高频电子器件的封装的制作方法

文档序号:6844316阅读:190来源:国知局
专利名称:高频电子器件的封装的制作方法
技术领域
本发明涉及一种电子器件,该电子器件包括具有第一和第二相对侧面的半导体材料的衬底,其设置有从第一侧面延伸到第二侧面的第一通孔,该衬底在其第一侧面上设置有第一电元件;具有设置有连接焊盘的耦合表面的有源器件,该器件存在于衬底的第一通孔中,其耦合表面在衬底的第一侧面;设置在衬底第一侧面上的薄膜互连结构,其在第一通孔上延伸并将有源器件与电元件互连,该互连结构包含与连接焊盘相对应的连接面;存在于衬底第二侧面上的热沉,其在第一通孔和至少部分衬底上延伸;以及用于连接外部系统的键合焊盘。
从US-A-5,506,383中获知这种电子器件。这里有源器件为集成电路,并且如此设计互连结构以便于将该集成电路与另一集成电路互连。作为整体的电子器件在这里为多芯片组件,其中同时获得尺寸减小与充分的散热。衬底设置有多层互连结构,其中存在接地平面,且选择地存在无源元件。这里通孔延伸穿过衬底并且穿过互连结构。
如此处理有源器件以便于具有第一层和第二层,其中第一、底层具有较大的宽度。这允许其中有源器件悬挂在互连结构内。一装配好,有源器件设置有焊料层并被悬置在互连结构内。这里,使焊料回流以填充互连结构与器件之间的任何间隙。然后,如此淀积导电层以便于向有源器件的连接焊盘提供连接表面。最后,将热沉层叠到衬底的第二侧面。
该公知器件的缺点是与其中将第一集成电路和第二集成电路叠置的电子器件相比较,最终的尺寸减小在整体上是很少的。这种叠置管芯结构本身是公知的,例如US-A 5,977,640。此外,该结构看来导致高成本,因为没有标准化具有第一和第二层的有源器件。
因此,本发明的目的是提供一种在第一段中所提及的电子器件,其中技术利益相对于叠置管芯方案胜在成本和尺寸上。
在本发明中实现该目的,就在于将有源器件制造成处理第一频率信号,并且第一电元件为转换器的一部分,该转换器用于将第一频率信号转换成第二较低频率,反之亦然,从而在操作中键合焊盘在第二频率下传输信号,而热沉用作接地平面。
本发明的器件非常适合于高频,大约2GHz,并且特别适合于大约10GHz,因为它限制了信号处理的高频部分和到电子器件的传输。其优点是,器件将包括所有相关的高频功能。它可以用作即插即用(plug-and-play)组件。此外,可以将高频部分作为整体来设计,没有任何不期望的和不可控的高频行为失真。
最为优选地,存在用于在第一频率下向外部系统和/或从外部系统传送信号的无线耦合装置。具体地讲,该无线耦合装置为一个或多个天线。适当地与其结合,有源器件用作天线发射信号的放大器,在该电子器件中可以存在比唯一一个有源器件多得多的元件,如公知的,移动电话的前端通常包括带通滤波器、低噪声放大器、不同级的功率放大器、收发器、阻抗匹配电路、波段开关、功率控制功能元件、振荡器等等。由于本发明的器件不仅是装配平台(assembly platform),还是薄膜网络,所以可以将不同的元件按照所期望的技术来限定并适当地集成。这里并不排除利用倒装片技术组装一些元件。没有必要每一个有源器件存在于分离的空腔中。例如,单个空腔中的这些有源器件例如为彼此直接耦合的不同的放大器级。
考虑到其非常有限的电损耗,该电子器件非常适合在较高的频率下的应用。由于在包括到有源器件的连接的互连与用作接地平面的热沉之间的现存场,所以发生电损耗。由于有源器件与衬底之间的引线键合,引起电场的主要失真,导致大约500pH的寄生电感。这还归因于键合线的固有电感。在叠置的管芯结构中,该寄生电感下降十倍至大约为50pH。然而,作为其中利用焊料或金属凸起将连接表面连接到连接焊盘的区域处的不连续的结果,仍存在相当大的电场失真。在当前的解决方案中,不存在这种不连续,因为互连结构在有源器件上延伸。最终的寄生电感下降到小于10pH,同时将寄生电容限制为小于10fF。
将电路的无源部分与有源部分集成本身从US-A-4,739,389中而得知。有源器件为半导体器件,其具有半导体材料不同于半导体衬底的主体。通过引线键合来实现有源与无源元件之间的电连接。其结果是,该器件对高频的要求根本不起作用,并且如上所述,产生主要的信号失真和衰减。
本发明的优点是,能够用于宽频带应用。除去任何寄生电感的常规解决方案是添加电容器,该电容器的阻抗为复倒数,从而至少消除(level out)阻抗的虚数部分。然而,仅对特定的频率发生这种消除。在当前的方案中,全阻抗保持很低,从而不需要这种消除。
非常优选地,转换器包括多路复用器和多路分解器。采用该装置的转换看来导致转换到第二频率的信号可以为低频信号。这种低频信号为从诸如录像播放器、计算机、移动电话的音频/视频传输设备中的不同于该器件的其他单元中提供的那些信号。这里应将术语“低频信号”理解为可以由键合引线、柔性箔连接或任何常规的耦合装置传输的信号。对该器件的唯一其他供电为电源电压。
优选地,无线耦合装置包括偶极天线。在这种情况下,可以将信号处理成差动信号并且不进行从差动到单端形式的转换。因此,不需要平衡-不平衡转换器。对于这种差动信号的传输,从天线来和到天线去都需要双线。然而由于使寄生电感减小得相当多,这不再成为问题。适合于该目的的天线为分级阻抗偶极天线(stepped impedancedipole)。该分级阻抗偶极天线例如包括通向两个偶极子条(dipole bar)的两条线,连接线与偶极子条之间的线宽之差形成分级阻抗偶极天线的级。这种天线与波长相比是小的并且其相对于地对称。
在另一实施例中,还存在用于使无线耦合装置的阻抗与有源器件特别是放大器的阻抗匹配的匹配电路。与偶极天线结合,可以将这种匹配电路实施为并联谐振阻抗匹配电路,其中第一和第二传输线彼此基本上平行设置且通过一侧上的连接线和另一侧上的电容器而相互耦合。将该电容器优选实施为薄膜电容器。
本发明的器件可以适合用于手提设备,其中需要独立处理多个频带。这些频带的例子包括GSM、蓝牙、无线LAN、802.11、UMTS和LDMS。该器件还可以用于特定的高频应用,如防撞雷达所需要的,其旨在用于交通工具,特别是汽车。
优选地,本发明的器件包括用于至少两个频带的信号传输装置。
本发明的器件还适合用于家庭和专业应用,其中需要将光信号转换成电信号。就通信光纤的使用来说可以预见这种应用。光电二极管,且在通信是双向的情况下,激光二极管在其中将代替在无线通信情况下使用的天线。从EP-A 733288中得知实现这一应用的系统。这是具有设置成同轴的独立光电二极管和激光二极管的系统。然而,横向管脚二极管(lateral pin diode)与光电二极管一样非常适合使用。考虑到互连结构中的传输线的良好宽带特性,于是可以有利地使用本发明的器件。
此外,本发明的器件还非常适合包括光耦合装置和无线耦合装置。光耦合可以用作到外部纤维网络的宽频带连接,而无线耦合可以用于与诸如放大器和扬声器、或光开关的内部不同功能元件的通信。其应用为先进的电视机以及视频电话。或者,该器件包含在手提设备中,如移动电话或便携式计算机中。无线通信则是主要的通信介质,但是除此之外还可以使用光通信,例如其中将光纤临时连接到设备上。
可以看出,无线耦合装置的存在不是必要的。替代物是CMA连接器或同轴电缆兼容连接器。这些连接器不能直接连接到有源器件,因为有源器件的分辨率(resolution)非常高。这里有源器件优选设置有III-V族材料例如InP的衬底,其中限定几个半导体元件。这些半导体元件用作混频器,其设计对于本领域技术人员来说是公知的。衬底优选包括高欧姆硅,而且如果需要,可以将滤波器和多路复用器添加到高欧姆硅。热沉对于这一应用是必需的,因为混频器产生大量的热。
在可选择的应用中,有源器件为发光二极管阵列。必须利用所期望的电路对该阵列进行寻址。此外,在操作期间存在大量的热消散。本发明的器件非常适合于以成本有效地方式提供所需要的寻址电路和热沉。可以在衬底中或在装配在衬底中或装配在衬底上的另一有源器件中实现需要寻址所需要的任何有源部件。
参考附图,将进一步阐明本发明的这些和其它方案,其中

图1-8示出根据本发明的第一方法的不同阶段的示意性横截面图;图9示出在图7中可获得的半导体器件的SEM缩微照片;图10-22示出根据本发明的第一方法的另外阶段的概略性横截面图;图23示出最终器件的概略性横截面图;图24-30示出根据本发明的第二方法的不同阶段的概略性横截面图;图31示出最终器件的概略性横截面图;图32和33示出该器件的另外实施例的概略性横截面图;图34示出图33的一部分的详细横截面图;图35示出显示用键合引线、金属球和薄膜互连制成的耦合的传输的曲线图;以及图36示出根据本发明的电子器件的方框图。
优选实施例的说明相同的参考标记表示同样的结构部件。
图1-8示出根据本发明的方法的不同阶段的示意性横截面图。
图1示出具有第一侧面2和相对的第二侧面3的700μm厚的硅衬底1。衬底1在其第一侧面2上设置有热氧化层4,例如1μm厚。如果要获得(图8的)无源衬底(passive substrate),衬底1优选包括高电阻率(优选大于500ohm.cm且更为优选地大于2000ohm.cm)衬底。硅为优选的半导体材料,但是不排除其它材料。高电阻率的硅可以为高电阻率浮置区域硅、高电阻率多晶硅等。一个优选的实施例为单晶硅衬底设置有诸如非晶硅的高电阻率层的表面层,在其顶部存在氧化层。
然而,如果最终要获得有源衬底(参见图23),衬底1的电阻率将取决于最终要获得的有源半导体,衬底的电阻率通常在从用于双极性半导体的20ohm.cm到用于CMOS半导体的20mohm.cm的范围内。在后一种情况下,衬底1可以包括充分处理过的IC晶片。通常,在衬底的第一侧面上设置热氧化层(例如1μm厚)以防止短路。衬底材料不一定是硅,而可以是SiGe、SiC或者III-V族材料。衬底还可以包括其电阻率不同的区域。对于有源元件,可以在需要提供结的区域中掺杂诸如Si或SiGe的半导体材料。
在图1中示出的衬底1的第一侧面2上,施加可构图材料层5,如10μm厚的抗蚀剂掩模。然后对可构图材料5进行构图,在衬底的第一侧面2上留下可构图材料的图形。然后,例如通过蚀刻,除去衬底1没有设置有可构图材料层5的部分,在衬底1的第一侧面2上形成第一空腔6(参见图2)。本领域技术人员容易理解,如果需要,还可以将第一空腔6形成为通孔(参见图10和16的第二空腔13)。此外,空腔6可以具有相同或不同的深度(通常在不同步骤中获得)。优选地,利用Bosch工艺来形成第一空腔6,因为第一空腔6具有非常好的侧壁倾斜面。
在图3中,例如以热或化学的方式,从衬底1的第一侧面2上除去可构图材料5。
如图4所示,衬底3的第一侧面2涂敷有苯并环丁烯(BCB)层7以允许将有源器件8(图5中所示)附着到衬底1的第一侧面2上。有源器件8可以为IC、管芯等,可以通过利用标准的“拾取和放置”技术来将其放置在第一空腔6中。衬底1中的第一空腔6和电子元件8一起限定出间隙9,间隙9围绕有源器件8。有源器件8设置有连接焊盘(未示出)。通常在有源器件的耦合表面的边缘处以格栅阵列图形来限定这些连接焊盘。在本发明中不需要这样做。取而代之地,可以在整个表面上限定连接焊盘。这能够减小有源器件的复杂性。
如图6所示,间隙9填充有材料10,优选为BCB。在所示的实施例中,通过在间隙9的正上方放置一小滴材料10来进行该填充,然后材料10通过毛细作用遍布整个间隙9。用于填充空腔的填充剂材料优选为具有与半导体衬底相当的介电常数的材料。这具有在信号线与地之间的分布电容沿着传输线的长度均匀的优点。在这点上,有源器件与衬底侧壁之间的距离优选尽可能地小。通常,采用诸如旋涂、喷射、卷绕镀膜(web coating)等湿法化学工艺来提供这种填充剂材料。例如,适合的材料为苯并环丁烯和聚酰亚胺,因为它们提供非常好的粘结特性。然而,填充材料还可以为金属,直到可以在电镀槽中到达衬底与有源器件之间的间隔。
然后,通过在衬底1的第一侧面2上施加例如BCB或聚酰亚胺层11来平坦化衬底的第一侧面2。如果BCB用于填充电子元件8之间的间隙并用于镀覆第一空腔6的壁,则将电子元件8密封在BCB中(参见图7)。通常,层11具有5-10μm的厚度。如图9的SEM缩微照片中所示,可以采用根据本发明的方法来获得非常平的第一侧面2。
最后,通过除去层11在衬底1的第一侧面2上的所选位置处的部分,来限定和打开连接焊盘12(参见图8)。连接焊盘的尺寸可以从垂直互连区域的尺寸改变到适合用于金属或焊料球的键合焊盘的尺寸。优选地,该尺寸小于50*50μm,更为优选地小于20*20μm。可以通过蚀刻来执行通过对层11进行构图而打开连接焊盘。
可以进一步处理图8中获得的无源半导体器件或中间产品或将其互连到其它半导体器件。
图9示出在利用(图7的)层11平坦化第一侧面2之后的被剖开(cavitied)的IC的SEM缩微照片。值得注意的是第一侧面2的非常平的表面。
图10-23示出根据本发明的方法的不同阶段的示意性横截面图。
可以根据图8中获得的半导体器件,或者根据已经制造(中间)的半导体器件,继续本发明的方法。
进一步处理图8中获得的半导体器件。如果需要,在衬底1中形成第二空腔13,以便允许在衬底1变薄之后形成通路(参见图16)。然而,可以与图2中的第一空腔6同时形成这些第二空腔13。
例如,通过在图8中获得的衬底1的第一侧面2上施加可构图材料层14;然后对层14进行构图,在衬底1的第一侧面2上留下可构图材料的图形;并通过除去衬底1没设有层14的部分来在衬底的第一侧面2上形成第二空腔13,来形成第二空腔。结果显示在图10中。
随后,从衬底1的第一侧面2除去被构图的层14。然后在衬底1的第一侧面2上施加导电材料(例如,铜、Cr/Cu、Ti/Cu等)的籽晶层15(参见图11),由此至少覆盖在图8中所获得的接触12。
为了提供有源器件8与互连结构之间的连接,可以使用任何适当的方式。这包括标准IC互连技术(即,如生长Al、AlCu或Cu金属层),以及标准的装配互连技术,如使用金属或焊料凸起或各向异性导电胶。在本例中,如图12所示,然后在籽晶层15的第一侧面上施加电镀掩模16。之后,在籽晶层15的顶表面上施加导电材料(例如铜)层17,由此至少部分填充满电镀掩模16(参见图13)。然后,从衬底1的第一侧面2除去电镀掩模16(图14)。
在本例中,互连结构显示为单层,但是也可能是多层结构。可以将器件的第一元件限定在衬底中,如具有二极管和晶体管的情况,但是可选择地将其限定在互连结构中。特别地,电镀层提供充足的厚度以便用于电感器。此外,元件的进一步例子包括微机电系统(MEMS)开关和电容器、谐振器、耦合器、天线、平衡-不平衡转换器、带通滤波器、匹配电路等。
作为另一步骤,使衬底1变薄,由此暴露出电子元件8的底表面并使第二空腔13打通到衬底1的第二侧面3(参见图16),以便提供通孔。
然而,先前,如图15所示,衬底的第一侧面2可以已经设置有可除去的支撑体18以提高衬底1的机械稳定性。可以利用粘合剂层19将支撑体18连接到衬底1。本领域技术人员容易理解可以利用任何其它适合的手段来提供支撑体18,例如其可以包括金属、玻璃、塑料等。例如,支撑体18可以是UV可除去箔。支撑体18连接到衬底1的第一侧面2的底表面优选尽可能地平。
在图16中,示出衬底1变薄的结果。变薄减小了从有源器件到热沉的路径长度。可以采用诸如研磨和/或蚀刻的常规技术来实现变薄。例如使衬底变薄到小于100微米的厚度,优选小于50微米,更为优选地小于20微米,最为优选地小于10微米。
如图17所示,在图16中被开通的第二空腔13填充有导电材料20(例如铜)。可以通过电镀将材料20填充在第二空腔13中,同时层17用作电镀基体。最终的通孔用于将互连结构中的另一接地平面连接到热沉附加主接地平面。需要互连结构中的另一接地平面,从而通过将其设计为微带、带状线、共面波导或耦合传输线来减小互连电阻。考虑到可获得的图形密度,共面波导是优选的。特别优选的是共面波导和微带的组合。这是在一个平面中的两个接地线之间具有一个或两个信号线,并且在相邻平面中具有地的结构。这样,最佳地保护互连(例如信号线)不受外部影响。或者或另外,可以使用这种垂直互连来限定器件第二侧面的键合焊盘。
然后,在图17中所获得的衬底1的第二侧面3上施加导电材料(例如铜)的籽晶层21。随后,在籽晶层21上施加锯线(saw lane)图形22(例如通过SU8抗蚀剂)(参见图18)。
如图19所示,然后优选通过电镀在籽晶层21的第二侧面上施加导电材料(例如铜)层23,由此至少部分填充满锯线图形22。导电材料层用作热沉和接地平面。另外,其具有机械支撑的功能。作为从半导体衬底到热沉的机械支撑功能的这种转移的结果,能够减小衬底厚度。这导致更好的散热,以及到接地平面的较短路径。考虑到接地平面和衬底减小的厚度,互连结构中在微米量级的实质长度上延伸的横向互连具有传输线特征。
在图20中,将衬底1安装在标准的分离箔24上。之后,如图21所示,除去可除去支撑体18和粘合剂19。
然后,除去籽晶层15在从图14中的衬底1的第一侧面2除去电镀掩模16之后暴露出的部分(参见图22)。
最后,通过在锯线22处分离,例如通过锯,来分离半导体器件。然后获得如图23所示的有源半导体器件。
接着,进一步处理独立的器件,例如将其焊接到封装体中或之上,并且随后连接(例如利用引线键合、倒装芯片和其它常规封装技术等)。可能的几种选择在第一适当的实施例中,不需要引线框架。用作热沉但与其电绝缘的层的部分用作键合焊盘。通过垂直互连将这种键合焊盘适当地连接到互连结构。在这种方式下,键合焊盘和热沉的实际布图等同于诸如HVQFN-型的标准引线框架的布图。
在第二实施例中,将键合焊盘限定在衬底第一侧面处的互连结构中,并且将器件装配到引线框架中的导电平面,热沉在其第二侧面处。在仅传送低频信号的操作中利用引线键合将键合焊盘连接到引线框架。
在另一实施例中,除热沉之外,用于有效热去除(active heatremoval)的装置存在于衬底的第二侧面上。这种装置的例子为热导管。可以将这种热导管设置在热沉的顶部上,也可以与其相邻,因为可以借助光刻胶在面积上限制采用电镀等生长的热沉。
根据本发明的半导体十分适合用于10且甚至20GHz以上的频率。
图24-31示意性示出产生本发明的器件的第二方法的不同阶段。第二方法不同于第一方法,因为不将有源器件8设置在从第一侧面2延伸的空腔6中,而是设置在从第二侧面3延伸的空腔中。
图24是在该方法中的第一阶段的概略性横截面图。基本上,其示出充分处理过的半导体材料晶片,在这种情况下为硅,在其顶部上设置互连结构40。互连结构40包括传输线17和延伸到半导体衬底1的第一侧面并穿过热氧化层4的垂直互连27。与常规处理相反,垂直互连27不连接到下层半导体元件。互连结构还包括用于外部连接的键合焊盘29。这些键合焊盘可以用于引线键合。然而,为了好的高频行为,优选使用焊料球。更为优选地,将所有高频功能元件集成在衬底1上或集成在衬底1中。在这种情况下,仅需要用于电源和相对的低频输入和输出信号的连接。因此可以使用柔性箔。为了简便,示出一层互连结构40。然而,实际上优选多层互连结构。
图25示出在处理的第二阶段中的衬底1。首先,如图24所示的衬底1在其第一侧面1上设置有机械支撑体18。在这种情况下,使用玻璃支撑体晶片18,利用UV可除去胶19将其粘附到衬底1。之后,使衬底1从其第二侧面变薄。这些步骤与图15和16示出的步骤一致。最后,淀积适当的蚀刻掩模31并对其进行构图。在这种情况下,使用由铝的蚀刻掩模,通过化学气相淀积来提供该掩模并对其进行光刻构图。还可以以不同的方式来提供这种蚀刻掩模31,例如采用任何种类的印刷、采用通过掩模的溅射等。
图26示出在已经通过蚀刻掩模31蚀刻衬底之后的第三阶段中的衬底1。蚀刻掩模31适合于干法蚀刻,也适合于例如采用氢氧化钾或四甲基氢氧化铵的湿法蚀刻。该湿法蚀刻的结果为空腔6,其具有相对于衬底1的平面围住45°至50°角的侧壁。这些锥形侧壁的优点是有源器件的放置变得更容易,因为空腔中的适合度不太紧。
本发明第二方法的优点是可以将如图25和图26所示的处于第二或第三阶段的衬底1转移到用于进一步处理的装配设备。这种进一步的处理在更大的规模上进行且包括诸如管芯放置、电镀和分离的标准步骤。
图27示出在有源器件8放置之后的处于第四阶段的衬底1。为了确保良好的接触,优选地,出现在空腔6中的表面上的垂直互连27通过Ni/Au的无电淀积来设置金属接触,特别是Au的金属接触。有源器件8设置有焊料或金属凸起32。在放置之后,提供底层填料(underfill)并执行热处理,从而在凸起32与垂直互连27之间提供金属接触。取代底层填料,可以使用在有源器件8放置之前在空腔6中提供的液化层。这种液化层的一个好的例子是丙烯酸盐层,其在加热到大约60-100℃下液化。另一个例子是苯并环丁烯(BCB),其在大约170℃下变成水状液体。当温度超出200℃时,BCB固化成硬粘合剂层。替代底层填料的另一种选择是在有源器件的表面上提供胶层。优选地对胶层进行构图,从而能够提供凸起32。优选的胶层为BCB。
图28示出在提供底层填料之后且在有源器件8的后侧面和衬底1的第二侧面3的平坦化之后处于第五阶段的衬底1。
要不是空腔6要被填充并且要施加热沉23,器件100现在已经可以使用。在本实施例中,热沉23填充空腔6,并且其基本上覆盖衬底1的整个第二侧面3。然而,不一定用热沉填充空腔。可以使用具有与有源器件8的热膨胀相匹配的热膨胀系数的材料来填充空腔。或者,可以选择弹性材料,从而吸收有源器件8与衬底1之间的机械应力。
图29示出在已经将电镀基体21施加到衬底1的第二侧面3之后并且已经提供抗蚀剂22并在不期望有热沉的区域中对其进行构图之后的衬底1。适当的电镀基体为Cr/Cu。适当的抗蚀剂为SU8。
图30示出在通过电镀生长铜的热沉23之后的衬底1。电镀铜的优点是其具有低应力。使用铜填充空腔6的优点是有源器件8被金属包围。该金属用作法拉第笼,于是抑制与外界的电磁耦合。热沉23可以具有大于100μm的厚度。由此最优化机械稳定性。然而这不是必需的,特别是如果将器件附着到引线框架并密封在保护模具中就更是这样。
图31示出在除去支撑晶片18且分离之后的器件100。应该理解的是,可以将垂直互连设置在互连结构与热沉之间,如图19所示。虽然附图提出很大程度地除去衬底1的建议,但是不一定这样并且通常不是这种情况。
图32示出本发明的器件100的另一实施例的概略性横截面图。在该实施例中,热沉不完全地在衬底1的第二侧面3上延伸。取而代之,除热沉23之外,设置接触43,于是能够在载体上放置器件100而不需要引线框架。然而,接触43和热沉23的图形至少大致上与常规的引线框架一致,如HVQFN(高压四侧无引脚扁平)引线框架。为了实现该目的,热沉23可以仅部分覆盖有源器件8,如附图所示。在另一实施例(未示出)中,可以分两步来施加热沉,第一层热沉具有与第二热沉不同的图形。这可以称为热沉的“重新布线(rerouting)”。
在本实施例中,衬底1的第一侧面2设置有密封层41。该材料例如为填充的环氧树脂或聚酰亚胺,如本领域技术人员所公知的那样。例如在器件分离之前,可以在晶片这一级设置该密封层41。其可以具有任何期望的厚度,例如在0.1-100μm的数量级上,并且如此选择以便于容易利用常规的锯割设备来切割。可以在附着支撑晶片之前,或者除去支撑晶片之后提供密封层。原则上,可以使用其来代替支撑晶片。然而,密封层优选具有足够的厚度。优选地,然后将其设置为多层叠层。该叠层例如可以包括不透明且不能或几乎不能被除去的保护涂层从而防止下层电路的逆向工程。
图33示出本发明的器件100的另一实施例。在本实施例中,衬底1包括有源元件,在这种情况下,为具有源电极、漏电极和栅电极的场效应晶体管81、82、83。本实施例中的互连结构40不仅包括有源器件8与其它元件之间的互连,而且还包括在集成电路自身内的单个晶体管81、82、83之间的互连。在这种情况下,互连结构40还包括延伸到衬底1的第二侧面3上的接触43的垂直互连27。
虽然这里未示出,但是优选地,仅在互连结构的第三或更高层制作接触43与互连结构之间的连接。为了实现这一目的,将互连结构分割成用于集成电路的区域和用于有源器件8的区域。通过在非互连下层处的绝缘材料来将这些区域相互绝缘,从而到有源器件8的信号不影响单个晶体管81、82、83的信号。
图34示出图33的细节,更为清晰地显示出到处于与晶体管81相同层的接触43的连接。到有源器件8的连接基本上与到接触43的连接相同。这里示出的半导体晶片具有各种掺杂区51、52、53、54、55。被部分除去的衬底1的主要部分51为P+区。将晶体管81形成在p型外延层52中或之上。源和漏电极53、54是处于该外延层52表面处的重掺杂区。最后,存在用作互连的重掺杂n++区。晶体管还设置有栅电极59,其通过未示出的薄栅氧化物与外延层52分离。衬底1在其第一侧面2上设置有热氧化物4。对该热氧化物4进行构图,并提供垂直互连27以及到源、漏和栅电极的接触63、64(到栅极的接触未示出)。
应该理解,可以使用适当地与半导体衬底绝缘的金属连接来替代硅自身中的重掺杂区。可以通过使用适当的设计规则,例如5至10μm的最小距离,来防止垂直互连与晶体管之间的不希望有的相互反应。考虑到外延层52通常仅具有非常有限的厚度,最终的效果可以忽略不记。
图35示出其中对于各种耦合技术比较作为频率函数的传输的曲线图。实线从底部到顶部示出键合引线、金属或焊料球、以及薄膜互连的传输。虚线示出在30GHz被电容量补偿的键合引线。曲线图是对从50Ω的源到另一个50Ω的源的传输(transfer)进行模拟的结果。使用没有补偿的引线的结果是在30GHz下的-3dB的传输。这对应于信号强度减小50%。被补偿的键合引线在那些频率下提供更好的结果,但缺点是仅对于精确的30GHz,传输是不受影响的。在大约25GHz下传输仅为-1dB。考虑到要处理的大量信号,特别是考虑到优选在这些频率下将信号保持得较小以便减小热消散的事实,这已经成问题了。
图36示出根据本发明的电子器件的方框图,其仅包含低频输入信号。器件100包括设置有六个输入的收发器111。通过多路复用器和多路分解器单元119来转换这些输入信号和相应的输出信号。VCO振荡回路(tank)116、PLL环路滤波器117和电源去耦单元118连接到收发器。收发器111能够向天线131发送信号并从天线131接收信号。存在TX/RX开关114,用于从接收器切换到发射器功能,并且反之亦然。收发器111与开关114之间的传输路径包括功率放大器121和阻抗匹配功能元件122,以及滤波器123。功率放大器121通常包括两级或多级,其中一个可以被旁通。开关114与收发器111之间的接收路径包括滤波器124和低噪声放大器125。该低噪声放大器可以集成在收发器111中。带通滤波器126存在于天线131和开关114之间。
虽然这里为了清晰而未示出,但是TX/RX开关114通常包括在不同频带,例如DSC频带、GSM频带、蓝牙频带和其它任何频带之间的开关功能。TX/RX开关还包括无源元件和需要防止任何放大信号到达接收路径的开关,在所述接收路径中,其将损害(blow up)放大器。然而,特别是如果存在高频,则针对不同频率范围使用不同的天线是有利的。用于20GHz高频的天线可以非常小,并且频带分离变得容易。
在本发明中,利用MEMS电容器和开关来实现TX/RX114和阻抗匹配功能元件,将所述MEMS电容器和开关设置为互连结构的一部分。将功率放大器121实现为有源器件,其具有诸如GaAs或GaN的III-V族材料的衬底。因为有源器件包括HBT-型晶体管,所以获得好的结果。收发器111实施为具有III-V族材料特别是InP的衬底的有源器件,其适合于10-40GHz的频率。对于电压受控振荡器116,使用SiGe衬底的有源器件。将这些有源器件都设置在空腔中,但可选择地,VCO116可以实施在衬底自身中。PLL环路滤波器115复盖在互连结构和衬底上。或者,可以将VCO116安装到该分离单元。带通滤波器和其它滤波器可以是集成在互连结构中的平衡-不平衡转换器和LC滤波器。至少它们中的一些可选择地为BAW滤波器。这些可以作为分离的功能块适当地设置在衬底中的空腔中或利用凸起设置在互连结构上。可以利用凸起将这些无源功能元件设置在衬底的顶部上,因为它们不需要连接到热沉。
本领域技术人员应理解,在不脱离附属权利要求的范围的情况下可以进行许多修改。
权利要求
1.一种电子器件,包括-具有第一和第二相对侧面的半导体材料衬底,其设置有从所述第一侧面延伸到所述第二侧面的第一通孔,该衬底在其第一侧面上设置有第一电元件;-有源器件,具有设置有连接焊盘的耦合表面,该器件存在于所述衬底的所述第一通孔中,其耦合表面在所述衬底的所述第一侧面上;-薄膜互连结构,设置在所述衬底的所述第一侧面上,在所述第一通孔上延伸并将所述有源器件与所述电元件互连,该互连结构包括与所述连接焊盘相对应的连接面;-热沉,存在于所述衬底的所述第二侧面上,在所述第一通孔和至少部分的所述衬底上延伸,以及-键合焊盘,用于连接到外部系统,其特征在于,使所述有源器件处理第一频率的信号,并且所述第一电元件是转换器的一部分,该转换器用于将第一频率的信号转换成第二、较低频率和/或反之亦然,从而在操作期间,所述键合焊盘传输第二频率信号,并且所述热沉用作接地平面。
2.如权利要求1所述的电子器件,其特征在于,存在无线耦合装置,用于向外部系统和/或从外部系统在第一频率下传输信号。
3.如权利要求2所述的电子器件,其中所述转换器包括多路复用器和多路分解器,并且所述第二频率的信号为低频信号。
4.如权利要求2所述的电子器件,其中所述无线耦合装置包括偶极天线,并且将信号作为差动信号从所述偶极天线传输到一个或多个有源器件,而不转换成单端形式。
5.如权利要求2所述的电子器件,还包括至少部分地实施为第二有源器件的阻抗匹配电路,该第二有源器件存在于所述衬底中的第二通孔内。
6.如权利要求5所述的电子器件,其中所述第二有源器件包括微机电系统(MEMS)元件。
7.如权利要求1所述的电子器件,其中所述半导体材料衬底是高欧姆硅衬底。
8.如权利要求1所述的电子器件,其中垂直互连穿过所述衬底从所述互连结构延伸到所述接地平面。
9.如权利要求1所述的器件,包括用于在至少两个频带中的信号传输和放大的装置。
10.如权利要求2所述的器件,其中所述无线耦合装置包括光电半导体元件,能够使光信号转变成电信号。
11.如权利要求10所述的器件,还包括天线。
12.一种音频和视频传输系统,包括如权利要求1-11中的任何一项所述的器件。
13.使用如权利要求1-11中的任何一项中所述的电子器件用于在至少2GHz的频率下传输和放大信号。
全文摘要
一种电子器件,包括具有其中存在有源器件(8)的空腔(6)的衬底(1)。在衬底的第一侧面(2)上,互连结构(17)在空腔和衬底上延伸。在衬底的第二侧面上,可得到热沉(23),空腔延伸到所述衬底的第二侧面。该器件特别适合用于例如高于2GHz的高频和高散热的条件下。
文档编号H01L23/538GK1802746SQ200480016088
公开日2006年7月12日 申请日期2004年6月8日 优先权日2003年6月12日
发明者安德烈亚斯·B·M·简斯曼, 罗纳德·德克尔, 戈德弗里德斯·A·M·胡克斯, 维博·D·范诺尔特, 安东尼厄斯·L·A·M·克默尔恩 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1