包含复合氧化物成形涂层的燃料电池元件的制作方法

文档序号:6868491阅读:157来源:国知局
专利名称:包含复合氧化物成形涂层的燃料电池元件的制作方法
技术领域
本发明公开内容涉及一种特别用于高温及腐蚀环境中的燃料电池元件。该燃料电池元件包括金属基底(如不锈钢)以及涂层,该涂层又包含至少一层金属层和一层反应层。通过对不同层进行沉积,其后氧化涂层从而获得包含至少一种复合金属氧化物(如钙钛矿和/或尖晶石)的导电表面层,从而制得所述燃料电池元件。
背景技术
用在高温和腐蚀环境中的燃料电池元件、特别是用于固体氧化物燃料电池(SOFC)的一个实例是用于燃料电池的互连件。用于燃料电池的互连件材料应当既作为燃料侧和氧气/空气侧之间的隔板,也作为燃料电池的集电器。对于作为良好隔板的互连件材料,该材料必须致密以避免气体通过该材料扩散,并且为了成为良好的集电器,互连件材料必须导电,且不应在其表面形成绝缘氧化皮。
互连件材料可由例如石墨、陶瓷或金属(通常是不锈钢)制成。例如,铁素体铬钢用作SOFC中的互连件材料,其实例包括以下两篇文章P.B.Friehling and S.Linderoth在由J.Huijsmans出版的在瑞士卢塞恩举行的第五次欧洲固体氧化燃料电池论坛的会议录(2002)(theProceedings Fifth European Solid Oxide Fuel Cell Forum,Lucerne,Switzerland(2002))第855页发表的“铁素体铬钢作为SOFC组的互连件材料的评价”(″Evaluation of Ferrite Stainless Steels asInterconnects in SOFC Stacks″);T.Uehara,T.Ohno & A.Toji在由J.Huijsmans出版的在瑞士卢塞恩举行的第五次欧洲固体氧化燃料电池论坛的会议录(2002)(the Proceedings Fifth European Solid Oxide FuelCell Forum,Lucerne,Switzerland(2002))第281页发表的“铁素体Fe-Cr合金作为SOFC隔板的开发”(″Development of Ferritic Fe-Cr Alloyfor SOFC separator″)。
在SOFC应用中,互连件材料的热膨胀绝不能明显不同于用作燃料电池组的阳极、电解液和阴极的电活性陶瓷材料的热膨胀。铁素体铬钢非常适合于这种应用,因为铁素体钢的热膨胀系数(TEC)接近于用在燃料电池中的电活性陶瓷材料的TEC。
燃料电池中的互连件材料在操作期间将暴露在氧化作用中。尤其对于SOFC的情况,这种氧化作用可能对燃料电池效率和燃料电池的寿命有害。例如,在互连件材料表面形成的氧化皮由于热循环可能变厚,并甚至可能剥落或破裂。因而,氧化皮应具有与互连件材料良好的粘接性。进而,形成的氧化皮还应具有良好的导电性并且不会变得太厚,因为较厚的氧化皮将导致内阻的增大。形成的氧化皮还应对SOFC中用作燃料的气体化学稳定,即,不应形成挥发性含金属物质(如氢氧化铬)。挥发性化合物(如氢氧化铬)将污染SOFC组中的电活性陶瓷材料,它又将导致燃料电池效率降低。另外,在互连件材料由不锈钢制成这种情况下,存在的风险是在燃料电池寿命期间,由于铬由钢中心扩散到其表面形成的氧化铬皮造成的钢中铬的损耗。
使用商业铁素体铬钢作为SOFC中互连件材料的一个不利之处在于,它们通常与少量铝和/或硅形成合金,这将在SOFC的工作温度下分别形成Al2O3和SiO2。这些氧化物都是绝缘的,会提高电池的电阻,又会导致燃料电池效率降低。
一种解决由于使用铁素体钢作为SOFC中互连件材料而引起的问题的方法是,使用含有非常低含量的Si和Al的铁素体钢以避免形成绝缘氧化物层。这些钢通常也与锰和稀土金属如La形成合金。例如这已在专利申请US 2003/0059335中做出,其中钢与(以重量计)0.2-1.0%Mn、0.01-0.4%La、少于0.2%Al和少于0.2%Si形成合金。另一实例是专利申请EP 1 298 228 A2中钢与(以重量计)少于1.0%Mn、少于1.0%Si、少于1.0%Al以及少于0.5%Y和/或少于0.2%稀土金属(REM)形成合金。
在专利申请US 6 054231中一种超耐热合金,其被定义为奥氏体不锈钢,是镍和铬的合金、镍基合金或钴基合金,该不锈钢首先用Mn、Mg或Zn涂覆,接着用选自Cu、Fe、Ni、Ag、Au、Pt、Pd、Ir或Rh的额外的金属构成的25-125μm厚层涂覆。对贵金属(如Ni、Ag或Au)的厚的第二层进行涂覆,这对于保护已经相对贵重的基层材料(如超合金)而言,并不是经济的生产方式。
US2004/0058205描述了用作电触点的金属合金,当氧化时其形成高电导表面。这些合金可应用在基底如钢上。导电表面通过掺杂一种金属(如Ti)与另一种金属(如Nb或Ta)而获得。另外,US2004/0058205所述合金在一步中涂覆在表面上,并在其后被氧化。
另外,DE 195 47 699 A1中揭示了两极板,其具有一部分用金属或金属氧化物涂覆的表面,该金属或金属氧化物与基底中的Cr形成高导电性混合氧化物层。DE 195 47 699 A1中的发明还涉及一种包含铬氧化物的板,该氧化物与钴、镍或铁在电极接触表面区域内形成合金浓缩层。进而,DE 195 47 699 A1揭示了一种Cr氧化物成形基底,其用作SOFC互连件,具有一层含有可形成尖晶石的元素的层。
所引用的现有技术都没有提供满意的用在腐蚀环境和/或高温下的燃料电池元件材料,且没有以节省成本的方式生产以及具有高的控制导电表面质量的可能性。
因而,主要目的是提供一种带有低表面电阻且高抗腐蚀性的燃料电池元件。
另一个目的是提供一种长使用寿命操作期间将保持其性能的燃料电池元件材料。
又一个目的是提供甚至在高温下具有良好机械强度的燃料电池元件材料。
另一目的是提供用作燃料电池元件的节省成本的材料。

发明内容
一种金属材料(优选不锈钢,更优选铁素体铬钢)的带基底,其具有由至少一层金属材料和至少一层反应层组成的涂层。在上下文中,反应层被认为意指含有至少一种当氧化时与第一层的金属材料形成至少一种复合金属氧化物(如尖晶石和/或钙钛矿)的元素或化合物层。
带基底可通过任何得到致密粘接涂层的方法来提供涂层。涂覆方法的一个优选实例是以连续的卷式(roll-to-roll)工艺进行气相淀积,如PVD。之后,燃料电池元件通过任何常规成形方法(如冲孔、冲压或类似方法)由涂覆带形成。由涂覆带构成的燃料电池元件可在组装为燃料电池或燃料电池组之前氧化,或可在操作期间氧化。


图1是1.5μm厚CrM氧化物的GDOES分析。
图2是有及没有涂层的氧化样品的GIXRD衍射图。
图3是有及没有反应层的预氧化样品的GIXRD衍射图。
具体实施例方式
在本发明公开内容中,词语“提供”和“被提供”将分别被认作意指有意识的行为和有意识行为的结果。从而,在上下文中,被提供层的表面意为主动行为的结果。
现已发现,在用作燃料电池元件的金属基底上,可在表面形成复合金属氧化物结构,而非“常规”氧化物。复合氧化物的目的是为了获得带有高电导性的表面,以便获得具有低接触电阻的表面。
在上下文中,复合金属氧化物由其结构中包括但不限于至少两种不同金属离子的任何金属氧化物组成。这种氧化物结构的实例是尖晶石和钙钛矿型结构。
涂覆带材料通过提供金属基底而制成,所述金属基底如不锈钢,优选为铬含量为15-30%重量百分比的铁素体铬钢。其后,该带材料基底被提供以含有至少两层分层的涂层。一层为基于金属或金属合金的金属层,所述金属或金属合金选自Al、Cr、Co、Mo、Ni、Ta、W、Zr或基于任一这些元素的合金,优选Cr、Co、Mo或基于任一这些元素的合金。在上下文中,“基于”意指元素/合金构成复合物的主要成分,优选构成复合物的至少50%重量百分比。其它层为含有至少一种元素或化合物的反应层,其氧化时与金属层的元素形成复杂金属氧化物结构。可以调整涂层的精确组成,以获得想要的复杂金属氧化物结构的构成,该结构可以是在氧化时具有理想性质(例如良好的导电性和良好的抗腐蚀性)的尖晶石、钙钛矿和/或任何其它三元或四元金属氧化物。
为表面提供含有两层分层的涂层,一层是金属层、另一层是反应层,其一个原因是使得燃料电池元件的生产更为简化。然而,提供含两层分层的涂层的主要原因是更易于控制混合氧化物中不同元素的含量,即,特制需要的复合物以便获得需要的结果。进而,涂层与基底间可达到极好的粘合,从而改进燃料电池元件的性质,并因此提高燃料电池和燃料电池组的效率并延长其使用寿命。
反应层可置于金属材料层的任一侧;即,夹在基底和金属层之间或位于第一沉积金属层顶部。
根据一个优选实施例,金属材料由基本纯Cr或Cr基合金组成。在这种情况下,当涂层氧化时,形成分子式为MCrO3和/或MCr2O4的化合物,其中M是来自反应层的前述任何元素/化合物。反应层可包含的元素选自周期表的2A或3A族、稀土元素(REM)或过渡金属元素。在这个实施例中,反应层的元素M优选含有任何以下元素La、Y、Ce、Bi、Sr、Ba、Ca、Mg、Mn、Co、Ni、Fe或它们的混合物,更优选为La、Y、Sr、Mn、Co和或它们的混合物。该实施例的一个特殊实例是一层Cr和另一层Co。
反应层通过根据另一个优选实施方案的金属基材料表面预氧化获得。在金属基材料是不锈钢这种情况下,将形成氧化铬。其后,Ni层或Co层沉积在根据该优选实施方案形成的氧化物上。
涂层还可包括更多的层。例如,涂层可包括第一金属层,此后为反应层和最后另一金属层。该实施方案进而确保燃料电池元件表面具有良好的导电性。然而,由于经济原因,涂层不会包括超过10层分层,优选不超过5层分层。
不同层的厚度通常少于20μm,优选少于10μm,更优选少于5μm,最优选少于1μm。根据一个实施方案,反应层的厚度低于金属层的厚度。当反应层包括其自身氧化形成非导电氧化物的元素或化合物时,这一点尤为重要。在这种情况下,重要的是,至少在燃料电池元件作用期间,基本上整个反应层允许反应和/或扩散进入金属层,因此作用期间元件的导电性不会受到消极影响。
涂覆带可用批量式方法生产。然而,为了经济原因,该带可以用连续的卷装进出加工方法生产。涂层可通过使用金属层和反应层涂覆而提供在基底上。然而,根据本发明的替代实施方案,涂层还可通过将基底预氧化至氧化物厚度至少为50nm之后用另外的层涂覆来提供。其后涂层进一步氧化以得到复合金属氧化物结构。在基材是铁素体铬钢时,这个在基材上提供涂层的替代实施方案尤其适用,如此形成在表面的氧化物是铬基氧化物。
涂层可利用任何涂覆加工方法实施,只要可形成与下层材料(即基底或下层涂覆层)具有良好粘接的薄致密涂层即可。无疑地,该带表面在涂覆前必须以适当的方法清洁,例如除去残留油和/或基底本身的氧化层。根据一个优选实施方案,涂层通过连续卷式工艺中使用PVD技术实施,如果需要,优选使用等离子活性反应的电子束蒸发。
此外,带可在一侧或两侧上提供涂层。在涂层提供于带两侧表面的情况下,带每侧不同层的构成可以相同但也可不同。带可在两侧同时涂覆或一次涂覆一侧。
任选地,涂覆带暴露在中间均化作用步骤中,以便混合分层并得到均质涂层。均化作用可在合适气氛下通过任何常规加热处理完成,所述气氛可以是真空或还原性气氛,如氢气或氢气和惰性气体如氮气、氩或氦的混合物。
涂覆带此后在高于室温的温度下氧化,优选高于100℃,更优选高于300℃,以便在带表面形成复合金属氧化物。无疑地,当涂层在氧化时由于复合金属氧化物的形成,涂层厚度将增加。该氧化可能导致涂层总体氧化或涂层部分氧化,其取决于例如涂层的厚度,如果涂层发生均化,还取决于氧化时间和温度。在任一情况下,涂层的不同层允许相互间至少部分反应和/或扩散(如果没有通过中间均化作用步骤完成的话)。氧化可直接在涂覆后实施,即,在燃料电池元件最终形态形成前,在最终元件的形状形成(即利用涂覆带生产燃料电池元件)后,或在燃料电池或燃料电池集合组装后,即在作业期间。
在带表面获得复合金属氧化物结构的目的在于,所形成的结构具有比常规的金属层元素氧化物更低的电阻。这又将使燃料电池元件具有更低的接触电阻,因此获得更好的燃料电池效率。例如,Cr2O3在800℃的电阻约为7800Ω·cm,而例如La0.85Sr0.15CrO3的电阻要低几个数量级,为约0.01Ω·cm。
同样,在含复合铬三元氧化物(如尖晶石和钙钛矿)的情况下,相信这些氧化物比纯Cr2O3在高温下的挥发性更小。
另外,通过在如不锈钢这样的基底表面上提供复合金属氧化物结构,如钙钛矿和/或尖晶石,燃料电池元件将具有良好的机械强度,并且比例如完全由复合金属氧化物材料制造燃料电池元件具有更为低廉的生产成本。
同样,在基底是不锈钢的情况下,由于金属层将在基底的铬发生氧化之前很早就发生氧化,从而基底中的铬损耗得以抑制,这在金属层为Cr或Cr基合金时尤其明显。因此,基底的抗腐蚀性在作业期间不会降低。
作为上述发明的可替换方式,可以通过其它方法实施涂层,例如通过共蒸发涂层的不同组分。
涂覆带的实例将在此描述。这些不应被认作限制而仅仅是说明性质。
实施例1不锈钢基底用含有金属层和反应层的涂层涂覆。金属层为Cr或Cr基合金。如果氧化物应容纳有尖晶石结构,则反应层在这种情况下包括过渡金属,如Ni、Co、Mn和/或Fe。如果需要钙钛矿结构,反应层含有选自周期表的2A或3A族的元素,或稀土元素。优选地,反应层含有Ba、Sr、Ca、Y、La和/或Ce。如果为既包括尖晶石又包括钙钛矿结构的混合结构,反应层可包含选自周期表的2A或3A族的元素,或稀土元素,同时包括过渡金属元素。替代的,Mn和/或稀土元素允许从基底扩散。
任选地,使涂层均化,之后氧化以便在表面上形成预期结构。这导致带基底具有极低的表面电阻。同样,氧化期间形成的Cr氧化物MCrO3和/或MCr2O4在高温下比纯Cr2O3具有更低的挥发性。这导致涂覆带非常适于用作固体氧化物燃料电池中的互连件。
实施例2对0.2mm厚的铁素体铬不锈钢带基底进行涂覆。对该涂层进行均化以便获得CrM层,其中M是La和Mn的混合物。涂层中Cr的浓度约为35-55wt%,而Mn的浓度约为30-60wt%,La的浓度为3-4wt%。
对表面进行辉光放电发射光谱(GDOES)分析。使用这种技术,可以研究表面层的化学组成相对于由表面开始的距离的函数。该方法对于浓度的微小变化非常敏感,并具有几个纳米的深度分辨率。图1示出了1.5μm厚CrM表面合金层的GDOES分析结果。
实施例3生产出铁素体铬钢的两个标称组成的样品,以重量百分比计,至多0.050%C;至多0.25%Si;至多0.35%Mn;21-23%Cr;至多0.40%Ni;0.80-1.2%Mo;至多0.01%Al;0.60-0.90%Nb;少量加入V、Ti和Zr以及天然存在的杂质。其中一个样品用0.1μm厚的钴层和0.3μm厚的铬层进行涂覆。在对其进行分析前,该样品在空气中以850℃氧化168小时。该样品以入射角为0.5°的掠入射X射线衍射(GIXRD)分析,见图2。应指出,GIXRD是一种表面敏感衍射方法,并仅分析氧化钢顶层的结晶相。任何在顶层上存在的、掠入射X射线无法达到的结晶相在衍射图中无法看到。尖晶石与每个样品氧化皮顶层形成的铬氧化物量之比这样对比,测量Cr2O3(绿铬矿)反射在2θ=36.7°(3)处峰顶到底部强度,并在2θ≈45°(4)处用尖晶石反射密度对其进行研究。未涂覆氧化样品绿铬矿/尖晶石的比率为9.9,而涂覆样品的比率为1.0。这可以认为是尖晶石结构在形成的表面氧化皮中十倍增加。图2中(1)衍射图是未涂覆的样品在空气于850℃下氧化168小时,(2)衍射图是涂覆的样品在空气中于850℃下氧化168小时。
实施例4生产出铁素体铬钢的三个标称组成的样品,以重量百分比计,至多0.050%C;至多0.25%S;至多0.35%Mn;21-23%Cr;至多0.40%Ni;0.80-1.2%Mo;至多0.01%Al;0.60-0.90%Nb;少量加入V、Ti和Zr以及天然存在的杂质。对两个样品在空气中进行预氧化,以得到100nm厚氧化皮。之后预氧化的样品用金属层进行涂覆。样品2上的金属层是300nm厚的Ni层,样品3上的是300nm厚的Co层。在对其进行分析之前,所有三个样品接着进一步在空气中于850℃下氧化168小时。样品采用入射角为0.5°的掠入射X射线衍射(GIXRD)进行分析,见图3。应指出GIXRD是一种表面敏感衍射方法,并仅分析氧化钢顶层的结晶相。任何存在于顶层上、掠入射X射线无法达到的结晶相将无法在衍射图中看到。尖晶石与每个样品氧化皮顶层形成的铬氧化物量之比这样对比,测量(绿铬矿)反射在2θ=36.7°(3)处峰顶到底部强度,并在2θ≈45°(4)处用尖晶石反射对其进行研究。未涂覆氧化样品Cr2O3/MCr2O4的比率为9.9,而用Ni层预氧化的样品的比率为1.26,用Co层预氧化的样品的比率为0.98。这标志尖晶石结构在形成的表面氧化皮中分别增加8.5、10倍。这里令人感兴趣的是,注意到镍层不仅在皮中形成更多尖晶石氧化物,而且当样品被氧化(6)时还形成NiO。图3中(1)衍射图是未涂覆的样品在空气中于850℃下氧化168小时,(2)衍射图是用Ni层预氧化的样品在空气中于850℃下氧化168小时,(3)衍射图是用Co层预氧化的样品在空气中于850℃下氧化168小时。
权利要求
1.含有金属基材的燃料电池元件,其中所述基材具有涂层,该涂层含有至少一层基于金属或金属合金的金属层和至少一层反应层,该反应层含有至少一种氧化时与该金属或金属合金形成至少一种复杂混合氧化物的元素或化合物。
2.根据权利要求1的燃料电池元件,其中所述复杂混合氧化物包含尖晶石和/或钙钛矿。
3.根据权利要求1的燃料电池元件,其中该金属层基于选自Al、Cr、Co、Mo、Ni、Ta、W、Zr的金属或基于这些元素中任一的金属合金。
4.根据权利要求1或2的燃料电池元件,其中每一层的厚度小于20μm。
5.根据以上任一项权利要求的燃料电池元件,其中除反应层之外,所述涂层包含至少两层分开的金属层,它们优选基于同一金属或金属合金。
6.根据以上任一项权利要求的燃料电池元件,其中该金属基材包含重量百分比为0.1-5%的Mn和/或重量百分比为0.01-3%的稀土金属。
7.根据以上任一项权利要求的燃料电池元件,其中金属层为Cr或Cr基合金,反应层包括至少一种过渡金属、一种选自周期表2A或3A族的元素、和/或一种/多种稀土金属。
8.根据以上任一项权利要求的燃料电池元件,其中反应层构成与金属层的金属或金属合金不同的金属或金属合金。
9.根据权利要求1-6或8任一项的燃料电池元件,其中基材涂覆有钴层和铬层。
10.根据权利要求1-6任一项的燃料电池元件,其中反应层是通过基底预氧化获得的氧化物,金属层是Ni层或Co层。
11.根据权利要求1-7任一项的燃料电池元件,其中反应层含有至少一种选自La、Y、Ce、Bi、Sr、Ba、Ca、Mg、Mn、Co、Ni、Fe和其混合物的元素。
12.根据以上任一项权利要求的燃料电池元件,其中金属基材是不锈钢。
13.根据以上任一项权利要求的燃料电池元件,其是用于作为能量和/或热量产生设备的固体氧化物燃料电池的互连件。
14.根据以上任一项权利要求的燃料电池元件,其是用于作为电解设备的固体氧化物燃料电池的互连件。
15.包括根据权利要求1的燃料电池元件的能量和/或热量产生设备。
16.包括根据权利要求1的燃料电池元件的电解设备。
17.生产包括金属基材的燃料电池元件的方法,该方法包含以下步骤(i)在金属基材上提供至少一层金属层和至少一层元素和/或化合物层,该元素和/或化合物层在氧化时与金属或金属合金形成至少一种复杂混合氧化物结构,(ii)使不同层相互反应或相互扩散,(iii)氧化具有所述层的金属基材,借此在金属基材表面上形成至少一种复杂混合氧化物。
18.根据权利要求17的方法,其中复杂混合氧化物结构含有尖晶石和/或钙钛矿。
19.根据权利要求17的方法,其中该金属层基于的金属或金属合金选自Al、Cr、Co、Ni、Mo、Ta、W、Zr或基于这些元素中任一的合金。
20.根据权利要求17-19中任一项的方法,其中该金属层通过涂覆而提供于金属基材上。
21.根据权利要求17-20中任一项的方法,其中该反应层通过涂覆而提供于金属基材上。
22.根据权利要求17-20任一项的方法,其中在氧化时与金属或金属合金形成复杂混合氧化物的化合物为氧化物。
23.根据权利要求22的方法,其中氧化物通过预氧化基底至至少为50nm的厚度而提供于带的表面上。
全文摘要
一种燃料电池元件,如用于固体氧化物燃料电池的互连件,包括金属基底(如不锈钢)和涂层,所述涂层又包括至少一层金属层和一层反应层。燃料电池元件通过提供不同层而生产,优选通过涂覆,其后氧化以获得包括复合金属氧化物结构的导电表面层。
文档编号H01M4/88GK101068678SQ200580041004
公开日2007年11月7日 申请日期2005年11月21日 优先权日2004年11月30日
发明者米卡埃尔·舒伊斯基, 芬恩·彼得森, 尼尔斯·克里斯蒂安森, 约根·格曾拉森, 瑟伦·林德罗特, 拉尔斯·米克尔森 申请人:山特维克知识产权股份有限公司, 托普瑟燃料电池股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1