度的差来定义。
此外,要接合现有的表面粗糙度大的Au凸块等,就需要利用载荷、热或超声波等对凸块赋予负荷直到其粗糙度消失的安装方法。
除了CMP以外,还提出了使用例如切削工具的平整化方法(例如,参照日本专利特开平7-326614号公报、特开平8-11049号公报、特开平9-82616号公报、特开2000-173954号公报)。但是,都是以LSI上的部分区域的SOG膜的平整化为对象,是与CMP同样地以被切削面为基准进行切削的方法,不依存于半导体基板的TTV。此外,也有切削凸块而使表面露出的方法(参照日本专利特开平10-345201号公报),但这是以形成在LSI上的凸块部分的平整化为对象,以被切削面为基准进行切削的方法,不依存于半导体基板的TTV。
如上所述,微细的连接使用了Au凸块,但由于凸块表面的粗糙度大,因此,接合这些凸块彼此之间很困难。此外,在使用CMP同时平整化Au等金属和树脂的情况下,由于金属和树脂的抛光速度的差异而引起出现被称作凹陷处(dishing)的坑洼。由于该凹进成形,为了得到准确的凸块接合,就需要对凸块赋予载荷、热或超声波等的大的负荷。

发明内容
本发明鉴于上述课题而成,其目的在于提供一种能取代CMP,廉价且高速地对形成在基板上的微细的凸块的表面进行平整化,而不产生凹陷处等的不良情况,能够容易且准确地进行凸块彼此之间的连接的凸块形成方法和高可靠性的半导体器件、及其制造方法及半导体制造装置。
本发明的凸块形成方法,在基板的表面上形成用于进行与外部电连接的凸块,其特征在于包括在上述基板的表面上,在多个上述凸块和上述凸块之间形成绝缘膜的工序;通过使用刀具的切削加工进行平整化处理,使得上述各凸块的表面和上述绝缘膜的表面连续且平整的工序;去除上述绝缘膜的工序。
本发明的半导体器件具有一对半导体基板,其分别在表面上形成用于与外部进行电连接的多个凸块而构成;在上述各半导体基板上连续且均一地平整化上述各凸块的表面;使上述各凸块的被平整化的上述表面彼此对向而连接,并一体化而构成上述各半导体基板。
本发明的半导体器件的制造方法包括在一对半导体基板的各表面上以填充到绝缘膜内的方式形成各凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述各凸块的表面和上述绝缘膜的表面连续且平整的工序;去除上述绝缘膜的工序;使上述各凸块的被平整化的上述表面彼此对向并连接,将上述各半导体基板一体化的工序。
本发明的凸块形成方法,在基板的表面上形成用于与外部进行电连接的凸块,包括在上述基板的表面上形成多个上述凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个凸块的表面连续且平整的工序。
本发明的半导体器件的制造方法包括在一对半导体基板的各表而上分别形成多个上述凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个凸块的表面连续且平整的工序;对上述多个凸块的表面被平整化的上述一对半导体芯片,以上述各凸块彼此对向的方式,连接并一体化的工序。
本发明的半导体器件具有一对半导体芯片,其分别在表面上形成用于与外部进行电连接的多个凸块而构成;在上述各半导体芯片上连续且均一地平整化上述各凸块的表面;使上述各凸块的被平整化的上述表面彼此对向而连接,并一体化而构成上述各半导体芯片。
本发明的凸块形成方法,在半导体基板的表面上形成使用引线接合法的柱状凸块,该凸块用于与外部进行电连接,包括使用接合引线,在上述半导体基板的表面的电连接处形成多个突起部的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个突起部的上面连续且平整,形成上述柱状凸块的工序。
本发明的半导体器件,具有在表面上形成使用引线接合法的多个柱状凸块而构成的半导体芯片,该凸块用于与外部进行电连接;在上述半导体芯片上使上述各柱状凸块的上面连续均一地平整化。
本发明的半导体器件的制造方法包括在半导体基板的表面上形成多个凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个凸块的表面连续且平整的工序;从上述多个凸块的表面被平整化的上述半导体基板切出各半导体芯片的工序;连接上述半导体芯片的上述凸块和导线端子的一个端部的工序。
本发明的半导体器件的制造方法包括在半导体基板的表面的电连接处形成使用引线接合法的多个突起部的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个突起部的上面连续且平整,形成柱状凸块的工序;从形成了多个柱状凸块的上述半导体基板,切出各半导体芯片的工序;连接上述半导体芯片的上述柱状凸块和导线端子的一个端部的工序。
本发明的半导体器件,具有在表面上形成多个用于与外部进行电连接的凸块而构成的半导体芯片;在上述半导体芯片上使上述各凸块的表面连续均一地平整化;连接上述半导体芯片的上述凸块和导线端子的一个端部且使其一体化。
本发明的半导体器件,具有在表面上形成使用引线接合法的多个柱状凸块而构成的半导体芯片,该多个凸块用于与外部进行电连接;在上述半导体芯片上使上述各柱状凸块的上面连续均一地平整化;连接上述半导体芯片的上述柱状凸块和导线端子的一个端部且使其一体化。
本发明的半导体器件的制造方法包括向惰性气氛内导入表面上形成多个电极的半导体芯片,通过使用刀具的切削加工进行平整化处理,使得上述多个电极的表面连续且平整的工序;在上述惰性气氛内清洁地保持被平整化的上述多个电极的表面的状态下,连接上述半导体芯片的上述多个电极和电路基板且进行一体化的工序。
本发明的半导体制造装置,包括具有刀具的切削加工装置;使导入的一对基体接合的接合装置;将上述切削加工装置和上述接合装置的环境保持在惰性气氛状态中的惰性气氛装置,其中上述切削加工装置具有如下功能,即在上述惰性气氛内,对于表面上形成多个电极的上述一对基体的至少一方,通过使用上述刀具的切削加工进行平整化处理,使得上述多个电极的表面连续且平整;上述接合装置具有如下功能,即在上述惰性气氛内清洁地保持被平整化的上述多个电极的表面的状态下,用上述多个电极连接上述一对基体并进行一体化。
本发明的基板处理装置,其在基板的表面上形成用于与外部进行电连接的凸块时使用,包括基板支承台,该基板支承台具有平整的支承面,使基板用其一个面吸附在上述支承面上,将上述一个面强制地作为半整的基准面来进行支承固定;切削加工上述基板的其他面的刀具,其中在上述基板支承台上支承固定基板,该基板在表面上,在多个上述凸块和在上述凸块之间形成绝缘膜而构成,通过使用上述刀具的切削加工进行平整化处理,使得上述各凸块的表面和上述绝缘膜的表面连续且平整。


图1A~图1D是按照工序顺序示出根据第一实施方式的凸块形成方法的概略剖视图。
图2A、图2B是按照工序顺序示出根据第一实施方式的凸块形成方法的概略剖视图。
图3A、图3B是示出利用切削加工进行平整化的结果的图。
图4A、图4B是示出利用切削加工进行平整化的具体例的概略剖视图。
图5是示出利用切削加工进行平整化的具体例的概略剖视图。
图6是示出切削加工装置的结构的框图。
图7是切削加工装置的概略结构图。
图8是切削加工工序的流程图。
图9A~图9C是按照工序顺序示出根据第二实施方式的半导体器件的制造方法的概略剖视图。
图10A~图10F是按照工序顺序示出根据第二实施方式的凸块形成方法的概略剖视图。
图11A、图11B是按照工序顺序示出根据第三实施方式的半导体器件的制造方法的概略剖视图。
图12A~图12C是按照工序顺序示出根据第三实施方式变形例1的半导体器件的制造方法的概略剖视图。
图13A~图13C是按照工序顺序示出根据第三实施方式变形例2的半导体器件的制造方法的概略剖视图。
图14A~图14F是按照工序顺序示出根据第四实施方式的半导体器件的制造方法的概略剖视图。
图15A~图15D是示出根据第四实施方式的切削终点检测方法的图。
图16是示出第五实施方式的半导体器件的制造方法的概略剖视图。
图17是示出第五实施方式的半导体器件的制造方法的概略剖视图。
图18是示出根据第六实施方式的半导体制造装置的模式图。
具体实施例方式
—本发明的基本要点—首先,关于本发明的基本要点进行说明。
作为取代CMP法,廉价且高速地一齐平整化形成在基板上的多个微细凸块的表面的方法,本发明人想到了适用使用刀具的切削加工的方法。根据该切削加工,在半导体基板上形成有填充在绝缘膜内的凸块的情况中,不象CMP法那样依存于金属与绝缘物的抛光速度等,能够在基板上一齐地连续切削金属和绝缘物,不产生凹陷处等,在整体上使两者均一地平整化。铜、铝、镍等金属和聚酰亚胺等绝缘材料是可容易用刀具切削的材料。在本发明中,作为凸块的金属材料和绝缘材料,最好前者是延性金属,后者是具有例如200Gpa或其以上的刚性模量的树脂等。
该情况下,为了将上述的切削加工利用于凸块表面的平整化,最好按基板的背面(里面)基准进行切削。一般地,硅基板的TTV在1μm~5μm的范围内,在LSI的工艺中,5μm左右的TTV不会对光刻蚀产生影响,通常在考虑对象之外。但是,在切削加工的情况中,对TTV的值有很大影响。切削的平整精度不在TTV的值或其以下。从而,在将切削加工使用于半导体基板的平整化的情况下,首先必须要将基板的TTV控制在目标的切削精度以下。
本发明人鉴于上述事情,在将上述的切削加工利用于凸块表面的平整化时,作为准确地进行该平整化的具体作法,想到了以基板表面为基准磨削其背面,很小地抑制半导体基板的TTV到目的切削精度以下。该情况下,比较理想的是TTV很小且使各个半导体基板的厚度偏差抑制到切削精度以下。但是,若能使TTV很小,就能够在切削时检出各个半导体基板的厚度。可以通过检出该各个半导体基板的厚度来控制切削量。
作为凸块,除了利用电镀法形成之外,有利用引线接合法形成的凸块(以下称作柱状凸块),即,在电极焊盘上压焊将接合引线尖端熔融而形成的球状块,并撕掉该引线,从而形成凸块。
在形成柱状凸块的情况下,通过撕掉接合引线而形成销状的突起,因此必须要平整化这样的突起。在本发明中,将使用上述的切削加工的平整化法适用于柱状凸块。该情况下,撕掉引线(按规格裁切)时各突起部的高度不同,就要与最低的凸块一致地进行平整化,而由于柱状凸块的高度越高越能缓和对设备的应力,延长设备寿命,因此需要规定各突起部的高度。在本发明中,规定按规格裁切时的突起部距电极焊盘的高度大于等于引线直径的2倍,作为切削加工的终点,设为全部的柱状凸块的切削面的直径大于等于引线直径的时刻。这样,与不规定引线直径的情况相比,能够使切削平整化后的柱状凸块的高度设在1.5倍或其以上,能缓和对半导体元件的应力,能延长设备寿命。
然后,如上所述地控制TTV,利用切削加工对微细凸块的表面进行平整化之后,从半导体基板(晶片)切出成为半导体部件的各个半导体芯片。这样之后,将具有平整化后的表面的半导体基板与半导体芯片或半导体芯片彼此,使其凸块对向而电连接接合。这时,由于对向的凸块的上面一起被高精度地平整化,因此,不需要现有技术那样的高温高压等而容易接合。
在此,本发明人进一步摸索出了用于准确地实现对向的凸块彼此接合的具体条件和状态。鉴于在上述接合中也将凸块保持为刚刚结束切削加工后的平整化状态较理想,为了尽可能保持刚刚结束切削加工后的平整化状态,想到了在净化气氛具体是惰性气氛中进行平整化工序和接合工序。通过在接合工序之前附加使用了Ar等离子体等的净化工序,就能够实现这点,但存在导致工序数量增加的缺点。在本发明中,能够不导致工序数量的增加而比较容易地维持极接近于理想的平整化状态,能实现凸块的准确的接合。
作为本发明的其他方式,本发明人以该半导体芯片的状态为着眼点。即,在晶片等级中,如上所述地该半导体基板的TTV成为问题,但关于半导体芯片等的单片化,由于其尺寸小,故芯片区域内的TTV在切削时仅受几乎可忽视的影响。
因此,本发明人想到了首先从半导体基板切出各半导体芯片之后,在该半导体芯片的状态下,通过使用上述凸块的切削加工对微细的凸块的表面进行平整化。然后,使凸块对向后电连接接合半导体芯片彼此之间。这样,能够省略控制TTV的工序,同时,能容易地进行凸块的接合。
此外,在本发明中,将上述的切削加工技术也适用于由所谓的TAB接合法的半导体器件中。
通常,TAB连接在利用电镀凸块法的情况下,需要在镀金凸块上对位直接实施金的表面处理的长方形的铜箔导线,并加热到300℃或其以上,每一个凸块加压30g或其以上进行压接。另一方面,在利用柱状凸块的情况下,需要使预先形成了柱状凸块的半导体芯片与玻璃板或金属板接触并加热,平整地加工柱状凸块的前端后使用。
电镀终端面上有凹凸和表面上特有的金属和有机污染。此外,芯片内的电镀高度的偏差也有几微米的程度。在这些电镀终端面上进行TAB接合的情况下,需要高温和高载荷。接合时若为高温,就在微细间距的导线的连接中,由于铜与硅的热膨胀系数的差变大,故容易发生位置偏移。另一方面,在柱状凸块中,由于高度中偏差大,形状也不一定,因此更需要高温和高载荷,同样地,微细间距的连接困难。
为了使TAB接合时的位置偏移小,在需要降低温度的同时,需要同时使铜的导线端子与凸块接触。在本发明中,通过使用由刀具的切削技术,对电镀凸块和柱状凸块的表面进行平整化并力求实现净化,这样,就能降低TAB接合时的温度和载荷,无位置偏移地连接微细间距的导线。
—本发明的具体实施方式

以下,基于上述的基本要点,使用附图,关于本发明的具体实施方式
详细地进行说明。
在此,作为基板,例示硅半导体基板,关于在该半导体基板上形成为了与外部进行电气性连接而设置的凸块的方法和使用该方法的半导体器件及其制造方法。
(凸块形成方法)图1A~图1D、图2A、图2B是按照工序顺序示出根据本实施方式的凸块形成方法的概略剖视图。
首先,准备硅半导体基板1,在基板表面1a的元件形成部位上形成所希望的LSI半导体元件(未图示)。以下,关于这样地在元件形成部位上形成LSI半导体元件等的半导体基板1说明各工序。
如图1A所示,通常硅半导体基板如图所示处于厚度不一样且伴随有起伏的状态。因此,作为用于对半导体基板1的表面1a施行后述的使用刀具的切削加工的前工序,将其背面1b平整化。
具体地说,准备支承面平整的基板支承台(未图示),利用吸附例如真空吸附,使表面1a吸附在该支承面上,并将半导体基板1固定在基板支承台上。这时,表面1a为了向支承面吸附而已被强制平整,这样,表面1a就成为背面1b的平整化的基准面。在该状态下,机械加工背面1b,在此进行机械磨削,磨削去除背面1b的凸部1c,进行平整化处理。该情况下,最好利用距表面1a的距离来控制背面1b的切削量。这样,如图1B所示,半导体基板1的厚度就一定,具体地说,TTV(基板的最大厚度与最小厚度的差)就成为规定值或其以下,具体地说控制成TTV在1μm或其以下。
接着,如图1C所示,从基板支承台取下半导体基板1,在半导体基板1的表面1a上涂覆感光树脂,例如光刻胶,利用光刻蚀加工该光刻胶,并形成具有规定的凸块图形12a的抗蚀剂掩膜12。
接着,使用抗蚀剂掩膜12作为掩膜,利用例如蒸镀法形成金属膜例如铜膜,形成了电镀电极(未图示)之后,如图1D所示,以电镀电极作为种子(seed),利用电镀法堆积金(Au),使其填充抗蚀剂掩膜12的各凸块图形12a,形成Au突起2。再有,除了Au以外,也可以使用Cu、Ag、Ni、Sn或它们的合金等来形成突起。
接着,对半导体基板1的表面1a施行使用刀具的切削加工,进行平整化。
具体地说,如图2A所示,利用例如真空吸附,使背面1b吸附在基板支承台11的支承面11a上,将半导体基板1固定在基板支承台11上。这时,由于对背面1b的图1B的平整化处理,半导体基板1的厚度成为一定的状态,另外,背面1b由于向支承面11a吸附而被强制成为没有起伏等的状态,这样,背面1b就成为表面1a的平整化的基准面。在该状态下,对表面1a中的各Au突起2和光刻胶12的表层进行机械加工,在此使用由金刚石等构成的刀具10进行切削加工,进行平整化处理,使得各Au突起2和抗蚀剂掩膜12的表面连续且平整。这样,就使Au突起2的上面平整化成镜面状。
在图3A、图3B的显微镜照相图和模式图中示出了利用该切削加工的平整化的结果。
在切削加工前,如图3A所示,Au突起的表面是凹凸状,与此相对,在切削加工后,如图3B所示,可知Au突起的表面被高精度地平整化。
接着,如图2B所示,利用灰化处理等去除抗蚀剂掩膜12。这时,在半导体基板1的表面1a上形成凸块3,该凸块3高度均一,且切削加工各Au突起2后上面3a被同样地平整化。使用该半导体基板1,例如将其芯片化后,利用凸块3与其他半导体基板4电连接。
再有,在本实施方式中,关于一片半导体基板进行了说明,但适合于对构成批量的多个半导体基板执行本实施方式的各工序,使各半导体基板的厚度均一化且相同。
此外,在图2A的平整化工序中,如图4A、图4B所示,以背面1b为基准进行半导体基板1的平行取出,同时,检出表面1a的位置,从检出的表面1a算出切削量进行控制。
具体地说,如图4A所示,在检出表面1a的位置时,向半导体基板1的表面1a的周边部位的多处、在此是例如图4B所示的3处地方A、B、C中的抗蚀剂掩膜12照射激光13,使其加热飞散,使表面1a的一部分露出。
此外,该情况下,也可以如图5所示,在检出表面1a的位置时,将半导体基板1吸附固定在形成开口11b的基板支承台11上,从开口11b向背面1b照射红外激光,例如利用红外激光测定器14测定来自表面1a的反射光。
(切削加工装置的结构)在此说明用于执行上述切削加工工序的具体的装置结构。
图6是示出切削加工装置的结构的框图,图7是同样的概略结构图。该切削加工装置的结构具有存放半导体基板的存放部101、用于向各处理部搬运半导体基板1的手柄部102、进行半导体基板1的定位的传感部103、夹紧切削时的半导体基板1的卡盘平台部104、进行半导体基板1的平整化切削的切削部105、进行切削后的清洗的清洗部106、然后控制它们的控制部107而构成。卡盘平台部104如上所述地构成了放置固定半导体基板1的基板支承台(卡盘平台)11,切削部105具有由金刚石等构成的切削工具即硬质的刀具10。
下面,使用图7和图8,关于切削加工工序的流程进行说明。
首先,手柄部102的搬运手从存放半导体基板1的存放部101的存放盒111取出半导体基板1。在存放部101中有升降机构,升降到搬运手取出半导体基板1的高度。接着,搬运手真空吸附半导体基板,向传感部103搬运。搬运手为Θ3轴和Z轴的关节式机械手,能够容易地向各处理部搬运。机械手的机构不限于此,也可以是XY轴直行型。
在传感部103中,利用旋转平台112使半导体基板1旋转360°,用CCD照像机111摄像该半导体基板1的外周,在控制部107的运算部中处理其结果,算出半导体基板1的中心位置。
接着,搬运手以该结果为基础,修正位置后向卡盘平台部104搬运半导体基板1,卡盘平台11利用真空将其固定。该卡盘平台11就成为加工的基准面。从而,为了保证固定时和加工时的平面精度,卡盘面最好是使用多孔质的材料并整个面夹紧半导体基板1的结构。材质使用金属系、陶瓷系、树脂系等。与被夹紧的半导体基板1对向而配置投光部114即光传感器部,与受光部115即照像机部共同测定和运算半导体基板1的尺寸,将其结果反馈给切削部105的X轴驱动部,指令用于切削的移动量。
在切削面是布线形成面的情况下,具体地说,如图4所示,最好照射激光,使抗蚀剂掩膜加热飞散,使其露出表面。然后,如图5所示,使用利用红外激光的透过型传感器来计测位置。然后,以在此运算的结果为基础,搭载了实际进行切削的刀具10的平台向X方向移动,开始切削。在此使用的刀具10由金刚石等构成。这样地完成直到设定尺寸的切削。
接着,搬运手从卡盘平台11取出半导体基板1,向清洗部搬运。在清洗部105中,真空固定半导体基板1并使其旋转,同时利用清洗水冲洗加工后的表面残留异物。之后,边吹气边使其高速旋转,吹掉清洗水使其干燥。干燥完了后,搬运手再次取出半导体基板1,最后存放在存放部101的存放盒111中。
以上的各工序首先以在凸块和凸块之间形成有绝缘膜的面为基准对背面进行切削,之后,以背面为基准,进行所谓的切削各凸块的表面和绝缘膜的表面的处理,完成平整化处理。
(半导体器件及其制造方法)下面,关于使用执行上述凸块形成方法的半导体制造装置来制造半导体基板的方法进行说明。再有,在此,与该制造方法一起记述半导体器件的结构。
图9A~图9C是按照工序顺序示出根据本实施方式的半导体器件的制造方法的概略俯视图。
首先,经过图1和图2中说明的各工序,如图9A所示,从半导体基板1切出各半导体芯片21,该半导体基板1搭载了LSI元件等,并具有由使用刀具的切削加工使上面3a平整化的凸块3。
接着,如图9B所示,准备半导体基板22,该半导体基板22具有由使用刀具的切削加工使上表面平整化的凸块3,在该半导体基板22上,用凸块3的被平整化的上面3a彼此将各半导体芯片21电连接。具体地说,使半导体基板22与半导体芯片21a配置成上面3a彼此对向,在室温~350℃中,在此是170℃左右下进行压焊连接。由于各上面3a都被高精度地平整化,因此,不象现有技术那样地需要高温高压等,而能够容易地连接半导体基板22和半导体芯片21。
然后,如图9C所示,从连接半导体芯片21的半导体基板22切出各个半导体芯片23,经过引线接合法(使用了引线25的连接)等的工序,在基板24上搭载半导体芯片23,从而完成半导体器件。
如以上说明地,根据本实施方式,可以取代CMP,廉价且高速地使形成在半导体基板1上的微细的凸块3的表面平整化,且不产生凹陷处等的不良情况,能容易且准确地进行凸块3的连接。这样,就能进行凸块3彼此的不需要高温高压等条件的连接,能够成品率良好地制造可靠性高的半导体器件。

下面,关于第二实施方式进行说明。在第一实施方式中,作为凸块材料,例示了Au,但在本实施方式中例示使用镍(Ni)的情况。
图10A~图10F是按照工序顺序示出根据本实施方式的凸块形成方法的概略剖视图。
首先,经过与第一实施方式的图1A、B相同的工序,背面磨削半导体基板1,控制TTL在规定值或其以下,具体的是1μm或其以下。
使用该半导体基板1,如图10A所示,在半导体基板1的表面构图形成了由铝系金属构成的电极31之后,利用无电解电镀法,在该电极31上形成膜厚5μm~10μm左右的镍磷电镀膜32。
利用通用的无电解电镀法,使用镍-磷、镍-磷-硼、镍-硼等形成镍磷电镀膜32。例如,用次磷酸液(次磷酸钠或次磷酸钾)形成镍-磷合金,用使用了氢化硼钠液或二甲基氨甲硼烷(dimethyl amino borane)的弱酸性液或中性液形成镍-硼合金,用中性液形成镍-磷-硼合金。
在此,在镍磷系无电解电镀中,即使选择上述的任何合金系,都在镍磷电镀膜32的表层形成机械性脆弱层即磷浓缩层33。在焊锡凸块形成后,由于该磷浓缩层的原因,电镀与焊锡凸块的界面强度下降。该磷浓缩层的厚度是20nm~40nm左右,电镀液中的磷含有率越高其厚度越厚。
此外,该磷浓缩层的生成不取决于底层的材料(玻璃基板、铁基板、铝基板),也不取决于电镀的厚度。此外,即使将如专利文献6中记载的镍系无电解电镀进行焊锡熔点或其以上的退火处理,表层上也必定生成磷浓缩层。若不去除磷浓缩层,就难以形成高可靠性的电镀被膜和焊锡凸块。
关于这些问题,有这样一种方法,通过在焊锡材料中添加铜来形成铜-镍-锡系的化合物层,利用它的屏障效果来抑制磷浓缩层的形成。但是,由于Au电镀厚度在500nm或其以上时,存在形成磷浓缩层等,Au电镀厚度的制约和焊锡材料的选择性窄的问题。
因此在本例中,在镍磷电镀膜32利用切削加工进行平整化时,同时去除该磷浓缩层33。
具体地说,首先如图10B所示,被覆液状保护层而作为保护膜34,使得覆盖基板表面,并作为后述的切削加工引起的物理冲击的缓和层。通过用旋转涂覆等涂覆成10μm~15μm左右的厚度后固化来形成保护膜34。
之后,与图2A同样,利用例如真空吸附,使背面吸附在基板支承台的支承面上,将半导体基板1固定在基板支承台上。这时,由于对背面1b的图1B的平整化处理,已成为了半导体基板1的厚度一定的状态,另外,背面1b由于向支承面11a吸附而被强制成没有起伏等的状态,这样,背面1b成为表面1a的平整化的基准面。在该状态下,如图10C所示,对表面1a中的各镍磷电镀膜32和保护膜34的表层进行机械加工,在此使用由金刚石等构成的刀具进行切削加工,在去除镍磷电镀膜32的磷浓缩层33的同时进行平整化处理,使得镍磷电镀膜32和保护膜34的表面连续且平整。切削量设定为能够准确地去除磷浓缩层33的1μm~2μm左右。
接着,根据需要,如图10D所示,利用无电解电镀法,在镍磷电镀膜32上形成镀金膜35。镀金膜35的厚度最好是30nm~50nm左右。
接着,如图10E所示,利用灰化处理等去除保护膜34。这时,就在半导体基板1的表面1a上形成了凸块36,该凸块36高度均一,且上面通过切削加工而同样地平整化,并形成镀金膜35而构成。
然后,根据需要,如图10F所示,在凸块36上形成焊锡凸块37。利用丝网印刷、焊锡球法、熔融等来形成该焊锡凸块37。作为焊锡的材质,最好使用不含铅的锡-银系、锡-锌系等的焊锡。
之后,利用全切割(full cut dicing)分割半导体基板1,并切出半导体芯片,与第一实施方式同样地完成半导体器件。
如以上说明地,根据本实施方式,可以取代CMP,廉价且高速地使形成在半导体基板1上的镍的凸块36的表面平整化,且不产生凹陷处等的不良情况,这样,就能进行凸块36彼此的不需要高温高压等条件的连接,能够成品率良好地制造可靠性高的半导体器件。并且,能够低成本地完全去除使凸块36与焊锡凸块37的接合部位上的降低可靠性的磷浓缩层34,因此,能在上面被平整化的凸块36上准确地形成焊锡凸块37。
下面,关于第三实施方式进行说明。在第一实施方式中,关于与半导体基板接合多个半导体芯片的情况进行了例示,但在本实施方式中公开了在半导体芯片的状态下执行上述的平整化处理,接合该半导体芯片彼此的情况。
图11A、图11B是按照工序顺序示出了根据本实施方式的半导体器件的制造方法的概略剖视图。
首先,如图11A所示,不需要进行第一实施方式的背面磨削,从半导体基板切出各个半导体芯片41,该半导体基板搭载了LSI元件等,并形成高度不同(高度仍有偏差)的多个凸块,在此为Au凸块42。
接着,机械加工半导体芯片41的表层,在此,与第一实施方式同样地,使用由金刚石等构成的刀具进行切削加工,进行平整化处理,使得各Au凸块42的表面连续且平整。这样,各Au凸块42的高度被均一化,同时上面被平整化成镜面状。
接着,如图11B所示,使一对半导体芯片41对向,利用Au凸块42的被平整化的上面彼此对两者进行电连接。具体地说,使一对半导体芯片41配置成上面彼此对向,在室温~350℃,在此是170℃左右下进行压焊连接。由于各上面都被高精度地平整化,因此,不象现有技术那样地需要高温高压等,而能够容易地连接一对半导体芯片41。
这样地,根据本实施方式,可以取代CMP,廉价且高速地使形成在半导体芯片41上的微细的Au凸块42的表面平整化,且不产生凹陷处的不良情况,能容易且准确地进行一对半导体芯片41中的Au凸块42的连接。这样,就能进行Au凸块42彼此的不需要高温高压等条件的连接,能够成品率良好地制造可靠性高的半导体器件。并且,由于在从半导体基板切出各个半导体芯片41后执行上述切削加工,因此,能够省略控制TTV的工序,有助于削减工序数量。
在此,关于本实施方式的变形例1进行说明。
图12A~图12C是按照工序顺序示出根据变形例1的半导体器件的制造方法的概略剖视图。
首先,如图12A所示,不进行第一实施方式的背面磨削,从半导体基板切出各个半导体芯片41,该半导体基板搭载了LSI元件等,且形成高度不同(高度仍有偏差)的多个凸块而构成,在此为Au凸块42。
接着,在半导体芯片41的表面上形成由绝缘材料构成的树脂层43,使得填充Au凸块42。再有,也可以在半导体基板的状态下形成树脂层43以填充Au凸块42之后,切出各个半导体芯片41。
接着,如图12B所示,对半导体芯片41的表层进行机械加工,在此,与第一实施方式同样地,使用由金刚石等构成的刀具进行切削加工,进行平整化处理,使得各Au凸块42的表面和树脂层43的表面连续且平整。这样,各Au凸块42的高度被均一化,同时,上面被平整化成镜面状。
接着,使一对半导体芯片41对向,用Au凸块42和树脂层43的被平整化的上面彼此将两者进行电连接。具体地说,使一对半导体芯片41配置成上表面彼此对向,在室温~350℃、在此是170℃左右下进行压焊连接。由于各上面都被高精度地平整化,因此,不象现有技术那样地需要高温高压等,而能够容易地连接一对半导体芯片41。另外,在使树脂膜43与一对半导体芯片41准确地接合的同时,也有助于作为保护电极42等的欠装(underfill)。
这样地,根据本变形例1,可以取代CMP,廉价且高速地使形成在半导体芯片41上的微细的Au凸块42的表面平整化,且不产生凹陷处等的不良情况,能容易且准确地进行一对半导体芯片41中的Au凸块42的连接。这样,能进行Au凸块42彼此的不需要高温高压等条件的连接,能够成品率良好地制造可靠性高的半导体器件。并且,由于在从半导体基板切出各个半导体芯片41后执行上述切削加工,因此,能够省略控制TTV的工序,有助于削减工序数量。
在此,关于本实施方式的变形例2进行说明。
图13A~图13C是按照工序顺序示出根据变形例2的半导体器件的制造方法的概略剖视图。
首先,如图13A所示,不需要进行第一实施方式的背面磨削,从半导体基板切出各个半导体芯片41,该半导体基板搭载了LSI元件等,且形成高度不同(高度仍有偏差)的多个凸块而构成,在此为Au凸块42。
接着,对半导体芯片41的表层进行机械加工,在此,与第一实施方式同样地,使用由金刚石等构成的刀具进行切削加工,进行平整化处理,使得各Au凸块42的表面连续且平整。这样,各Au凸块42的高度被均一化,同时,上面被平整化成镜面状。
接着,如图13B所示,两个为一组地将平整化处理后的半导体芯片41作为一对半导体芯片41,在一方的半导体芯片41的表面上形成树脂层44,该树脂层44在绝缘性的树脂中含有导电性微粒45,其厚度为完全填充Au凸块42。
接着,使一对半导体芯片41对向,用Au凸块42的被平整化的上面彼此将两者电连接。具体地说,使一对半导体芯片41配置成上面彼此对向,在室温~350℃,在此是170℃左右下进行压焊。在此,利用热压焊,使对向的Au凸块42彼此通过导电性微粒45接触,且电连接。由于各上面都被高精度地平整化,因此,不象现有技术那样地需要高温高压等,而能够容易地连接一对半导体芯片41。另外,在使树脂层44的树脂与一对半导体芯片41准确地贴紧和电连接的同时,也有助于作为保护电极42等的欠装(underfill)。
这样地,根据本变形例2,可以取代CMP,廉价且高速地使形成在半导体芯片41上的微细的Au凸块42的表面平整化,且不产生凹陷处等的不良情况,能容易且准确地进行一对半导体芯片41中的Au凸块42的连接。这样,能进行Au凸块42彼此的不需要高温高压等条件的连接,能够成品率良好地制造可靠性高的半导体器件。并且,由于在从半导体基板切出各个半导体芯片41后执行上述切削加工,因此,能够省略控制TTV的工序,有助于削减工序数量。
下面,关于第四实施方式进行说明。在第一实施方式中,关于在半导体基板上形成外部连接用的凸块的情况进行了例示,但在本实施方式中,关于形成使用了引线接合法的柱状凸块的情况进行公开。
图14A~图14F是按照工序顺序示出根据本实施方式的半导体器件的制造方法的概略剖视图。
首先,如图14A和图14B所示,与图1A同样地磨削半导体基板51的背面,该半导体基板51在元件形成部位上形成了LSI半导体元件和电极焊盘等,控制半导体基板51的厚度一定,具体地说控制TTV(基板的最大厚度与最小厚度的差)在1μm或其以下。
在此,在上述磨削工序中,也可以在磨削了半导体基板51的背面之后,利用溅射法,在半导体基板51上形成金属膜例如Al膜,通过将它构成图形,在成为电连接处的部位上形成电极焊盘52。
接着,如图14C所示,利用使用Au作为金属的引线接合法,在电极焊盘52上压焊了熔融例如20μm直径的Au接合引线的前端后形成的球状的块之后,撕掉(按规格裁切)该引线,在电极焊盘52上形成Au突起53。这时,规定各Au突起53距电极焊盘52的高度大于等于接合引线直径的2倍,在此为60μm左右。该情况下,实际在Au突起53的高度中有偏差,最好是50μm~60μm左右。
接着,如图14D所示,使用由金刚石等构成的刀具10进行切削加工,进行平整化处理,使得各Au突起53的上面连续且平整,而形成柱状凸块54。在此,设切削位置距电极焊盘52例如为50μm左右的高度。切削条件是,切削速度10m/s,每一次的进给是20μm左右,从最初的切削位置每次逼进2μm。这样,如图14E所示,使Au突起53的上面平整化成镜面状,形成柱状凸块54。
该切削加工的平整化方法与CMP相比,由于不需要料浆,切削工具的刀具在磨损后经过抛光能够反复使用,因此成本低廉。由于使夹紧在卡盘平台上的半导体基板高速旋转,使刀具在其上面按规定的速度移动,一次性地切削任意的进刀量,因此,每1片半导体基板用1~2分钟就可以完成,是一种生产率非常高的方法。在利用刀具的切削加工中,通过适当地设定切削条件,在使用了Au的接合引线的柱状凸块的突起等的突起的前端部中进行切削的情况中,都可以进行突起的没有倾斜或弯曲的平面切制。但是,若是30Hv或其以下的硬度,恐怕在切削时就产生突起的倾斜,因此,引线的硬度最好在30Hv或其以上。
在本实施方式中,作为切削加工的终点,设为全部的柱状凸块的切削面的直径大于等于引线直径的时刻。通常,柱状凸块在按规格裁切后的高度中偏差较大,在全部的柱状凸块中很难确认切削面的直径大于等于引线直径的点。作为切削方法,最好从刀具与最高的凸块接触的点每次逼进1~3μm,而露出全部的刀具的切削面,但每次用放大的照像机图像等进行确认就效率太低。
因此,在本实施方式中,如图15A所示,作为终点检出方法,采用如下方法,即使用具有激光发生器61和检出器62的检出装置,向切削加工后的柱状凸块54的上面发射激光束,用检出器62检出在该上面上反射的激光。
然后,如图15B所示,反复进行加工,直到检出的激光强度在全部的Au突起53上达到规定强度。最好将该检出装置设置在切削工具的前进方向的后方,与切削工具同步地前进。由于柱状凸块54的上面(切削面)大致成为镜面,因此,激光等进行全反射。在与切削工具同步的情况下,与切削工具的前进速度成比例地产生延迟,因此,严格来讲并不能说检出全部的反射光,但由于切削速度快到十几m/s,故可以看作大致可检出。
在本实施方式中,利用从刀具的后部开始与刀具的前进同步移动的激光发生器61和检出器62,一边测定从平整化后的Au突起53的上面反射的激光强度,一边逼进,例如在46μm的高度上检测到全部的Au突起53的上面露出,然后就结束切削。
在此,如图15C所示,在切削加工不充分的情况、或切削面的直径小于等于引线直径的情况下,碰到切削面以外的地方上的激光进行漫反射,而不会被检出器检出。因此,如图15D所示,检出的激光强度比切削到了与接合引线同径的面上的强度弱。在一处中确认到有这样的柱状凸块的情况下,就自动地进一步逼进1μm~2μm左右,最终切削到在全部的凸块中检出到一定量或其以上的激光强度。这样,在能够防止未切削或切削不足而引起的连接不良的同时,能大幅度地缩短加工时间。
然后,如图14F所示,从半导体基板51切出各半导体芯片55,利用例如倒装芯片法,连接半导体芯片55和电路基板56。具体地说,使半导体芯片55的上面被平整化的柱状凸块54与形成在电路基板56的表面上的电极57对向接触,利用加压和加热来接合两者。再有,在该情况下,电路基板56的电极57也与柱状凸块54同样地,也适合在利用上述切削加工平整化之后,进行倒装芯片连接。
如以上说明地,根据本实施方式,可以取代CMP,廉价且高速地使形成在半导体基板51上的微细的柱状凸块54的表面平整化,且不产生凹形坑等的不良情况,能容易且准确地进行柱状凸块54的连接。这样,就能进行凸块彼此的不需要高温高压等条件的连接,能够成品率良好地制造可靠性高的半导体器件。并且,与不规定引线直径的情况相比,能够使切削平整化后的柱状凸块54的高度设在1.5倍或其以上,能缓和对半导体元件的应力,能延长设备寿命。另外,由于切削中的平整面大于等于引线直径,因此,即使相同的引线直径,也能够得到2倍或其以上的接合强度。此外,在接合强度与现有的相同程度就足够的情况下,能够使引线直径较细,因此,能使凸块间距缩小,能降低接合引线所需的成本。
下面,关于第五实施方式进行说明。在此,例示利用所谓的TAB接合法的半导体器件。
图16和图17是示出根据本实施方式的半导体器件的制造方法的概略剖视图。
为制造该半导体器件,首先与第一实施方式同样地,经过图1和图2中示出的各工序,在元件形成部位上形成了LSI半导体元件等的半导体基板1的电极71上,通过基底金属膜72,形成高度均一的凸块3,该凸块3在切削加工各Au突起2后同样地使上面3a平整化而形成。在此,在半导体基板1的凸块3的周围形成有绝缘性的保护膜73。
接着,通过使探针与凸块3的上面接触,来检查半导体基板1的半导体元件等的电特性。在此,在现有技术中,由于在该检查时使探针与凸块的存在凹凸或污染的电镀终端面接触,因此,得不到稳定的接触,有时产生探针的前端被该凹凸部位卡住而破损的故障。相对与此,在本实施方式中,由于使探针与由上述的切削加工而高度地平整化和净化后的凸块3的表面接触,因此,能够在极稳定的状态下进行检查。
接着,从该半导体基板1切出各个半导体芯片21之后,如图16所示,利用TAB接合法进行半导体芯片21的连接。
具体地说,准备由铜箔75构成的TAB导线74,该TAB导线74在施行Au的表而处理后形成了Au膜76,位于一端的地方是其连接部位,在另一端设置树脂层77。然后,在接合平台80上放置固定半导体芯片21,使TAB导线74的连接部位的Au膜76与半导体芯片21的平整化和净化后的凸块3的上面接触,利用加热器78一边加热一边加压,接合两者。在此,加热温度最好是200℃的比较低的温度,粘结载荷也可降低到现有的2/3左右的约20g。作为结果,能无位置偏移地连接40μm间距或其以下的微细间距的TAB导线。
这样之后,如图17所示,从接合平台80取下半导体芯片21,形成封固树脂79,使得覆盖包括凸块3与TAB导线74的连接部位的半导体芯片21的表面,完成半导体器件。
再有,在本实施方式中,作为凸块例示了形成电镀凸块的情况,但也可以形成利用引线接合法的柱状凸块。
如以上说明地,根据本实施方式,可以取代CMP,廉价且高速地使形成在半导体基板1上的微细的凸块3的表面平整化,且不产生凹形坑等的不良情况,能容易且准确地进行凸块3的连接。这样,能进行凸块与导线端子之间的不需要高温高压等条件的连接,能够成品率良好地制造可靠性高的TAB接合型的半导体器件。
下面,关于第六实施方式进行说明。在此公开了用于在执行上述的各实施方式时,关于一对基体(在此例示利用倒装芯片法的半导体芯片和电路基板)执行上述的切削加工工序和接合工序的装置结构。
图18是示出根据本实施方式的半导体制造装置的模式图。
该半导体制造装置具有用于导入表面上形成了凸块的半导体芯片的芯片导入部81、用于导入表面上形成了电极的电路基板的电路基板导入部82、利用上述使用刀具的切削加工来执行平整化半导体芯片的凸块表面的工序的切削部83、执行通过被平整化的凸块和电极对半导体芯片和电路基板进行接合的工序的接合部84、用于搬出接合而一体化的半导体器件的搬出部85,进而,具有使切削部83和接合部84包含在惰性气氛中的净化保持部86而构成。在此,在切削部83中,不仅半导体芯片,电路基板的电极表面也同样地利用切削加工进行平整化。
净化保持部86具有将平整化工序和接合工序一起保持在净化气氛中的功能,具体的是惰性气氛内,例如Ar和N2等的不包含氧的气相中,或者包含氧的1atm或其以下的气氛中。这样,在接合工序之前,不需要附加使用了Ar等离子体等的净化工序,能够比较容易地维持极接近于理想的平整化状态,能准确地接合凸块和电极。
再有,在本实施方式中,例示了倒装芯片安装,但本发明不限定于此,也可以适用于半导体芯片与半导体晶片、半导体芯片彼此等的接合。
根据本发明,能取代CMP,廉价且高速地使形成在基板上的微细的凸块的表面平整化,且不产生凹陷处等的不良情况,能容易且准确地进行凸块彼此的连接。
权利要求
1.一种凸块形成方法,在基板的表面上形成用于进行与外部电连接的凸块,其特征在于包括在上述基板的表面上,在多个上述凸块和上述凸块之间形成绝缘膜的工序;通过使用刀具的切削加工进行平整化处理,使得上述各凸块的表面和上述绝缘膜的表面连续且平整的工序;去除上述绝缘膜的工序。
2.如权利要求1所述的凸块形成方法,其特征在于,在形成上述凸块时,加工上述绝缘膜并形成具有电极形状的多个开口的掩膜之后,用导电材料填充上述掩膜的上述各开口。
3.如权利要求2所述的凸块形成方法,其特征在于,利用电镀法,用上述导电材料填充上述掩膜的上述各开口。
4.如权利要求1所述的凸块形成方法,其特征在于,利用镍系无电解电镀法形成上述凸块,在上述切削加工上述凸块的表面时,去除生成在上述凸块的表层上的高磷浓度的层。
5.如权利要求4所述的凸块形成方法,其特征在于,利用镍系无电解电镀法形成上述凸块之后,以覆盖上述凸块的方式来形成上述绝缘膜。
6.如权利要求1所述的凸块形成方法,其特征在于,在上述基板上设置有LSI元件,上述凸块与上述LSI元件连接。
7.如权利要求1所述的凸块形成方法,其特征在于,切削加工上述凸块的表面,使得在上述基板上成为同一高度。
8.如权利要求7所述的凸块形成方法,其特征在于,还包括以上述基板的表面为基准,利用机械加工对上述基板的背面进行平整化处理的工序,以上述基板的上述背面为基准,进行上述凸块的表面和上述绝缘膜的表面的上述平整化处理。
9.如权利要求8所述的凸块形成方法,其特征在于,对多个上述基板执行上述各工序,使上述各基板的厚度均一化成相同。
10.如权利要求8所述的凸块形成方法,其特征在于,在对上述凸块的表面和上述绝缘膜的表面进行平整化处理时,在以上述背面为基准进行上述半导体基板的平行切制的同时,检出上述表面的位置,从检出的上述表面算出切削量并进行控制。
11.如权利要求10所述的凸块形成方法,其特征在于,在检出上述基板的上述表面的位置时,向上述表面的周边部位的多处中的绝缘膜照射激光,并使绝缘物加热飞散,使上述表面的一部分露出。
12.如权利要求10所述的凸块形成方法,其特征在于,在检出上述基板的上述表面的位置时,向上述背面照射红外激光,测定来自上述表面的反射光。
13.一种半导体器件,其特征在于,具有一对半导体基板,其分别在表面上形成用于与外部进行电连接的多个凸块而构成,在上述各半导体基板上连续且均一地平整化上述各凸块的表面,使上述各凸块的被平整化的上述表面彼此对向而连接,并一体化而构成上述各半导体基板。
14.如权利要求13所述的半导体器件,其特征在于,在上述各半导体基板上分别设置有LSI元件,在上述各半导体基板上,上述各凸块与上述各LSI元件连接。
15.如权利要求13所述的半导体器件,其特征在于,上述各凸块在上述各半导体基板上成为相同的高度。
16.如权利要求15所述的半导体器件,其特征在于,上述各半导体基板对其背面侧施行以上述表面为基准的机械加工,进行上述背面的平整化和基板厚度的均一化。
17.一种半导体器件的制造方法,其特征在于包括在一对半导体基板的各表面上以填充到绝缘膜内的方式形成各凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述各凸块的表面和上述绝缘膜的表面连续且平整的工序;去除上述绝缘膜的工序;使上述各凸块的被平整化的上述表面彼此对向并连接,将上述各半导体基板一体化的工序。
18.如权利要求17所述的半导体器件的制造方法,其特征在于,在上述各半导体基板上分别设置有LSI元件,在上述各半导体基板上,上述各凸块与上述各LSI元件连接。
19.如权利要求17所述的半导体器件的制造方法,其特征在于,还包括以上述基板的表面为基准,利用机械加工对上述基板的背面进行平整化处理的工序,以上述各半导体基板的上述背面为基准,进行上述凸块的表面和上述绝缘膜的表面的上述平整化处理。
20.一种凸块形成方法,在基板的表面上形成用于与外部进行电连接的凸块,其特征在于包括在上述基板的表面上形成多个上述凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个凸块的表面连续且平整的工序。
21.一种半导体器件的制造方法,其特征在于包括在一对半导体基板的各表面上分别形成多个上述凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个凸块的表面连续且平整的工序;对上述多个凸块的表面被平整化的上述一对半导体芯片,以上述各凸块彼此对向的方式,连接并一体化的工序。
22.如权利要求21所述的半导体器件的制造方法,其特征在于,还包括以上述一对半导体芯片的各表面为基准,利用机械加工对各背面进行平整化处理的工序,以上述背面为基准,利用上述切削加工进行上述凸块的表面的上述平整化处理。
23.如权利要求21所述的半导体器件的制造方法,其特征在于,形成上述凸块之后,以覆盖上述凸块的方式形成树脂膜,利用上述切削加工进行平整化处理,使得上述各凸块的表面和上述树脂膜的表面连续且平整。
24.一种半导体器件,其特征在于,具有一对半导体芯片,其分别在表面上形成用于与外部进行电连接的多个凸块而构成,在上述各半导体芯片上连续且均一地平整化上述各凸块的表面,使上述各凸块的被平整化的上述表面彼此对向而连接,并一体化而构成上述各半导体芯片。
25.如权利要求24所述的半导体器件,其特征在于,上述各半导体芯片对其背面侧施行以上述表面为基准的机械加工,进行上述背面的平整化和基板厚度的均一化。
26.如权利要求24所述的半导体器件,其特征在于,以覆盖上述凸块的方式形成有树脂膜,使上述各凸块的表面和上述树脂膜的表面连续均一地平整化。
27.一种凸块形成方法,在半导体基板的表面上形成使用引线接合法的柱状凸块,该凸块用于与外部进行电连接,其特征在于包括使用接合引线,在上述半导体基板的表面的电连接处形成多个突起部的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个突起部的上面连续且平整,形成上述柱状凸块的工序。
28.如权利要求27所述的凸块形成方法,其特征在于,使用具有激光发生器和检出器的检出装置,向上述切削加工后的上述突起部的上述上面照射激光束,由上述检出器检出被上述上面反射的激光,反复执行上述切削加工,直到利用如上所述的方法检出的激光强度对于全部的上述突起部达到规定值。
29.如权利要求28所述的凸块形成方法,其特征在于,将上述检出器设置在上述刀具的前进方向的后方,使上述检出器与上述刀具的动作同步移动。
30.如权利要求27所述的凸块形成方法,其特征在于还包括以覆盖上述多个突起部的方式形成保护膜的工序;利用上述切削加工进行平整化处理,使得上述多个突起部的上面和上述保护膜的表面连续且平整之后,去除上述保护膜的工序。
31.一种半导体器件,其特征在于,具有在表面上形成使用引线接合法的多个柱状凸块而构成的半导体芯片,该凸块用于与外部进行电连接,在上述半导体芯片上使上述各柱状凸块的上面连续均一地平整化。
32.一种半导体器件的制造方法,其特征在于包括在半导体基板的表面上形成多个凸块的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个凸块的表面连续且平整的工序;从上述多个凸块的表面被平整化的上述半导体基板切出各半导体芯片的工序;连接上述半导体芯片的上述凸块和导线端子的一个端部的工序。
33.如权利要求32所述的半导体器件的制造方法,其特征在于,还包括以上述半导体基板的表面为基准,利用机械加工对背面进行平整化处理的工序,以上述背面为基准,利用上述切削加工进行上述凸块的表面的上述平整化处理。
34.一种半导体器件的制造方法,其特征在于包括在半导体基板的表面的电连接处形成使用引线接合法的多个突起部的工序;通过使用刀具的切削加工进行平整化处理,使得上述多个突起部的上面连续且平整,形成柱状凸块的工序;从形成了多个柱状凸块的上述半导体基板,切出各半导体芯片的工序;连接上述半导体芯片的上述柱状凸块和导线端子的一个端部的工序。
35.如权利要求34所述的半导体器件的制造方法,其特征在于,还包括以上述半导体基板的表面为基准,利用机械加工对背面进行平整化处理的工序,以上述背面为基准,利用上述切削加工进行上述凸块的表面的上述平整化处理。
36.如权利要求34所述的半导体器件的制造方法,其特征在于,还具有在对上述凸块的表面进行平整化之后,在与上述导线端子连接之前,使试验用针与上述凸块的表面接触而进行检查的工序。
37.一种半导体器件,其特征在于,具有在表面上形成多个用于与外部进行电连接的凸块而构成的半导体芯片,在上述半导体芯片上使上述各凸块的表面连续均一地平整化,连接上述半导体芯片的上述凸块和导线端子的一个端部且使其一体化。
38.如权利要求37所述的半导体器件,其特征在于,上述凸块由金构成,同时,对上述导线端子的上述一个端部施行金或锡的表面处理。
39.一种半导体器件,其特征在于,具有在表面上形成使用引线接合法的多个柱状凸块而形成的半导体芯片,该多个凸块用于与外部进行电连接,在上述半导体芯片上使上述各柱状凸块的上面连续均一地平整化,连接上述半导体芯片的上述柱状凸块和导线端子的一个端部且使其一体化。
40.如权利要求39所述的半导体器件,其特征在于,上述柱状凸块由金构成,同时,对上述导线端子的上述一个端部施行金或锡的表面处理。
41.一种半导体器件的制造方法,其特征在于包括向惰性气氛内导入表面上形成多个电极的半导体芯片,通过使用刀具的切削加工进行平整化处理,使得上述多个电极的表面连续且平整的工序;在上述惰性气氛内清洁地保持被平整化的上述多个电极的表面的状态下,连接上述半导体芯片的上述多个电极和电路基板且进行一体化的工序。
42.如权利要求41所述的半导体器件的制造方法,其特征在于,通过使用刀具的切削加工对形成在上述电路基板上的多个电极进行平整化处理,使得表面连续且平整,以上述电极表面彼此对向的方式,连接上述半导体芯片和电路基板且进行一体化。
43.一种半导体制造装置,其特征在于,包括具有刀具的切削加工装置;使导入的一对基体接合的接合装置;将上述切削加工装置和上述接合装置的环境保持在惰性气氛状态中的惰性气氛装置,其中,上述切削加工装置具有如下功能,即在上述惰性气氛内,对于表面上形成多个电极的上述一对基体的至少一方,通过使用上述刀具的切削加工进行平整化处理,使得上述多个电极的表面连续且平整,上述接合装置具有如下功能,即在上述惰性气氛内清洁地保持被平整化的上述多个电极的表面的状态下,用上述多个电极连接上述一对基体并进行一体化。
44.一种基板处理装置,其在基板的表面上形成用于与外部进行电连接的凸块时使用,其特征在于,包括基板支承台,该基板支承台具有平整的支承面,使基板用其一个面吸附在上述支承面上,将上述一个面强制地作为平整的基准面来进行支承固定;切削加工上述基板的其他面的刀具,其中,在上述基板支承台上支承固定基板,该基板在表面上,在多个上述凸块和在上述凸块之间形成绝缘膜而构成,通过使用上述刀具的切削加工进行平整化处理,使得上述各凸块的表面和上述绝缘膜的表面连续且平整。
45.如权利要求44所述的基板处理装置,其特征在于,利用上述基板支承台,以上述基板的表面为基准面,利用上述刀具对上述基板的背面进行切削加工之后,利用上述基板支承台,以上述基板的上述背面为基准面,利用上述刀具对上述基板的上述表面进行切削加工,进行平整化处理,使得上述各凸块的表面和绝缘膜的表面连续且平整。
46.如权利要求44所述的基板处理装置,其特征在于,在以上述背面为基准进行上述半导体基板的平行切制的同时,检出上述布线形成面的位置,从检出的上述布线形成面算出切削量并进行控制。
47.如权利要求46所述的基板处理装置,其特征在于,在检出上述布线形成面的位置时,向上述布线形成面的周边部位的多处中的绝缘膜照射激光,使绝缘物加热飞散,使上述布线形成面的一部分露出。
48.如权利要求46所述的基板处理装置,其特征在于,在检出上述布线形成面的位置时,向上述背面照射红外激光,测定来自上述布线形成面的反射光。
全文摘要
本发明使半导体基板(1)的背面(1b)吸附在基板支承台(11)的支承面(11a)上而使其固定。这时,由于对背面(1b)的平整化处理,成为半导体基板(1)的厚度一定的状态,背面(1b)由于向支承面(11a)吸附而被强制性地成为没有起伏的状态,这样,背面(1b)成为表面(1a)的平整化的基准面。在该状态下,使用刀具(10)对表面(1a)中的各Au突起(2)和抗蚀剂掩膜(12)的表层进行切削加工,进行平整化处理,使得各Au突起(2)和抗蚀剂掩膜(12)的表面连续且平整。这样,取代CMP,能够廉价且高速地使形成在基板上的微细的凸块的表面平整化。
文档编号H01L21/48GK1685489SQ0382275
公开日2005年10月19日 申请日期2003年4月22日 优先权日2002年12月27日
发明者水越正孝, 石月义克, 中川香苗, 冈本圭史郎, 手代木和雄, 酒井泰治 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1