半导体装置的制作方法

文档序号:6857572阅读:126来源:国知局
专利名称:半导体装置的制作方法
技术领域
本发明涉及一种压触型(press-contact type)半导体装置。
背景技术
绝缘栅双极晶体管(IGBT)被用作逆变器器件,例如电车的电源开关器件。公开在日本待审公开No.2001-110985中的半导体装置中,用在逆变器电路中的上臂和下臂被做成模块结构且P汇流条(bus bar)、N汇流条和输出汇流条设置在同一表面上。上臂IGBT芯片安装在P汇流条上,且下臂IGBT芯片安装在输出汇流条上。上臂IGBT芯片的发射极和P汇流条、以及下臂IGBT芯片的发射极和N汇流条分别用线连接。

发明内容
然而,为了使得三条汇流条设置在同一平面内,上述半导体的模块变大。此外,在汇流条和半导体元件(IGBT芯片)使用线连接的情况下,需要连接许多线到芯片,且连接这些线的操作对生产率是不利的。
根据本发明第一方面的半导体装置包括形成有前侧电极和背侧电极的第一半导体芯片;形成有前侧电极和背侧电极的第二半导体芯片;第一汇流条,其上安装第一半导体芯片使得第一半导体芯片的背侧电极连接到该第一汇流条;第二汇流条,相对于第一汇流条水平设置,第二半导体芯片安装于其上使得第二半导体芯片的背侧电极连接到该第二汇流条;第三汇流条,压连(press-connected)到第一半导体芯片的前侧电极;第四汇流条,压连到第二半导体芯片的前侧电极;和连接部分,电连接第一汇流条与第四汇流条。
根据本发明第二方面的半导体装置包括形成有前侧电极和背侧电极的第一半导体芯片;形成有前侧电极和背侧电极的第二半导体芯片;第一汇流条,其上安装第一半导体芯片使得第一半导体芯片的背侧电极连接到该第一汇流条,且其上安装第二半导体芯片使得第二半导体芯片的前侧电极连接到该第一汇流条;第二汇流条,压连到第一半导体芯片的前侧电极;和第三汇流条,压连到第二半导体芯片的背侧电极。
根据本发明第三方面的半导体装置包括形成有前侧电极和背侧电极的第一半导体芯片;形成有前侧电极和背侧电极的第二半导体芯片;第一汇流条,其上安装第一半导体芯片使得第一半导体芯片的背侧电极连接到该第一汇流条;第二汇流条,相对于第一汇流条水平设置,其上安装第二半导体芯片使得第二半导体芯片的背侧电极连接到该第二汇流条;第一导电构件,与第一半导体芯片的前侧电极连接并包括延伸到第一半导体芯片外的延伸部分;第二导电构件,与第二半导体芯片的前侧电极连接并包括延伸到第一汇流条上方的延伸部分;第三汇流条,设置在第一半导体芯片的前表面侧,具有压连到第一导电构件的延伸部分的部分;和第四汇流条,设置在第二半导体芯片的前表面侧,具有与第二导电构件的延伸部分连接并压连到第一汇流条的部分。
根据本发明第四方面的半导体装置包括前侧和背侧形成有电极的第一、第二、第三和第四半导体芯片;第一汇流条,其上安装第一和第二半导体芯片使得背侧电极连接到该第一汇流条;第二汇流条,相对于第一汇流条水平设置,其上安装第三和第四半导体芯片,使得背侧电极连接到该第二汇流条;第三汇流条,压连到第一和第二半导体芯片的前侧电极;第四汇流条,压连到第三和第四半导体芯片的前侧电极;连接部分,电连接第一汇流条与第四汇流条;第一压件(pressing member),设置在第三汇流条上以将第三汇流条压向第一半导体芯片;第二压件,设置在第三汇流条上以将第三汇流条压向第二半导体芯片;第三压件,设置在第四汇流条上以将第四汇流条压向第三半导体芯片;和第四压件,设置在第四汇流条上,以将第四汇流条压向第四半导体芯片。


图1示出了单相逆变器电路,其示出了本发明的半导体装置的第一实施例;图2A到图2C是示出固定到主冷却部分的半导体装置外观的视图,其中图2A是平面图,图2B是前视图,且图2C是侧视图;图3是沿图2A的A-A所取的截面图;图4是示出每个单元的外壳的透视图;
图5是汇流条的透视图;图6是示出第一实施例的比较例的示意图;图7A到7C是示出设置在连接部分的弯曲部分的范例的示意图;图8是示出电极板的改进范例的示意图;图9是示出辅助冷却构件的改进范例的示意图;图10是辅助冷却构件的平面图;图11是本发明的半导体装置的第二实施例的截面图;图12是示出外壳的透视图;图13是示出单元的透视图;图14是本发明的半导体装置的第三实施例的平面图;图15是沿图14的C-C所取的截面图;图16A是沿图14的D-D所取的截面图,且图16B是沿图14的E-E所取的截面图;图17A到图17C是示出第三实施例的每个单元的视图,其中图17A是底部单元的平面图,图17B是中间单元的平面图,且图17C是顶部单元的平面图;图18是本发明的半导体装置的第四实施例的截面图;图19是图18的部分G的放大视图;图20是示出第四实施例的改进范例的示意图;图21是三相逆变器的电路图;图22是示出底部单元的平面图;图23A和23B是示出相应于第四实施例的每个单元的示意图,其中图23A是中间单元的平面图且图23B是顶部单元的平面图;图24是本发明的半导体装置的第五实施例的截面图;图25是示出辅助冷却构件的操作的示意图;图26A和图26B是示出消除不平衡负载的操作的示意图,其中图26A示出C1>C2(S1<S2)的情况,且图26B示出C1<C2(S1>S2)的情况;图27A到图27D是示出缓冲构件的改进范例的示意图。
具体实施例方式
下面是参照附图对本发明优选实施例的描述。
第一实施例图1是示出本发明的半导体装置的第一实施例的示意图,其是单相逆变器电路。IGBT和MOSFET等被当成用在逆变器中的开关元件,且图1示出了采用IGBT 1和2及二极管D1和D2的单相逆变器。上臂IGBT 1的发射极连接到下臂IGBT 2的集电极,且从此发射极和集电极之间引出输出。此外,IGBT 1的集电极连接到电源的P侧,且IGBT 2的发射极连接到电源的N侧。
图2A到图2C是示出安装到冷却部分11的半导体装置的外观的示意图,其中图2A是平面图,图2B是前视图,且图2C是侧视图。图1所示的IGBT2和二极管D2设置在单元12,且IGBT 1和二极管D1设置在单元13。单元12和13在冷却部分11上通过绝缘构件14相对于彼此平行或水平排列。例如硅和氧化铝的复合材料等用于绝缘构件14,但也可能使用各种材料例如丙烯酸材料、环氧树脂材料、酰亚胺材料或陶瓷材料等,只要这些材料提供功能性及可靠性所需的绝缘和散热或热辐射即可。例如,可以采用具有硅基底的散热片。此外,在冷却部分11由铝材料形成的情况下,可能通过阳极氧化冷却部分11以在铝材料表面形成绝缘膜从而省略绝缘构件14。多个支柱11a设置于冷却部分11且板构件28安装到支柱11a的上端。
虽然在图中未示出,但在冷却部分11内形成通道,且单元12和13由于在此通道内流动的冷却剂而保持冷却。设置于单元12的电极板15的端子15a从单元12的上表面引出并延伸到设备的左侧。汇流条16和17(参照图3)的端子16a和17a以延伸到图2B所示的前视图靠近读者一侧(near side)的方式引出。
图3是沿图2A的A-A所取的截面图。单元12将IGBT 2和二极管D2容纳在由电极板15、栅端子18和框架部分19a及19b组成的外壳内。另一方面,单元13将IGBT 1和二极管D1容纳在由汇流条16、栅端子20和框架部分21组成的外壳内。电极板15弯曲成阶梯形以在纵向形成阶梯,且由安装有IGBT 2和二极管D2的汇流条15b、安装有IGBT 1和二极管D1的汇流条15d、单元12延伸到图左侧的端子15a、及连接汇流条15b和汇流条15d的连接部分15c构成。
图4是示出单元12的外壳12a和单元13的外壳13a的透视图。绝缘树脂用在外壳12a和13a的框架部分19a、19b和21。在此实施例中,外壳12a通过使用树脂插入成型(insertion molding)电极板15和栅端子18而形成,且类似地外壳13a通过使用树脂插入成型汇流条16和栅端子20而形成。成型决不限于插入成型。也可能通过粘附汇流条15和16到由树脂形成的框架而形成外壳12a和13a。
用于框架部分19a、19b和21的绝缘树脂优选能耐高温环境的树脂材料,且可以采用例如PPS(聚苯硫醚)、PBT(聚对苯二甲酸丁二酯)和PA(聚酰胺)等。此外,用在汇流条15到17中的材料优选具有优异的导电性和热传导特性,且可以采用铜、铝或其各种合金。
垂直穿过的通孔210形成在框架部分21。在将单元13安装在冷却部分11上时,将冷却部分11的支柱11a通过该通孔210插入,从而使单元13设置在冷却部分11上。设置于单元13的汇流条16设置在外壳13a的底表面,且汇流条16的背表面面对外壳13a的底表面而暴露。
此外,如图4所示,用于容纳IGBT 1和二极管D1的容纳空间220形成于框架部分21,且矩形凹陷H3和H4形成在容纳空间220内。汇流条16的前表面暴露在凹陷H3和H4的底表面。栅端子20的线连接部分(参考图3)暴露在容纳空间220内。
当将IGBT 1和二极管D1容纳在外壳13a的容纳空间220内时,缓冲构件22A和22B设置在凹陷H3和H4内的汇流条16上,且随后IGBT 1和二极管D1分别安装在缓冲构件22A和22B上。缓冲构件22A和22B使用例如焊料连接到汇流条16。例如在IGBT 1和2、反射极和栅电极形成在前侧上且集电极形成在背侧上的情况下,IGBT 1和2及二极管D1和D2的电极形成在芯片前表面和背表面上。
缓冲构件22A和22B将汇流条16与IGBT 1和二极管D1的后表面侧电极电连接,并用于减小由于在汇流条16与IGBT 1和二极管D1之间线性膨胀系数的差而导致的热应力。具有接近半导体芯片,即采用硅衬底例如钼或钨、或者钼或钨和铜的组合的构件的IGBT 1和二极管D1的线性膨胀系数的材料用作缓冲构件22A和22B。当然,优选使用具有低体电阻率的材料以保持低电阻。
当半导体芯片IGBT 1和D1直接与具有不同线性膨胀系数的汇流条相接触时,存在芯片表面由于温度变化而导致的膨胀和收缩而导致的摩擦的担心。因此可能通过在半导体芯片IGBT 1和D1与汇流条16之间插入具有相近的线性膨胀系数的缓冲构件22A和22B而防止这种问题。在汇流条16薄或者半导体芯片IGBT 1和D1与汇流条16之间的线性膨胀系数差小的情况下,可能省略缓冲构件22A和22B。
设置于IGBT 1的前表面的栅电极丝焊(wire-bonded)到设置于框架部分21的栅端子20的线连接部分。缓冲构件23A和23B安装在IGBT 1的发射极和二极管D1的前表面侧电极上。缓冲构件23A和23B是具有与上述缓冲构件22A和22B相同功能的元件,这里采用钼和铜的复合构件。即,钼设置于缓冲构件23A和23B的芯片侧,且铜设置于缓冲构件23A和23B的上侧(后面描述的汇流条15b一侧)。也可以采用钨取代钼或采用主要由钨或钼组成的构件。
另一方面,在单元12,电极板15在基本上位于中心的部分弯曲成阶梯形,且在连接部分15c左侧上的汇流条15b设置于外壳12a的底表面。连接部分15c和右侧汇流条15d在单元12的右侧引出,且汇流条15d设置得延伸到与单元12平行设置的单元13上方。电极板15的汇流条15d的背表面与设置在IGBT 1和二极管D1上的缓冲构件23A和23B的上表面接触。
如图4所示,容纳IGBT 2和二极管D2的容纳空间190形成在外壳12a的框架部分19a,且矩形凹陷H1和H2形成在容纳空间190内。汇流条15b的前表面侧暴露在凹陷H1和H2的底表面。栅端子18的线连接部分暴露在容纳空间190中。此外,支柱11a穿过其插入的通孔191形成于框架部分19a。通过使支柱11a通过通孔191插入的方式将单元12安装在冷却部分11上从而将单元12设置在冷却部分11上。
如图3所示,缓冲构件22A和22B设置在形成在容纳空间190内的凹陷H1和H2内并采用焊料连接。IGBT 2和二极管D2分别安装在缓冲构件22A和22B上。形成于IGBT 2表面侧的栅电极与设置于框架部分19a的栅端子18丝焊连接。缓冲构件23A和23B安装在IGBT 2的发射极和二极管D2的前表面侧电极上。汇流条17设置在缓冲构件23A和23B上。
图5是汇流条17的透视图,绝缘树脂框架24一体地形成于汇流条17的左和右端部。此外,向器件近侧突出的端子17a(参照图2)形成于汇流条17。如图3所示,当汇流条17的框架24安装在单元12的框架部分19a上时,汇流条17的背表面侧与安装在IGBT 2和二极管D2上的缓冲构件23A和23B相接触。
辅助冷却构件26通过绝缘构件25分别设置在汇流条15d和汇流条17上。由弹簧或橡胶等构成的弹性构件27A和27B设置在每个辅助冷却构件26上。与上述绝缘材料14同样的材料用于绝缘构件25。辅助冷却构件26用作缓和半导体芯片1、2、D1和D2迅速升高的温度的热质量(thermal mass),可以是高热容量的大金属块等。
具有足够硬度的板构件28设置在弹性构件27A和27B上,并使用螺栓固定到支柱11a。此时,弹性构件27A和27B被板构件28压缩并产生迫使辅助冷却构件26向下的压力。结果,通过压IGBT 2和二极管D2、汇流条17和汇流条15b、IGBT 1和二极管D1、汇流条15d和汇流条16,汇流条17和汇流条15d分别被向下压而导致接触。
如上所述,汇流条17安置在半导体芯片2和D2上。此外,电极板15弯曲使得汇流条15d安置在半导体芯片1和D1使得每个汇流条15b、15d、16和17通过挤压而与半导体芯片1、D1、2和D2接触。这意味着可以使半导体装置的安装空间小且装置本身可以制得小。
图6是示出三个汇流条901到903平行设置的优选实施例的比较范例的视图,其中IGBT 904和IGBT 905安装在汇流条901和902上。汇流条901到903使用树脂模具一体地形成,并通过散热片907安装到冷却部分908。IGBT 904的发射极采用焊接线W1连接到汇流条902,且IGBT 905的发射极采用焊接线W2连接到汇流条903。即,汇流条901相应于上述汇流条16,汇流条902相应于汇流条15b,且汇流条903相应于汇流条17。
在图6的情况下,汇流条903平行设置,但在此实施例中,相应的汇流条17设置在IGBT 2上方,因此可以使沿从图左到右的方向的空间小。此外,汇流条15d和汇流条17独立挤压。因此对半导体芯片1和D1的压力与对半导体芯片2和D2的压力更分散,且可能提高发生在芯片接触表面的表面压力的均匀度。此外,由于在制作连接中不采用焊接线,组装步骤的数量可以减少,且可以提高稳定性。
图7A到图7C和图8示出了电极板15的连接部分15c的改进范例。如图7A到图7C所示,易变形的弯曲部分B形成在连接部分15c。结果,当汇流条15d被挤压并在图中(参照图3)向下偏移时,连接部分15c的反作用力减小,且可以对半导体芯片1和D1的芯片表面施加均匀压力。
在图7A中,沿向上方向突出的弯曲部分B形成在连接部分15c,使得汇流条15d能在垂直方向上偏移。在图7B中,沿左方向突出的弯曲部分B形成在连接部分15c,且因此汇流条15d能在垂直方向易于偏移。在图7C中,连接部分15c弯曲成S形以形成弯曲部分B,因此汇流条15d能易于在垂直方向上偏移。此外,也可能通过如图8的截面图所示倾斜连接部分15c而在垂直方向偏移汇流条15d,这样,能减小在加压时连接部分15c的反作用力。此外,如图7A和图7B所示的弯曲部分B可以形成在倾斜的连接部分15c。由于汇流条15c和15d因为温度的变化能在图7A和图8所示的箭头X方向膨胀和收缩,连接部分15c优选如图7A或8而形成,使得可以缓冲温度引起的收缩和膨胀。
图9和图10是示出辅助冷却构件36的改进范例的示意图。在图9所示的辅助冷却构件36中,薄的延伸部分36a形成在侧表面,且此延伸部分36a与支柱11a接触。图10是辅助冷却构件36的平面图。狭缝形成在每个支柱11a的侧表面,且从每个辅助冷却构件36的四角延伸的薄的延伸部分36a通过这些狭缝插入并使用具有优异的热导性的粘合剂粘合。辅助冷却构件36的热通过延伸部分36a传导到设置于冷却部分11的支柱11a并通过支柱11a传导到冷却部分11。结果,可能提高通过辅助冷却构件36的散热效果。使延伸部分36a形成得薄,因此抑制了加压的同时所产生的反作用力。
第二实施例图11是本发明的半导体装置的第二实施例的截面图。与图3所示的设备比较,设置有汇流条的单元30和31是不同的,但该结构的其他方面基本与图3所示的相同。下面是以单元30和31为中心的描述。单元30通过绝缘构件14安装在冷却部分11上,并由汇流条300、安装在汇流条300上的IGBT 1、IGBT 2、二极管D1和二极管D2以及栅端子18和20组成。
图12是示出单元30的外壳30a的透视图。外壳30a通过使用绝缘树脂插入成型汇流条300和栅端子18而形成框架部分301而一体地形成。如图11所示,汇流条300的背表面相对外壳30a的背表面而暴露,且汇流条300的端子300a沿外壳30a的纵向,即向图中左侧延伸。在框架部分301中,用于容纳IGBT 2和二极管D2的容纳空间302和用于容纳IGBT 1和二极管D1的容纳空间303沿框架部分301的纵向形成。此外,支柱11a通过其插入的六个通孔304形成在框架部分301。
栅端子18靠近容纳空间302而成型,且线连接部分在容纳空间302内暴露。矩形凹陷H1和H2形成在容纳空间302内,且矩形凹陷H5和H6形成于容纳空间303。汇流条300的前表面侧暴露在凹陷H1、H2、H5和H6的底表面。
图13是示出单元31的透视图。单元31被如此构造使得汇流条16和17平行设置,且栅端子20设置在汇流条16附近并使用绝缘树脂插入成型以一体地形成框架311、312和313。邻近汇流条16和17的末端通过树脂框架312而连接。框架311和313形成于汇流条16和17的另一端。此外,栅端子20的下端伸出得比汇流条16更低,且在单元31与外壳30a组合的情况下,突出末端设置得暴露在外壳30a的容纳空间303内。
如图11所示,外壳30a通过绝缘构件14安装在冷却部分11上。缓冲构件22A和22B安装在形成在容纳空间302内的凹陷H1和H2内,且IGBT2和二极管D2安装在每个缓冲构件22A和22B上。形成于IGBT 2前表面侧的栅极与栅端子18丝焊连接。缓冲构件23A和23B安装在IGBT 2的发射极和二极管D2的前表面侧电极上。
缓冲构件23B和23A设置在形成在容纳空间303内的凹陷H5和H6内。然后IGBT 1安装在设置在凹陷H5内的缓冲构件23A上,使其形成有发射极的前表面侧面向下。IGBT 1的栅电极丝焊到栅端子20。另一方面,二极管D1安装在设置在凹陷H6内的缓冲构件23B上,使其形成有表面侧电极的表面面向下。缓冲构件22A和22B分别设置在IGBT 1和二极管D1与汇流条16之间。在此实施例中,在外壳30a和单元31组装后,容纳空间303被密封,因此丝焊栅端子20与IGBT 1的栅电极变得困难。因此,优选至少将缓冲构件22A、IGBT 1和栅端子20固定到单元31。
接着,单元31安装在单元30上,使得汇流条17设置在容纳空间302的缓冲构件23A和23B上,且汇流条16设置在容纳空间303的缓冲构件22A和22B上。绝缘材料25、辅助冷却构件26和弹性构件27A和27B依次安装在每个汇流条16和17上。
板构件28设置在弹性构件27A和27B上并使用螺栓29固定到支柱11a。当板构件28被固定且螺栓29被固紧时,弹性构件27A和27B被压且汇流条17和汇流条16被分别向下压。结果,可能引起IGBT 2和二极管D2与汇流条17和汇流条300之间以及IGBT 1和二极管D1与汇流条16和汇流条300之间的压触。
在上述第二实施例中,采用其中IGBT 1和二极管D1上下倒置设置在汇流条300上且汇流条16设置在IGBT 1和二极管D1上的结构。在此实施例中,图3所示的电极板15被汇流条300所取代,IGBT 1和二极管D1上下倒置设置,且相应于汇流条15d的汇流条300设置在汇流条16下方。由于汇流条16和17设置在半导体芯片1、2、D1、D2上,可能使器件如第一实施例的一样小。此外,连接到电源P侧和N侧的端子16a和17a设置得紧密相邻,如图14所示,因此可能减小这些线之间的电感。此外,具有外部器件的汇流条的排列和汇流条之间的连接是直的,因为端子16a和17a位于同一侧表面上。
此外,由于在汇流条300没有如图3所示的连接部分15c,当施压时不会在连接部分15c发生反作用力。因此,可以提高在芯片接触表面上的施压的均匀性。也可能在汇流条300的中心部分形成弯曲部分,以实现对向左和向右的压力的分隔。
第三实施例图14到图17是本发明的半导体装置的第三实施例的示意图。图14是半导体装置的平面图,且图15是沿图14的C-C所取的截面图。此外,图16A是沿图14的D-D所取的截面图,且图16B是沿E-E所取的截面图。如图14所示,IGBT 1、IGBT 2、二极管D1和二极管D2设置有如第一和第二实施例的器件。
在上述第一和第二实施例中,半导体芯片1、2、D1和D2沿装置的纵向(图中从左到右的方向)设置。然而,在第三实施例中,成对的IGBT 1和二极管D1及成对的IGBT 2和二极管D2每个都垂直于纵向,即沿图中的垂直方向设置。对第一和第二实施例相同的部分给出同样的标号。
如图15所示,半导体装置通过绝缘构件14安装在冷却部分11上。如上所述,通道110形成于冷却部分11,且冷却剂供应到通道110内。半导体装置由依次层叠的底单元40、中间单元41和顶单元42组成,IGBT 1、IGBT2、二极管D1和二极管D2容纳在单元40的外壳40a内。如示出沿D-D的截面图的图16A所示,四个定位销111设置在冷却部分11上以在单元40和41依次层叠设置时提供定位。
图17A、图17B和图17C分别是单元40、41和42的平面图。如图17A所示,外壳40a是通过使用绝缘树脂插入成型汇流条16和400而形成框架部分401从而一体地形成的。汇流条16和400组成外壳40a的部分底部,且汇流条16和400的底表面面对外壳40a的背表面而暴露。
此外,汇流条400在外壳40a的大致中心部分沿垂直方向,即垂直于图纸弯曲,且形成在上端部分的水平部分400c和400b暴露在框架部分401的上表面。汇流条16的端子16a从图中上侧的侧表面引出,且汇流条400的端子400a从图中左侧的侧表面引出。穿过有定位销111的通孔402形成于框架部分401的四个角。
单元41通过使用绝缘树脂插入成型汇流条17和汇流条410而形成框架部分411从而一体地形成,如图17B所示。汇流条17的端子17a从框架部分411的侧表面引出。栅端子18和20从其通过的矩形孔412(参考图15)形成于框架部分411中。此外,穿过有定位销111的通孔413形成于框架部分411的四个角。
单元42是具有挤压汇流条17和410的功能及用于将半导体芯片1、2、D1和D2的热散发到冷却部分11的散热功能的元件,其截面是门形,如沿E-E所取的截面图的图16B所示。用于挤压的突起421和422形成于单元42的背表面。控制板43(参照图16B)固定到单元42的上表面。
回到图15,IGBT 1和二极管D1安装在外壳40a的汇流条16上。每个半导体芯片1和D1采用焊接通过将各元件按照焊料403、缓冲构件22A或22B、焊料403、半导体芯片1或D1、焊料403和缓冲构件23A或23B的顺序依次叠放然后在高温炉中熔化焊料403而固定。分别焊接到IGBT 1和二极管D1上部的缓冲构件23A和23B如此设置,从而跨越IGBT 1和二极管D1的上表面以及上述(参照图17A)汇流条400的水平部分400b和400c的顶部。结果,汇流条400、IGBT1的发射极和二极管D1的表面侧电极被连接起来。
类似地,IGBT 2、二极管D2、缓冲构件22A、22B、23A、23B和焊料403依次层叠在汇流条400上,并通过焊接而粘合。IGBT 1的栅电极通过丝焊而连接到栅端子20,且IGBT 2的栅电极采用丝焊而连接到栅端子18。
接着,图17B所示的单元41设置在单元40上。结果,汇流条410安装在IGBT 1和二极管D1上的缓冲构件23A和23B上,且汇流条17安装在IGBT 2和二极管D2上的缓冲构件23A和23B上。单元42覆盖在单元41上并使用螺栓44固紧到冷却部分11(参照图16B)。在此时,绝缘材料25插入在汇流条17及410和突起421及422之间,且散热片45插入在单元42和冷却部分11之间。
单元42使用螺栓而固紧到冷却部分11,且汇流条17和410沿着向着芯片的方向被施压。结果,在IGBT 2和二极管D2上的缓冲构件23A和23B及汇流条17彼此压触。在IGBT 1和二极管D1上的缓冲构件23A和23B也彼此压触。此外,由于缓冲构件23A和23B的部分230夹在汇流条410和汇流条400的水平部分400b和400c之间,使得缓冲构件23A和23B的部分230及水平部分400b和400c通过压力而彼此接触。
此外,也可能使冷却剂在单元42内流动以提高散热。在上述范例中,缓冲构件23A和23B和IGBT 1和2,以及二极管D1和D2使用焊料而连接,但也可以通过不使用焊料的压焊而连接。
在第三实施例中,汇流条410和17也设置在半导体芯片1、2、D1、D2上。因此可能使得器件如第一实施例一样小。此外,因为IGBT 1和IGBT 2使用汇流条16和400上的焊料而粘附,焊接到栅端子的线是直的,可以使组装更容易。此外,施加到半导体芯片1、2、D1、D2的非平衡负载可以减轻,因为焊料在施压时是塑性变形的。
第四实施例图18到图20是示出本发明的半导体装置的第四实施例的示意图,其中图18是相应于第三实施例的图15的截面图,且图19是图18的部分G的放大视图。如图18所示,在此实施例中,半导体装置也由三个依次叠放的单元40、41、和42组成,但汇流条17和410、缓冲构件23A和23B以及汇流条400的形状不同于第三实施例。
在此实施例中,不仅半导体芯片1和D1的缓冲构件23A和23B,而且半导体芯片2和D2的缓冲构件23A和23B跨越半导体芯片1、2、D1和D2及框架部分401的顶部,且缓冲构件23A和23B的部分230安装在框架部分401和汇流条400的垂直部分400d。此外,汇流条17和410的末端向下弯曲,以形成弯曲部分17b和410a,且弯曲部分17b和410a安装在缓冲构件23A和23B的部分230。弯曲部分17b和410a及缓冲构件23A和23B通过施压而接触。与弯曲部分17b和410a接触的突起423形成于单元42的背表面侧的中心,且当单元42使用螺栓固紧到冷却部分11时,弯曲部分17b和410a通过突起423而被向下压。
这样,汇流条17的弯曲部分17b与缓冲构件23A和23B的部分230压连,且通过施压与缓冲构件23A和23B的部分230接触,汇流条410的弯曲部分410a与汇流条400的垂直部分400d压连。应该注意,虽然在图中没有示出,缓冲构件23B和汇流条17及410也以与缓冲构件23A和汇流条17及410相同的方式设计。
绝缘构件25设在突起423与弯曲部分17b和410a之间。此外,用于防止施压时树脂塑性形变的加固元件404设置在压触部分下方的框架部分401。微小的定位差异(minute disparities)形成在弯曲部分17b和410a的末端与垂直部分400d的接触表面。在压触时,差异部分塑性形变以减小在缓冲构件23的倾斜度和高度的变化。缓冲构件23A和23B的表面也可能具有不规则形状,而不是弯曲部分17b和410a和垂直部分400d具有不规则形状。
在第四实施例中,避免了恰好位于半导体芯片1、2、D1和D2上方的接触,取而代之在框架部分401形成接触。因此施加到半导体芯片1、2、D1和D2的负载小。结果,可能防止由于施压时的负载导致半导体芯片发生故障。此外,在弯曲部分17b和410a的末端及垂直部分400d形成定位差异。差异部分在施压时塑性形变,这使得可能提供更好的接触并实现压力的更均匀施加。
如图20所示,弯曲部分23c可以形成在缓冲构件23A和23B使得缓冲构件23A和23B能在此部分易于变形。即使缓冲构件23A和23B在施加焊料时倾斜,弯曲部分23c在压触时变形以减轻施加有焊料处的部分的应力的产生。因此能提高焊接部分的可靠性。
图18所示的半导体装置相应于图1所示的单相逆变器电路,但也可能通过结合三组图18中的结构而在图21所示的三相逆变器电路中采用此结构。在图21中,IGBT 51、IGBT 52、二极管D1和二极管D2是组成U相的元件,IGBT 53、IGBT 54、二极管D3和二极管D4组成V相,且IGBT 55、IGBT 56、二极管D5和二极管D6组成W相。
图22是示出相应于上述单元40的单元60的平面图,图23A是相应于单元41的单元61的平面图,且图23B是相应于单元42的单元62的平面图。如图22所示,在单元60中,具有连接到电源的P侧的端子600a的汇流条600和分别具有U相输出端子、V相输出端子和W相输出端子的汇流条400U、400V和400W插入成型在框架601中。
汇流条600通过集成单元40用于U、V和W相的汇流条16而形成并安装有IGBT 51、53和55及二极管D1、D3和D5。汇流条400U、400V和400W的每个均与单元40的汇流条400相同。每个汇流条400U、400V和400W的端子400Ua、400Va和400Wa从单元60的同一侧表面引出。IGBT 52和二极管D2安装在汇流条400U上,IGBT 54和二极管D4安装在汇流条400V上,且IGBT 56和二极管D6安装在汇流条400W上。此外,均相应于单元40的栅端子18的栅端子18U、18V和18W为每个U、V和W相而提供,且均相应于栅端子20的栅端子20U、20V和20W为每个U、V和W相而提供。
在图23A所示的单元61中,汇流条610和汇流条611U、611V和611W插入成型到框架部分612中。汇流条610通过集成单元41用于U、V和W相的汇流条17而形成,并设置有用于连接到电源N侧的端子610a。每个汇流条611U、611V和611W与单元41的汇流条410相同。穿过有栅端子20U、20V和20W的通孔613和穿过有栅端子18U、18V和18W的通孔614形成在框架612中。用于向每个U、V和W相施加压力的突起620U、620V和620W形成于图23B所示的单元62的背表面侧。
这样,由于汇流条600和610为U、V和W相而集成,不需要在为每个相设置图18所示的半导体装置的情况下的用于每个相的端子之间的外部连接。因此可能使整个器件小,且可能减小电感。
第五实施例图24是示出第五实施例的截面图。同样的参考标号指的是与图3所示的装置相同的部分。此实施例确保了在将半导体芯片压到汇流条上时压力以均匀的方式施加到半导体芯片表面。下面的结构与图3所示的装置不同。
首先,辅助冷却构件26独立设置以用于IGBT芯片1和2以及用于二极管D1和D2,从而分别给出辅助冷却构件26A和辅助冷却构件26B。
第二,由于仅缓冲构件23A和23B安装在图3所示的装置的半导体芯片上,具有不同于缓冲构件23A和23B的杨氏模量的额外的缓冲构件70A和70B设置在缓冲构件23A和23B上。即,在此实施例中,提供了不同杨氏模量的两种缓冲构件。设置在缓冲构件23A和23B上的缓冲构件70A和70B由具有比缓冲构件23A和23B更低的杨氏模量的材料制成。例如,在钨用作缓冲构件23A和23B时,具有比钨低的杨氏模量的铜、铝或主要由铜或铝组成的合金被用于缓冲构件70A和70B。
第三,低杨氏模量材料的缓冲构件70A和70B的顶边及底边被斜切,使得缓冲构件70A和70B的上接触表面区S1小于下接触表面区S2,上接触表面区S1与汇流条17或15d接触且下接触表面区S2与缓冲构件23A或23B接触。这样,使得上侧斜切尺寸C1大于下侧斜切尺寸C2(参照图25)。
图25是示出辅助冷却构件26A和辅助冷却构件26B的操作的示意图,并仅示出了包括半导体芯片2和D2的侧面。IGBT 2和二极管D2彼此相邻地安装在汇流条15b上。此时,存在这样的可能,到缓冲构件70A和70B的上表面的高度可能由于层叠元件厚度的变化或在如图15所示使用焊料的情况下焊料厚度的变化而不同。在图25所示的范例中,IGBT芯片2一侧高于二极管D2一侧。
在上述图3所示的器件中,辅助冷却构件26被独立提供给每个IGBT芯片2和二极管D2的弹性构件27A和27B向下推动。汇流条17的高度可能因此变形以在不同高度的情况下调整到更低的高度。结果,施压操作也作用在低高度的半导体芯片上。
然而,图3所示的器件中,辅助冷却构件26设置得跨越IGBT芯片2和二极管D2。因此,关于低高度的缓冲构件23A或23B的接触可能不够并可能发生间隙。然而,在此实施例中,在IGBT芯片2一侧上的辅助冷却构件26A和在二极管D2一侧上的辅助冷却构件26B独立设置。在二极管D2一侧上的汇流条17因此由于图25所示的弹性构件27A和27B引起的推动力而向下变形,汇流条17与缓冲构件70B的接触状态良好,且压力以均匀的方式施加。
此外,缓冲构件70A和70B由具有低杨氏模量的易于变形的元件形成,因此高度差异可以通过更高的缓冲构件70A的变形而减小。结果,汇流条17的变形变小且压力施加的不规则可以得到抑制。由于具有比缓冲构件70A和70B更高杨氏模量的缓冲构件23A和23B设置在缓冲构件70A和70B与半导体芯片之间,即使存在来自缓冲构件70A和70B的压力的不均匀施加,也会被缓冲构件23A和23B降低。
通过使缓冲构件70A和70B上侧面的斜切尺寸C1大,导致汇流条17发生变形的间距L2变大,有可能使变形更容易发生。此外,通过使斜切尺寸C1大,可能使IGBT 2和二极管D2之间的距离变小,同时保持间距L2和装置本身均能制造得较小。
此外,如此设置尺寸,得使C1>C2,并通过使缓冲构件70A和70B上侧上的接触表面区S1小于下侧的表面接触区S2,可以使从下侧缓冲构件23A和23B向半导体芯片2和D2的压力施加均匀,且非平衡负载可以得到抑制。
图26A和图26B是示出非平衡负载抑制操作的示意图,其中图26A示出了C1>C2(S1<S2)的情况,且图26B示出了C1<C2(S1>S2)的情况。在图26A的情况中,高度差被汇流条17的变形减小但保持了汇流条17轻微的倾斜。在这种情况下,力将沿倾斜方向施加到缓冲构件70A和70B上。然而,由于S1<S2的设置,具有更高表面压力的缓冲构件70A和70B的上表面侧面变形,而具有较低表面压力的下表面侧面保持与半导体芯片2和D2平行。因此在半导体芯片2和D2难于产生非平衡负载。
另一方面,在S1>S2的情况,因为S1>S2,沿倾斜方向施加到由低杨氏模量材料构成的缓冲构件70A和70B的力的方向难于改变。因此,非平衡负载可以容易地施加到半导体芯片2和D2。
如果S1<S2,缓冲构件70A和70B的形状不限于上述,也可以是对上表面的外角进行如图27A到图27D所示的曲线表面处理等而形成的形状。然而,需要确保表面区S1提供足够的用于通电(energizing)的表面区。
在上述范例中,给出了压触由夹在汇流条之间的两个半导体芯片IGBT和二极管形成的描述,但也可以应用在一个芯片的情况。即,即使仅有一个半导体芯片时处于倾斜状态的上侧汇流条也会发生压触。在这种情况下,通过额外引入具有比缓冲构件23A和23B低的杨氏模量的缓冲构件,例如缓冲构件70A和70B,且然后通过使上接触表面区S1小于下接触表面区S2,可以得到与上述相同的结果。
在上述第一到第五实施例中,IGBT 1和IGBT 2可以称为半导体芯片。此外,缓冲构件23A、23B、70A和70B可以称为导电构件,缓冲构件23A和23B的部分230可以称为延伸部分,弯曲部分B和23c可以称为变形部分,而端子16a和17a可以称为外生(externally derived)端子。也可以称IGBT 1和2及二极管D1和D2为半导体芯片,并称辅助冷却构件26A和26B及弹性构件27A和27B为压件。
根据上述第一到第五实施例,汇流条17、15d和410设置在半导体芯片的前表面侧,并压连到半导体芯片。因此可能省略使用丝焊的连接操作,使得制造效率得到提高且可能使半导体装置制造得小。
上述实施例是范例,可以在不脱离本发明的范畴内进行各种改进。
此处引用下面的优先权申请公开2004年12月28日提交的日本专利申请No.2004-379444作为参考。
权利要求
1.一种半导体装置,包括第一半导体芯片,形成有前侧电极和背侧电极;第二半导体芯片,形成有前侧电极和背侧电极;第一汇流条,其上安装所述第一半导体芯片,使得所述第一半导体芯片的所述背侧电极连接到该第一汇流条;第二汇流条,相对于所述第一汇流条水平设置,其上安装所述第二半导体芯片,使得所述第二半导体芯片的所述背侧电极连接到该第二汇流条;第三汇流条,压连到所述第一半导体芯片的所述前侧电极;第四汇流条,压连到所述第二半导体芯片的所述前侧电极;和连接部分,电连接所述第一汇流条和所述第四汇流条。
2.如权利要求1所述的半导体装置,其中所述第一汇流条、所述第四汇流条和所述连接部分通过弯曲单个导电板而一体地形成。
3.如权利要求2所述的半导体芯片,其中所述第一汇流条和所述第四汇流条连接,使得在施压时能在垂直方向相对偏移。
4.如权利要求3所述的半导体装置,还包括变形部分,设置在所述连接部分,其在施压时变形以使所述第一汇流条和所述第四汇流条能在垂直方向相对偏移。
5.如权利要求1所述的半导体装置,其中一部分所述第一汇流条压连到所述第四汇流条。
6.一种半导体装置,包括第一半导体芯片,形成有前侧电极和背侧电极;第二半导体芯片,形成有前侧电极和背侧电极;第一汇流条,其上安装所述第一半导体芯片,使得所述第一半导体芯片的所述背侧电极连接到该第一汇流条,且其上安装所述第二半导体芯片,使得所述第二半导体芯片的前侧电极连接到该第一汇流条;第二汇流条,压连到所述第一半导体芯片的所述前侧电极;和第三汇流条,压连到所述第二半导体芯片的所述背侧电极。
7.一种半导体装置,包括第一半导体芯片,形成有前侧电极和背侧电极;第二半导体芯片,形成有前侧电极和背侧电极;第一汇流条,其上安装所述第一半导体芯片,使得所述第一半导体芯片的所述背侧电极连接到该第一汇流条;第二汇流条,相对于所述第一汇流条水平设置,其上安装所述第二半导体芯片使得所述第二半导体芯片的所述背侧电极连接到该第二汇流条;第一导电构件,与所述第一半导体芯片的所述前侧电极相连并包括延伸到所述第一半导体芯片之外的延伸部分;第二导电构件,与所述第二半导体芯片的所述前侧电极相连并包括延伸到所述第一汇流条上方的延伸部分;第三汇流条,设置在所述第一半导体芯片的前表面侧,具有压连到所述第一导电构件的所述延伸部分的部分;和第四汇流条,设置在所述第二半导体芯片的前表面侧,具有与所述第二导电构件的所述延伸部分相连并压连到所述第一汇流条的部分。
8.如权利要求7所述的半导体装置,其中所述延伸部分的压连表面或者压连到所述延伸部分的所述第一、第三和第四汇流条的连接表面均具有不规则形状。
9.如权利要求7所述的半导体装置,还包括变形部分,设置在所述第一导电构件和所述第二导电构件,其在将所述第三汇流条和所述第四汇流条压到所述延伸部分时变形以使所述延伸部分能发生垂直偏移。
10.如权利要求1所述的半导体装置,还包括端子,设置在所述第二汇流条和所述第三汇流条,以彼此相邻设置,其延伸到所述半导体装置的外侧。
11.如权利要求10所述的半导体装置,其中所述第二汇流条和所述第三汇流条的端子沿同一方向延伸。
12.如权利要求1所述的半导体装置,还包括第三导电构件,设置在所述第一半导体芯片和所述第三汇流条之间以及所述第二半导体芯片和所述第四汇流条之间,分别接触所述第一半导体芯片和所述第二半导体芯片;和第四导电构件,分别夹在所述第一汇流条与所述第三导电构件之间以及所述第二汇流条与所述第三导电构件之间,具有比所述第三导电构件的杨氏模量低的杨氏模量。
13.如权利要求12所述的半导体装置,其中每个所述第四导电构件以这样的方式设置使与所述第三汇流条和所述第四汇流条之一接触的第一接触表面的面积小于与所述第三导电构件之一接触的第二接触表面的面积。
14.如权利要求13所述的半导体装置,其中通过对所述第一接触表面的边缘进行弯曲表面处理和斜切之一而使所述第一接触表面的面积设置得小于所述第二接触表面的面积。
15.一种半导体装置,包括第一、第二、第三和第四半导体芯片,在前侧和背侧形成有电极;第一汇流条,其上安装所述第一和第二半导体芯片,使得所述背侧电极连接到该第一汇流条;第二汇流条,相对于所述第一汇流条水平设置,其上安装所述第三和第四半导体芯片,使得所述背侧电极连接到该第二汇流条;第三汇流条,压连到所述第一和第二半导体芯片的前侧电极;第四汇流条,压连到所述第三和第四半导体芯片的前侧电极;连接部分,电连接所述第一汇流条和所述第四汇流条;第一压件,设置在所述第三汇流条上以将所述第三汇流条压向所述第一半导体芯片;第二压件,设置在所述第三汇流条上以将所述第三汇流条压向所述第二半导体芯片;第三压件,设置在所述第四汇流条上以将所述第四汇流条压向所述第三半导体芯片;和第四压件,设置在所述第四汇流条上以将所述第四汇流条压向所述第四半导体芯片。
16.如权利要求1所述的半导体装置,还包括辅助冷却构件,设置在所述第三汇流条和所述第四汇流条上,包括用于在侧表面散热的延伸部分。
17.如权利要求1所述的半导体装置,还包括第一外壳,形成有所述第一汇流条、所述第四汇流条和所述连接部分,且容纳所述第一半导体芯片;和第二外壳,形成有所述第二汇流条,且容纳所述第二半导体芯片。
18.如权利要求7所述的半导体装置,还包括第一单元,包括所述第一半导体芯片、所述第二半导体芯片、所述第一汇流条、所述第二汇流条、所述第一导电构件和所述第二导电构件;第二单元,包括所述第三汇流条和所述第四汇流条;和第三单元,包括突出部分以挤压所述第三汇流条和所述第四汇流条,其中所述第二单元设置在所述第一单元顶上,且所述第三单元设置在所述第二单元顶上。
全文摘要
一种半导体装置包括第一和第二半导体芯片,在前侧和背侧形成有电极;第一汇流条,其上安装所述第一半导体芯片使得该背侧电极连接到该第一汇流条;第二汇流条,与第一汇流条平行设置,其上安装有第二半导体芯片,使得背侧电极连接到该第二汇流条;第三汇流条,压连到第一半导体芯片的前侧电极;第四汇流条,压连到第二半导体芯片的前侧电极;和连接部分,电连接第一汇流条和第四汇流条。
文档编号H01L25/07GK1812091SQ20051013610
公开日2006年8月2日 申请日期2005年12月21日 优先权日2004年12月28日
发明者成瀬干夫, 涩谷彰弘, 古川资之, 冈田安弘, 上野大悟 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1