半导体器件的制作方法

文档序号:6876153阅读:129来源:国知局

专利名称::半导体器件的制作方法
技术领域
:本发明涉及通过在衬底表面上形成半导体元件(使用半导体薄膜的元件)而形成的电光器件和具有这种电光器件的电子设备(电子装置)。典型地,本发明涉及其中薄膜晶体管(以下称为TFT)形成在衬底上的液晶显示器件或EL显示器件和具有这种显示器件作为显示器(显示部分)的电子设备。
背景技术
:近年来大大推进了在衬底上制造TFT的技术,并飞速发展了有源矩阵型显示器件中的应用。特别是,使用多晶硅膜的TFT具有比使用非晶硅膜的常规TFT高的电场效应迁移率(也称为迁移率),因而可以高速操作。因此,可以通过形成在与象素相同的衬底上的驱动电路进行象素控制,这通常是利用衬底外面的驱动电路进行的。因为通过在同一衬底上形成多个电路和元件具有很多优点,如减少制造成本、显示器件的小型化、提高生产量和提高生产率,因此这种类型的有源矩阵型显示器件成为人们注意的焦点。由Kobayashi等人发明的一种有源矩阵液晶显示器及其制造方法已授权为美国专利USP5767930,该液晶显示器与驱动电路合成一体,其中包括在一对衬底之一上、以快速方法制成的薄膜晶体管(TFT’s),以及适于高电压的CMOS驱动电路。该有源矩阵液晶显示器能以高速操作,兼且其制造方法可比传统的制造方法更快。但是,在有源矩阵显示器件的衬底上形成具有多种功能的电路和元件。因此在用TFTs形成电路和元件时,各个电路和元件所需要的TFTs的性能不同。例如,驱动电路如移位寄存电路需要高速操作的TFT,而象素部分中的开关元件需要具有充分低的截止电流值(当TFT处于截止操作状态时流过的漏电流值)的TFT。在这种情况下,具有相同结构的TFTs难以保证所有电路和元件所需要的性能,并且这会严重影响有源矩阵型显示器件的性能的提高。此外,在使用有源矩阵显示器件作为电子设备的一部分时需要除了上述象素和驱动电路以外的很多电路。特别是,在有源矩阵显示器件的扩大使用中在同一衬底上形成用于暂时记录图象信息的存储部分是很重要的。
发明内容本发明的目的是提供具有高操作性能和可靠性的电光器件,其中在同一衬底上具有象素部分和驱动电路部分的有源矩阵型显示器件中使用TFT,该电光器件具有适当的结构以获得由TFTs构成的电路和元件所需要的性能。具体地说,本发明的目的是提供具有高操作性能和可靠性的电光器件,该电光器件具有形成在同一衬底上的分别用于象素部分、驱动电路部分和存储部分的适当TFT结构。本发明的另一目的是通过对有源矩阵型电光器件增加存储功能来提高性能和提供显示器件的图象质量。此外,本发明的又一目的是提高使用本发明的电光器件作为显示器的电子设备的质量。根据本发明的一种半导体器件,包括一p沟道TFT;一n沟道TFT,其中至少有一部分LDD区与栅极叠加,在LDD区和栅极之间夹有第二栅绝缘膜;一存储晶体管,其包括一源区、一漏区、一沟道区、第一栅绝缘膜、一浮置栅极、第三栅绝缘膜、和一控制栅极,其中,所述p沟道TFT和所述n沟道TFT和所述存储晶体管都设置在同一绝缘体之上,所述p沟道TFT和所述n沟道TFT都设置在一个CMOS电路中,并且,所述存储晶体管的所述漏区叠加在所述的浮置栅极。根据本发明的另一种半导体器件,包括一p沟道TFT;一n沟道TFT,其中至少有一部分LDD区与栅极叠加,在LDD区和栅极之间夹有第二栅绝缘膜;一存储晶体管,其包括一源区、一漏区、一沟道区、第一栅绝缘膜、一浮置栅极、第三栅绝缘膜、一控制栅极、和一LDD区,其中,所述p沟道TFT和所述n沟道TFT和所述存储晶体管都设置在同一绝缘体之上,所述p沟道TFT和所述n沟道TFT都设置在一个CMOS电路中,并且,所述存储晶体管的所述漏区叠加在所述的浮置栅极。在附图中图1是表示象素部分、驱动电路、和存储部分的视图;图2A-2E是表示制造象素部分、驱动电路和存储部分的工艺的视图;图3A-3E是表示制造象素部分、驱动电路和存储部分的工艺的视图;图4A-4D是表示制造象素部分、驱动电路和存储部分的工艺的视图;图5A-5C是表示制造象素部分、驱动电路和存储部分的工艺的视图;图6是有源矩阵型液晶显示器件的结构剖视图;图7是有源矩阵型液晶显示器件的透视图;图8是表示驱动电路的视图;图9A和9B是表示象素部分的视图;图10A和10B是表示象素部分、驱动电路和存储部分的结构图;图11是表示象素部分的视图;图12是表示象素部分、驱动电路和存储部分的结构图;图13A和13B是表示闪烁存储器的结构图;图14A和14B是表示闪烁存储器的结构图;图15是有源矩阵衬底的方框图;图16是有源矩阵衬底的方框图;图17是表示有源矩阵型EL显示器件的结构图;图18A和18B分别是表示EL显示器件的顶表面结构和剖视结构图;图19是表示EL显示器件的剖视结构图;图20A和20B是表示EL显示器件的象素部分的顶表面结构图;图21是表示EL器件的剖视结构图;图22A-22C是表示EL显示器件的象素部分的电路结构图;图23A和23B是表示EL显示器件的象素部分的电路结构图;图24A和24B是表示表示EL显示器件的电路结构图;图25A-25F是表示电子设备的例子的视图;图26A-26D是表示电子设备的例子的视图;和图27A和27B是表示光学引擎的结构图。具体实施例方式下面参照图1介绍本发明的实施方式。图1表示有源矩阵衬底的剖视图(在形成液晶或EL层之前衬底的TFT形成侧),其中存储部分、驱动电路部分和象素部分形成在同一衬底上(同一绝缘表面上或同一绝缘体上)。应该指出存储部分是由非挥发存储器形成的,这里为EEPROM(电可擦可编程只读存储器),形成在存储单元中的一个存储晶体管(也称为存储单元晶体管)的例子示于图1中。实际上,可以集成大量存储单元形成存储部分。在本发明中最好使用具有高集成度的闪烁存储器(闪烁EEPROM)。因此,在不对非挥发存储器有特别禁止的限制时,在整个说明书中闪烁存储器可用作非挥发存储器。此外,闪烁存储器是对每个扇区进行数据擦除的非挥发存储器,但是用于每个存储晶体管的源布线制成为公用线,因此在整个说明书中称为公用源布线。另外,示出CMOS电路作为形成驱动电路部分的特殊例子。实际上,如移位寄存器、电平移位器、锁存器和缓冲器等电路形成有CMOS电路作为基本电路,集成这些电路,形成驱动电路部分。此外,示出的象素TFT和电容存储器作为形成象素部分的特殊例子。实际上,为排列成矩阵状态的大量象素的每个形成象素TFT和电容存储器。图1中,参考标记101表示具有绝缘表面且有高热阻的衬底。石英衬底、硅衬底、陶瓷衬底、或金属衬底都可用做衬底101。不管使用哪种衬底,在需要时可形成基底膜(最好为含硅的绝缘膜),形成绝缘表面。应指出,在整个说明书中,“含硅的绝缘膜”具体指含有预定比例的硅、氧、或氮的绝缘膜,如氧化硅膜、氮化硅膜、或氧化的氮化硅膜(表示为SiOxNy)。然后在衬底101上形成半导体元件301-304。这里参照图1介绍每个半导体元件301-304。首先,形成半导体元件(存储晶体管)301以具有包含源区102、漏区103、低浓度杂质区(也称为LDD区)104和沟道形成区105的有源层;第一栅绝缘膜106;浮置栅极107;第三栅绝缘膜11;控制栅极108;通过第一层间绝缘膜12形成的公用源布线109;和位布线(漏布线)110。源布线102是用于将被捕获在浮置栅极107中的载流子(电子)取出到公用源布线109的区域,并且还称为擦除区域。应该指出,在图1中LDD区104形成在源布线102和沟道形成区105之间。此外,漏区103是用于将载流子注入到电绝缘的浮置栅极107中的区域,并且还称为写区。另外,漏区103用做将存储在存储晶体管301中的数据读出到位布线110的读区。漏区103形成得通过第一栅绝缘膜106叠加浮置栅极107。叠加的长度可以为0.1-0.5μm(最好在0.1和0.2μm之间)。由于寄生电容太大,因此不希望比上述范围更大的叠加。而且,在浮置栅极107中俘获载流子时,利用通过第三栅绝缘膜11形成在浮置栅极107上的控制栅极108进行控制。应该指出,必须使用做第一栅绝缘膜106的绝缘膜变薄(膜厚为3-20nm,最好在5和10nm之间)到容许隧道电流(Fouler-Nordheim电流)流过的程度,因此最好使用通过有源层的氧化得到的氧化物膜(如果有源层含有硅,为氧化硅膜)。当然,如果膜厚均匀性和膜质量良好,可以利用汽相法如CVD或溅射法形成第一栅绝缘膜。此外,最好使用有高的特定介电常数的绝缘膜作为第三栅绝缘膜11,虽然图1中未示出,这里使用由氧化硅膜/氮化硅膜/氧化硅膜层叠结构制成的绝缘膜。在这种情况下,一部分第三栅绝缘膜11含有氮化硅膜,因此对于其它半导体元件302-304可获得防止易活动的离子和潮气从外面进入的钝化膜效应。另外,还可以使用通过氧化浮置栅极107得到的氧化物膜(如果浮置栅极是钽膜,为氧化钽膜)。接下来,形成CMOS电路的半导体元件(n沟道TFT)302被形成得具有包含源区112、漏区113、LDD区114和沟道形成区115的有源层;第二栅绝缘膜13;栅极116;源布线117;和漏布线118。此时,第二栅绝缘膜13的膜厚设置为50-150nm(最好在80和120nm之间),使用了膜厚比在存储晶体管301中使用的第一栅绝缘膜106的膜厚大的绝缘膜。n沟道TFT的特性是LDD区114形成在漏区113和沟道形成区115之间,并且LDD区114通过第二栅绝缘膜13叠加栅极116。这种结构在防止由于热载流子注入引起的退化是很有效的。但是,在LDD区和栅极之间不希望地形成寄生电容,因此最好不在源区112和沟道形成区115之间形成LDD区。此外,此时LDD区114的长度可以为0.1-2μm(最好在0.3和0.5μm之间)。如果太长,则寄生电容变大,如果太短,则防止由热载流子注入引起的退化变弱。然后形成CMOS电路的半导体元件(p沟道TFT)303被形成得具有包含源区120、漏区121、和沟道形成区122的有源层;第二栅绝缘膜13;栅极123;源布线124;和漏布线118。此时,使用与n沟道TFT302的绝缘膜相同的绝缘膜用于第二栅绝缘膜,并且漏布线与n沟道TFT302共用。形成象素部分的半导体元件(象素TFT)304被形成得具有包含源区126、漏区127、LDD区128a-128d、沟道形成区129a和129b、和杂质区130的有源层;第二栅绝缘膜13;栅极131a和131b;源布线132;和漏布线133。此时最好在象素TFT304中形成LDD区128a-128d,使它们通过第二栅绝缘膜13而不叠加栅极131a和131b。应指出最好另外在沟道形成区和LDD区之间形成偏置区(由具有与沟道形成区相同成分的半导体层形成的区域,并且不向该区域施加栅电压)。在上述n沟道TFT302中使用的结构作为抗热载流子的措施当然也是有效的,但是,另一方面,看到截止电流值(在TFT处于截止操作状态时的漏电流值)变大的现象。这种现象对于驱动电路(除了取样电路之外)不会引起太大问题,但是对于象素TFT会引起致命的缺陷。因此,在本发明中使用具有象图1那样结构的象素TFT,减小截止电流的值。另外,杂质区130在减小截止电流值上也是很有效的。在象素TFT上形成被所有元件公用的钝化膜14,用具有高均匀度的绝缘膜如树脂膜在钝化膜14上形成第二层间绝缘膜15。然后在第二层间绝缘膜15上形成由金属膜形成的屏蔽膜134、利用氧化屏蔽膜134得到的氧化物135、和通过形成在第二层间绝缘膜中的接触孔连接到象素TFT304的象素电极136。应指出参考标记137表示另一相邻象素的象素电极,利用电容存储器138和屏蔽膜134通过氧化物135的叠加形成电容存储器138。换言之,给出的图1中所示结构的特点之一是电容存储器138用做光屏蔽膜和电场屏蔽膜。但是,本发明不限于图1中所示的电容存储器的结构。因此,如上所述,使用对应存储晶体管301、形成CMOS电路的n沟道TFT302、形成CMOS电路的p沟道TFT303和象素TFT304的各性能要求的适当结构,大大提高了有源矩阵显示器件的操作性能和可靠性。此外,可以在同一衬底上沿着驱动电路部分和象素部分形成存储部分,而不增加任何复杂步骤,因此可以形成甚至比常规有源矩阵显示器件的性能的更高的性能的有源矩阵显示器件。而且,除了上述存储部分、驱动电路部分和象素部分之外还可以形成信号处理电路。下面将给出其它信号处理电路的例子信号驱动电路、D/A转换器、γ补偿电路、升压电路、和差分放大电路。通过下面示出的实施例将更详细地介绍本发明。实施例1参照图2A-5C介绍本发明的实施例。在实施例1中,介绍在同一衬底上制造下列元件的方法象素部分、驱动象素部分的驱动电路部分和用于暂时存储给象素部分的信号信息的存储部分。而且,制造具有图1中所示结构的有源矩阵衬底。在图2A中,最好用石英衬底或硅衬底作为衬底201。本例中使用石英衬底。此外,还可以使用在其表面上有绝缘膜的金属衬底。在实施例1中要求能承受800℃或更高温度的热阻,如果能满足这个要求,任何类型的衬底都可以使用。利用如低压热CVD、等离子体CVD或溅射等方法在其上要形成TFTs的衬底201表面上形成含有厚度为20-100nm(最好在40nm和80nm之间)的非晶结构的半导体膜202。应指出,虽然在实施例1中形成了60nm厚的非晶硅膜,但是由于后来的氧化步骤,该膜厚不是最后TFT有源层的膜厚。非晶硅膜和微晶半导体膜作为含有非晶结构的半导体膜而存在,并且还可以使用含有非晶结构的化合半导体膜如非晶硅锗膜。此外,接着在衬底上形成基底膜和非晶硅膜而不暴露于大气是有效的。这样,就可以防止衬底表面上的污物影响非晶硅膜,并且可以减小制造的TFTs的特性的波动。然后用含有硅的绝缘膜在非晶硅膜202上形成掩膜203,并通过构图形成开口204a和204b。这些开口变成用于通过用促进结晶的催化元素掺杂的下一结晶步骤的掺杂区。(见图2A。)注意,氧化硅膜、氮化硅膜或氮化的氧化硅膜可用做含有硅的绝缘膜。氮化的氧化硅膜是由SiOxNy表示的绝缘膜,并含有预定量的硅、氮和氧。可用SiH4、N2O、和NH3作为原材料气体制造氮化的氧化硅膜,所含氮的浓度在5-50原子%范围变化。另外,同时进行掩膜203的构图,形成用于后来构图步骤的标准的标记图形。在腐蚀掩膜203的过程中还轻腐蚀非晶硅膜202,但是这个阶梯差可在后来掩模对准过程中用做标记图形。接着,根据在日本专利申请特许公开No.平10-247735中公开的技术形成含有晶体结构的半导体膜。在该公报中公开的这种技术是在含有非晶结构的半导体膜结晶时使用促进结晶的催化元素(选自镍、钴、锗、锡、铅、钯、铁和铜的一种或多种元素)结晶的方法。具体地说,进行热处理,同时催化元素保持在含有非晶结构的半导体膜的表面中,该含有非晶结构的半导体膜变为含有晶体结构的半导体膜。注意日本专利申请特许公开No.平7-130652的实施例中公开的技术也可用做一种结晶方法。此外,在含有晶体结构的半导体膜中包含所谓单晶半导体膜和多晶半导体膜,但是在上述公报中形成的含有晶体结构的半导体膜具有晶界。注意在上述公报中在掩膜上形成含有催化元素的层时使用了旋涂法,但是还可以借助使用汽相的淀积方法如溅射或蒸发等形成含有催化元素的薄膜。另外,最好通过在优选为400和550℃之间的温度进行热处理约1小时而充分解吸氢之后结晶,虽然热处理的时间和温度取决于非晶硅膜中所含氢的量。在这种情况下,希望所含的氢的量被减少到5原子%或更少。结晶步骤由以下步骤组成首先在400-500℃进行热处理约1小时,然后在从膜内解吸氢之后在500-650℃(最好550-600℃)进行热处理6-16小时(最好8-14小时)。在实施例1中用镍做催化元素,并且在570℃进行热处理14小时。结果,用开口204a和204b作为原点,与衬底平行(箭头所示的方向)粗糙地进行结晶,形成含有其中晶体生长方向宏观对准的晶体结构的半导体膜(实施例1中的晶体硅膜)205a-205d。(见图2B。)接下来进行从晶体硅膜中除去用在结晶步骤中的镍的吸杂步骤。留下前面形成的掩膜203作为掩模并进行元素周期表中15族元素(在实施例1中为磷)掺杂步骤,在暴露于开口204a和204b的晶体硅膜中形成磷掺杂区(以下称为吸杂区)206a和206b,并含有浓度为1×1019-1×1020原子/cm3的磷。(见图2C。)然后在450-650℃(最好为500-550℃)在氮气氛中进行热处理步骤4-24小时(最好为6-12小时)。在该热处理步骤中晶体硅膜中的镍在箭头的方向移动,并通过磷的吸杂作用被捕获在吸杂区206a和206b中。换言之,从晶体硅膜中除去镍,因此吸杂之后晶体硅膜207a-207d中所含镍的浓度被减少到1×1017原子/cm3或更少,最好减少到1×1016原子/cm3或更少。然后去掉掩膜203,在晶体硅膜207a-207d上形成保护膜208,用于后来的杂质掺杂。膜厚为100-200nm(最好为130-170nm)的氮化的氧化硅膜或氧化硅膜可用做保护膜208。保护膜208被形成得使晶体硅膜在杂质掺杂过程中不直接暴露于等离子体,并可以进行精确浓度控制。然后形成抗蚀剂掩模209a和209b,通过保护膜208掺杂施加p型导电性的杂质元素(以下称为p型杂质元素)。元素周期表中13族元素,典型为硼或镓可用做p型杂质元素。该步骤(也称为沟道掺杂步骤)是用于控制TFT阈值电压的步骤。应指出在实施例1中通过使用受激乙硼烷(B2H6)等离子体的离子掺杂来掺杂硼,而不是进行质量分离。当然,还可以使用进行质量分离的离子注入法。由此在该步骤中形成含有浓度为1×1015-1×1018原子/cm3(典型为5×1016-5×1017原子/cm3)的p型杂质元素(在实施例1中为硼)的杂质区210a-210c。应指出,在整个说明书中,含有上述浓度范围的p型杂质元素的杂质区(b)(但不含有磷的区域)被定义为p型杂质区。(见图2D。)然后去掉抗蚀剂掩模209a和209b,构图晶体硅膜,形成岛形半导体层(以下称做有源层)211-214。注意到,通过选择掺杂镍,然后进行结晶,由具有优异结晶性的晶体硅膜形成有源层211-214。具体地说,它们具有其中圆柱形或圆柱形晶体按特殊方向排列成直线的晶体结构。而且,在结晶之后,通过吸杂作用去除或减少镍,留在有源层211-214中的催化元素的浓度为1×1017原子/cm3或更少,最好为1×1016原子/cm3或更少。(见图2E。)p沟道TFT的有源层213是不含故意掺杂的杂质元素的区域,并且n沟道TFTs的有源层211、212和214是p型杂质区(b)。在整个说明书中这种状态中的有源层211-214被定义为完全本征或实质本征的。换言之,按不会阻止TFT操作的水平故意掺杂的杂质元素的区域被看作实质本征区。接着用等离子体CVD或溅射形成厚度为10-100nm的含硅的绝缘膜。在实施例1中形成30nm厚的氮化的氧化硅膜。层叠结构可用于含硅的绝缘膜。然后进行构图,只留下成为驱动电路部分和象素部分的区域,去掉其它区域,并露出有源层211。然后在氧化气氛中在800-1150℃(最好900-1000℃)进行热处理步骤15分钟-8小时(最好30分钟-2小时)。在实施例1中热处理是在950℃下在具有3体积%的添加盐酸的氧气氛中进行80分钟。应指出,用图2D的步骤掺杂的硼在该热氧化步骤过程中被激活。(见图3A。)注意,干氧气氛和湿氧气氛都可用做氧化气氛,但是在减少半导体膜中的晶体缺陷方面干氧气氛是合适的。此外,在实施例1中给出氧气氛中含有卤族元素的气氛,但是还可以在100%氧气氛中进行热氧化步骤。这样就在暴露的有源层211的表面上形成膜厚为3-20nm(最好5-10nm)的热氧化膜(氧化硅膜)215。热氧化膜215最终成为形成在存储晶体管的沟道形成区和浮置栅极之间的第一栅绝缘膜。同时还可以在含硅的绝缘膜116和绝缘膜116下面的有源层211-214之间的界面进行氧化反应。考虑到这一点,在本发明中绝缘膜216的膜厚被调整到具有50-150nm(最好80-120nm)的最后膜厚。含硅的绝缘膜216最终作为形成驱动电路部分和象素部分的TFTs的栅绝缘膜,并且还被称为第二栅绝缘膜。另外,60nm厚的有源层的25nm被实施例1的热氧化步骤氧化,有源层211-214的膜厚变为45nm。这是完成的TFT有源层的最后膜厚。此外,50nm厚的热氧化膜被加到30nm厚的含硅的绝缘膜上,因此第二栅绝缘膜216的最后膜厚为110nm。接下来形成抗蚀剂掩模217a-217c。然后掺杂施加n型导电性的杂质元素(以下称为n型杂质元素),形成呈现n型的杂质区218和219。元素周期表15族元素、典型为磷或砷可用做n型杂质元素。(见图3B。)杂质区218和219是后来用做存储晶体管中的LDD区和CMOS电路的n沟道TFT的杂质区。应指出,在这里形成的杂质区中含有浓度为2×1016-5×1019原子/cm3(一般为5×1017-5×1018原子/cm3)的n型杂质元素。在整个说明书中,按上述浓度范围含有n型杂质元素的杂质区被定义为n型杂质区(b)。应指出,代替进行质量分离,这里通过使用磷化氢(PH3)受激等离子体的离子掺杂按1×1018原子/cm3的浓度掺杂磷。当然,也可以使用进行质量分离的离子注入法。在该工艺中,在成为存储晶体管的区域和成为CMOS电路的n沟道TFT的区域中的栅绝缘膜的膜厚不同。因此,掺杂步骤可以分成两个步骤进行。最好在杂质掺杂过程中调整在深度方向的浓度分布图形,从而按照近似相同的浓度将磷掺杂到由参考标记218和219表示的区域中。接着去掉抗蚀剂掩模217a-217c,并形成新的抗蚀剂掩模220a-220c。然后掺杂n型杂质元素,形成呈现n型的杂质区221和222。应指出,元素周期表15族元素、典型为磷或砷可用做n型杂质元素。(见图3C。)杂质区221和222是后来用做存储晶体管的源区和漏区的杂质区。应指出,在这里形成的杂质区中所含的n型杂质元素的浓度为1×1020-1×1021原子/cm3(一般为2×1020-5×1021原子/cm3)。在整个说明书中,按上述浓度范围含有n型杂质元素的杂质区被定义为n型杂质区(a)。应指出,代替进行质量分离,这里通过使用磷化氢(PH3)受激等离子体的离子掺杂按3×1020原子/cm3的浓度掺杂磷。当然,也可以使用进行质量分离的离子注入法。然后在惰性气氛中在600-1000℃(最好在700-800℃)进行热处理,激活在图3B的步骤中掺杂的磷。在实施例1中,热处理是在氮气氛中800℃下进行1小时。(见图3D。)此时,可以修复在磷掺杂过程中被损坏的有源层的结晶度,并同时修复有源层和栅绝缘膜之间的界面。对于激活步骤,最好是使用电炉的炉子退火,但是也可以进行光退火如电灯退火或激光退火,并且这些退火还可以与炉子退火相结合。在该步骤中,n型杂质区(a)222和n型杂质区(b)218和219的边界,即本征或实质本征的结,即位于n型杂质区(a)和n型杂质区(b)周边的区域(当然也包括p型杂质区(b))被刻划出来。这意味着在后来完成TFTs时,在LDD区和沟道形成区之间形成很好的结。然后形成厚度为200-400nm(最好为250-350nm)的第一栅极223-225、226a和226b。在形成第一栅极223-225、226a和226b的同时形成使第一栅极之间电连接的第一栅布线。但是,第一栅极223不与其它栅极连接,后来用做存储晶体管的浮置栅极。(见图3E。)实际上,为形成存储部分的所有大量存储晶体管形成浮置栅极,并且每个浮置栅极都处于电绝缘状态,即浮置状态。这样,它就可以用做电荷积累层。选自钽(Ta)、钛(Ti)、钼(Mo)、钨(W)、铬(Cr)、和硅(Si)的元素或者具有上述元素之一作为其基本成分的导电膜(通常为氮化钽、氮化钨膜或氮化钛膜、)或上述元素的组合的合金膜(通常为Mo-W合金、Mo-Ta合金、或硅化钨膜)可以用做栅极223-225、226a和226b的材料。层叠50nm厚的氮化钽(TaN)膜和350nm厚的钽(Ta)膜,并在实施例1中使用。此外,在第一栅极下面形成厚度为2-20nm数量级的硅膜是有效的。可以提高形成在其上的栅极的粘附性,并因此可防止氧化。此时形成在存储晶体管中的栅极223被形成得通过栅绝缘膜215而叠加n型杂质区(a)221和222和一部分n型杂质区(b)218。此外,形成在CMOS电路的n沟道TFT中的栅极224被形成得通过栅绝缘膜216叠加n型杂质区(b)219。应该指出,栅极226a和226b从横截面来看作为两个电极,但是它们实际上是电连接的。然后形成抗蚀剂掩模227a和227b,掺杂p型杂质元素(实施例1中为硼),形成含有高浓度硼的杂质区228和229。在实施例1中通过使用乙硼烷(B2H6)的离子掺杂(当然也可以使用离子注入法)掺杂浓度为3×1020-3×1021原子/cm3(一般为5×1020-1×1021原子/cm3)。在整个说明书中,按上述浓度范围含有p型杂质元素的杂质区被定义为p型杂质区(a)。(见图4A。)应该指出,这里在掺杂p型杂质元素之前,可用抗蚀剂掩模227a和227b、和栅极225做掩模腐蚀栅绝缘膜,露出有源层。这样做可以使加速电压和剂量减小,并提高了该步骤中的生产率。接着去掉抗蚀剂掩模227a和227b,并形成抗蚀剂掩模230a-230d。然后掺杂n型杂质元素(在实施例1中为磷),形成含有高浓度磷的杂质区231-235。该步骤可以与图3C一样进行,并且磷浓度可以设置为1×1020-1×1021原子/cm3(一般为2×1020-5×1021原子/cm3)。因此杂质区231-235可被称为n型杂质区(a)。(见图4B。)另外,在前面步骤中掺杂的磷或硼已经包含在形成杂质区231-235的区域中,因此不会受到在前面步骤中掺杂的磷或硼的影响。应该指出,这里,在掺杂n型杂质元素之前,可用抗蚀剂掩模230a-230d、和栅极224做掩模腐蚀栅绝缘膜,露出有源层。这样做可以使加速电压和剂量减小,并提高了该步骤中的生产率。然后去掉抗蚀剂掩模230a-230d,用栅极223-225、226a和226b做掩模,按自对准方式掺杂n型杂质元素(实施例1中为磷)。磷被调整并掺杂到如此形成的杂质区236-239中,使这些区域所含磷的浓度为上述杂质区(b)中的浓度的十分之一到二分之一(通常为四分之一到三分之一)。(但是,磷浓度比在前面沟道掺杂步骤中掺杂的硼浓度高5到10倍,典型的,为1×1016-5×1018原子/cm3,通常为3×1017-3×1018原子/cm3。)在整个说明书中,按上述浓度范围含有n型杂质元素的杂质区(不包括p型杂质区)被定义为n型杂质区(c)。(见图4C。)应该指出,除了被栅极覆盖的部分之外,在该步骤中磷按1×1016-5×1018原子/cm3的浓度被掺杂到所有杂质区中,但是不会由于该极低的浓度而影响每个杂质区的功能。此外,在前面的沟道掺杂步骤中将浓度为1×1015-1×1018原子/cm3的硼掺杂到n沟道杂质区(b)236-239中,但是这里掺杂的磷的浓度是p型杂质区(b)中所含硼浓度的5到10倍,因此在这种情况下同样认为硼不会对n型杂质区(b)的功能有任何影响。然后进行热处理以便激活按各浓度掺杂的n型和p型杂质元素。该步骤可以利用炉子退火、激光退火、电灯退火或结合这些方式中一种以上的方式来进行。当使用炉子退火时,可以在500℃到800℃之间、最好在550℃到600℃下在惰性气氛中进行。在实施例1中热处理是在550℃下进行4小时,激活杂质元素。(见图4D。)说明一下,在实施例1中用氮化钽膜和钽膜的层叠膜作为栅极材料,但是钽膜在氧化方面是很弱的。因此,必须在含有尽可能少量氧的惰性气氛中进行该激活步骤。具体地说,最好使用含有1ppm或更少(更优选为0.1ppm或更少)的氧的惰性气氛。在实施例1中在100%氮气氛中在550℃下进行热处理4小时。当这样做时,衬底被放置在处于不会进行氧化的充分低的温度(100℃和200℃之间)的炉子内部,在氮清洗的足够长时间(30分钟到1小时)之后,进行热处理。在取出衬底时应该小心,只有在炉内温度下降到上述充分低的温度之后,才可将衬底暴露于大气。在进行热处理(激活步骤)时注意到,虽然栅极表面轻微被氮化,但可以防止氧化反应,不会防碍提高电阻。然后形成第三栅绝缘膜240,覆盖第一栅极223-225、226a和226b。说明一下,只有在上述第一栅极223之上的部分实际上用做栅绝缘膜,但是为便于说明,没有指出区别。可用公知汽相法形成第三栅绝缘膜240,在实施例1中是用低压热CVD形成的,以便得到具有良好膜质量的薄膜。此外,在实施例1中,氮化硅膜被氧化硅膜夹在其间的三层结构层叠膜用做第三栅绝缘膜。总膜厚可以为15到50nm(最好为20到40nm)。在实施例1中使用氧化硅膜(膜厚为10nm)/氮化硅膜(膜厚为20nm)/氧化硅膜(膜厚为10nm),但是对于该膜来说不限于此,可考虑耦合系数而确定。然后在通过第三栅绝缘膜240叠加第一栅极223的位置形成第二栅极(控制栅极)241。第二栅极241(控制栅极)后来用做存储晶体管的控制栅极。膜厚可以在200到400nm范围内选择。(见图5A。)使用与用于第一栅极相同的材料作为第二栅极241的材料,但是在接下来的步骤中的温度不超过450℃的高温,因此如果是具有能承受该温度的热阻的导电膜,可以使用任何材料。特别是,最好使用含有低电阻铝或铜的金属膜。接下来形成第一层间绝缘膜242。含有硅的绝缘膜可用做第一层间绝缘膜242,具体地说,可使用氮化硅膜、氧化硅膜、氮化的氧化硅膜、或组合这些膜的层叠膜。此外,膜厚可为400nm到1.5μm。在实施例1中,使用等离子体CVD形成1μm厚的氧化硅膜。然后在含有3-100%氢的气氛中在300-450℃下进行热处理1-4小时,使有源层氢化。该步骤是通过热激活氢而端接半导体层中的悬挂键的步骤。作为另一种氢化方式,可以进行等离子体氢化(使用被等离子体激活的氢的氢化步骤)。然后形成到达各TFTs的源区或漏区的接触孔,并形成公用源布线243、位布线244、源布线245-247、和漏布线248和249。应说明,漏布线248在n沟道TFT和p沟道TFT之间是公用的,以便形成CMOS电路。另外,虽然图中未示出,通过溅射依次形成的200nmTi膜、含Ti的500nm铝膜、和100nmTiN膜的三层层叠膜可以用做实施例1中的这些布线。(见图5B。)此外,形成厚度为50-500nm(一般为200到300nm)的含硅的绝缘膜,作为保护TFT不被外部污染的保护膜(还称为钝化膜)250。在实施例1中使用300nm厚氮化的氧化硅膜,并在形成钝化膜之前,进行使用含有氢的气体如H2或NH3的等离子体处理,然后淀积该膜。通过第一层间绝缘膜输送在该预处理中被等离子体激活的氢。通过在该状态下进行热处理(在300-420℃的温度),随着钝化膜250的膜质量的提高,掺杂到第一层间绝缘膜中的氢扩散到下层,有源层可以有效地被氢化。应该说明,可以在热处理步骤之后在钝化膜250中在后来形成连接到象素电极和连接到漏布线的接触孔的位置上形成开口(图中未示出)。此外,当进行该步骤时,如果从象素内部的图象显示区去掉钝化膜,则增加了在透光型液晶显示器件中透过的光的量,并可获得明亮图象。接下来用有机树脂形成厚度为约1μm的第二层间绝缘膜251。可作为有机树脂的材料如聚酰亚胺、丙烯酸、酰胺、聚酰亚胺酰胺、和BCB(苯并环丁烯)。给出使用有机树脂膜的优点如下膜淀积方法简单;特定介电常数低,因此减少了寄生电容;和超高的水平度。注意除了上述以外的有机树脂膜和有机-基SiO化合物都可使用。这里使用在施加于衬底之后热聚合的聚酰亚胺类型,并在300℃烘烤以形成第二层间绝缘膜。在第二层间绝缘膜251上在成为象素部分的区域中形成屏蔽膜252。应指出,在整个说明书中术语屏蔽膜的意思是屏蔽光和电磁波。屏蔽膜252是用由选自铝(Al)、钛(Ti)和钽(Ta)的元素制成的膜或用具有这些元素之一作为其基本成分的膜形成的,且厚度为100-300nm。在实施例1中形成含有1wt%钛的125nm厚的铝膜。说明一下,如果在第二层间绝缘膜251上形成5-50nm的绝缘膜如氧化硅膜,则可提高在该膜上面形成的屏蔽膜的粘附性。通过使用导电膜如氮化钛也可以得到这种效果。此外,如果在用有机树脂形成的第二层间绝缘膜251表面上进行使用CF4气体的等离子体处理,则由于提高质量的表面而增加形成在第二层间绝缘膜251上的屏蔽膜的粘附性。另外,不仅可以形成屏蔽膜,还可以形成使用含钛的铝膜的连接线。例如,可以形成在驱动电路内部连接电路的连接布线。但是,在这种情况下,在淀积形成屏蔽膜或连接线的材料之前,必须预先在第二层间绝缘膜中形成接触孔。接着利用阳极氧化或等离子体氧化(在实施例1中使用阳极氧化)在屏蔽膜252表面上形成厚度为20-100nm(最好为30-50nm)的氧化物(阳极氧化物)253。在实施例1中使用由铝作为其基本成分的膜作为屏蔽膜252,因此形成氧化铝膜(铝膜)作为阳极氧化物253。当进行阳极氧化处理时,首先制造1,2-亚乙基二醇酒石酸溶液。该溶液是如此形成的酒石酸铵的15%水溶液和1,2-亚乙基二醇按2∶8比例混合,并添加氨水,使PH调整为7±0.5。然后在溶液中形成铂电极作为阴极,其上已经形成屏蔽膜252的衬底被浸渍在溶液中,并用屏蔽膜252做阳极施加恒定直流(从几mA到几十mA)。在溶液中阴极和阳极之间的电压根据阳极氧化物的生长而随着时间变化。电流恒定,电压按100V/分钟的速度增加,当电压达到电压45V时终止阳极氧化处理。这样就可以在屏蔽膜252表面上形成厚度约为50nm的阳极氧化物253。而且,结果屏蔽膜252的膜厚变为90nm。注意,这里示出的关于阳极氧化法的各个数值只是举例而已,通常应该将它们改变到最佳值,这取决于如制造的元件的尺寸等因数。另外,这里,该结构通过使用阳极氧化只在屏蔽膜表面形成绝缘膜,但是该绝缘膜也可以用汽相法如等离子体CVD、热CVD或溅射等方法形成。同样在这种情况下,最好膜厚为20-100nm(更希望为30-50nm)。此外,还使用氧化硅膜、氮化硅膜、氮化的氧化硅膜、碳膜如DLC(金刚石类碳)、和有机树脂膜。另外,还可以使用这些膜组合的层叠膜。接下来,在第二层间绝缘膜251中和在钝化膜250中形成接触孔,以便达到漏布线249,并形成象素电极254。应指出象素电极255是分离相邻象素的象素电极。当制造透光型液晶显示器件时,还可以使用透明导电膜用于象素电极254和255,在制造反射型液晶显示器件时,可以使用金属膜。这里制造透光型液晶显示器件,因此用溅射形成厚度为110nm的氧化铟锡(ITO)膜、氧化铟和氧化锡的化合膜。此外,在象素电极254和屏蔽膜252通过氧化物253叠加时,形成电容存储器256。应说明,希望将屏蔽膜252设置为浮置状态(电绝缘状态)或设置为固定电位,最好为公共电位(作为数据发射图象信号的中点电位)。这样就完成了在同一衬底上具有存储部分、驱动电路部分和象素部分的有源矩阵衬底。图5C中示出的有源矩阵衬底的结构与图1所示的有源矩阵衬底的结构相同。根据本发明,分别根据存储部分、驱动电路部分和象素部分所要求的性能,优化形成每个电路或元件的TFTs的结构,并提高了电光器件的操作性能及其可靠性。具体地说,在驱动电路部分中使用了重点放在高操作速度或抗热载流子上的TFT结构,在象素部分中使用了重点放在减小截止电流值的TFT结构。此外,在存储部分中形成存储晶体管,同时只容许最少量地增加处理步骤数量。这里参照图1介绍有源矩阵型液晶显示器件的情况。首先,有浮置栅极107和控制栅极108的两层栅结构TFT用作存储晶体管301。通过向浮置栅极107中注入在沟道形成区105和漏区103的结产生的热载流子进行存储晶体管的写操作。另一方面,通过在浮置栅极107和源区102之间流动的FN(Fowler-Nordheim)电流进行擦除操作。此外,LDD区104作为防止源区102和沟道形成区105之间的带间隧道电流的缓冲区,并对于提高可靠性和减小电流消耗有效。LDD区104的长度(宽度)可为0.1-2.0μm,一般为0.5-1.5μm。而且,n沟道TFT302适合于重点放在高速操作的驱动电路,如移位寄存器、电平移位器、或缓冲器。换言之,只在沟道形成区115和漏区113之间形成叠加栅极的LDD区114,同时尽可能减少电阻元件,则可得到抵抗热载流子措施的结构。只在漏区侧形成LDD区的就足够的原因是,对于上述驱动电路的情况,源区和漏区的功能不变,并且载流子(电子)移动方向固定。但是,在需要时可以形成夹住沟道形成区的LDD区。换言之,可以分别在源区和沟道形成区之间、在漏区和沟道形成区之间形成LDD区。应说明,LDD区的长度(宽度)可以为0.1-2.0μm,最好为0.5-1.5μm。象素TFT304适合于重点放在低截止电流操作的象素部分。换言之,通过形成不叠加栅极131a和131b的LDD区128a-128d,实现了低截止电流。此外,使用杂质浓度比形成在存储部分和驱动电路部分中的LDD区的杂质浓度低的LDD区,可实现甚至更低截止电流值的结构。另外,杂质区130对于减小截止电流值起了很大作用。应该说明,形成在象素TFT304中的LDD区128a和128b的长度(宽度)可为0.5-3.5μm,最好为2.0-2.5μm。另外,使用有7-9的高特定介电常数的氧化铝膜作为实施例1中的电容存储器的介质,可以减小由电容存储器占据的面积以形成所希望的电容。此外,通过将形成在象素TFT上的屏蔽膜成为电容存储器的一个电极,如实施例1中那样,可以提高有源矩阵型液晶显示器件的图象显示部分的孔径比。说明一下,对于本发明不必限制于本发明的实施例1中所示的电容存储器结构。例如,可以使用日本专利申请No.平9-316567、日本专利申请No.平9-273444和日本专利申请No.平10-254097中示出的电容存储器结构。实施例2在实施例2中参照图6介绍通过在由实施例1(图5C所示)形成的有源矩阵衬底上进行单元制造步骤制造有源矩阵型液晶显示器件的情况。如图6所示,对于处于图5C的状态的衬底形成定向膜601。在实施例2中用聚酰亚胺作为该定向膜。此外,在对置衬底602中形成由透明导电膜制成的对置电极603和定向膜604。应该指出,在需要时可以在对置衬底中形成滤色器或屏蔽膜。接下来,在形成定向膜之后,进行摩擦处理,调整定向,使液晶分子具有一定的固定预倾斜角(pre-tiltangle)。然后通过利用密封材料或间隔物(图中未示出)的公知单元制造步骤将其上形成有象素部分和驱动电路部分的有源矩阵衬底和对置衬底连接在一起。然后在两衬底之间注入液晶605,并用端部密封材料(图中未示出)提供完全密封。公知的液晶材料可用于该液晶。这样就完成了图6中所示的有源矩阵型液晶显示器件。利用图7的透视图介绍有源矩阵型液晶显示器件的结构。本发明的液晶显示器件具有形成在有源矩阵衬底701上的象素部分702、源布线驱动电路(图象信号传输电路)703、和栅线驱动电路(扫描信号传输电路)704。另外,参考标记707表示与有源矩阵衬底相对形成的对置衬底。含有图1中所示的象素TFT304的大量象素按矩阵状态排列在象素部分702中。此外,上述象素TFT连接到从源布线驱动电路703延伸的源布线和从栅布线驱动电路704延伸的栅布线的交点。PFC(挠性印刷电路)705与有源矩阵衬底701连接,含有如图象信号和时钟信号等信息的信号输入到液晶显示器件。另外,在有源矩阵衬底701中形成其中集成图1所示存储晶体管301的存储部分706。存储部分706可以是集成在一个单元中含有选择晶体管和存储晶体管的存储单元的非挥发存储器。但是,作为存储部分706,其中形成公用的大量存储晶体管的位线的闪烁存储器更适合于高度集成。实施例3通常在实施例2所示有源矩阵型液晶显示器件的源布线驱动电路703中包含移位寄存器、电平移位器、缓冲器和取样电路(取样和保持电路)。这是模拟信号处理的情况的例子,在处理数字信号时,包含锁存器和D/A转换器代替取样电路。此外,在栅布线驱动电路中包含移位寄存器、电平移位器和缓冲器。移位寄存器具有3.5-16V(通常为5V或10V)的驱动电压,由图1中的参考标记302表示的结构适合于用在形成移位寄存器电路的CMOS电路中的n沟道TFT。此外,电平移位器和缓冲器具有14V和16V的高驱动电压,含有图1中所示n沟道TFT的CMOS电路适合于这些电路,与移位寄存器电路一样。应指出在电平移位器或缓冲器的情况下,为提高电路的可靠性,将栅极制成为多栅结构如双栅结构或三栅结构是有效的。但是,包含在源线驱动电路中的取样电路具有14V-16V的驱动电压,但源区和漏区倒置,并且必须减小截止电流的值。因此必须设计热载流子和低截止电流值对抗措施。图8中所示n沟道TFT305的结构用在实施例3中,作为取样电路。应指出,虽然图8中只示出n沟道TFT,实际上在形成取样电路时最好结合n沟道TFT和p沟道TFT,使大电流更容易流过。用在取样电路中的n沟道TFT的结构具有包含源区21、漏区22、LDD区23a和23b、和沟道形成区24的有源层;第二栅绝缘膜13;栅极25;源布线26;和漏布线27。应指出,源区和漏区(或源布线和漏布线)根据操作而倒置。n沟道TFT305的最重要特性是LDD区23a和23b被形成得夹住沟道形成区24,并且LDD区具有通过第二栅绝缘膜13叠加栅极25的区域和不叠加栅极25的区域。换言之,LDD区23a和23b的叠加栅极25的区域减少了由于热载流子注入引起的退化,与图1所示n沟道TFT302的LDD区114相同。而且,LDD区23a和23b的不叠加栅极25的区域减小了截止电流值,与图1所示象素TFI304的LDD区128a-128d相同。在取样电路中使用具有上述结构的n沟道TFT,可以降低由于热载流子引起的退化,并可以进行低截止电流值转换操作。此时,叠加栅极的LDD区的长度(宽度)可以为0.3-3.0μm,典型为0.5-1.5μm,不叠加栅极的LDD区的长度(宽度)可以为1.0-3.5μm,典型为1.5-2.0μm。应该指出,可以根据图2A-5C所示的步骤形成实施例3中所示的n沟道TFT305的结构,而不增加任何特殊步骤。此外,在实施例2所示有源矩阵型液晶显示器件的取样电路中使用实施例3的结构是有效的。实施例4根据实施例1制造的TFT的有源层(特别是沟道形成区)是用具有其中晶格具有连续性的单一晶体结构的晶体硅膜形成的。关于这种类型的晶体硅膜的细节可参考由本发明的申请人提交的日本专利申请No.平10-044659、日本专利申请No.平10-152316、日本专利申请No.平10-152308、和日本专利申请No.平10-152305。下面介绍由本发明的申请人实验研究的晶体结构特性。应该指出,这些特性符合形成根据实施例4完成的TFT的有源层的半导体膜的特性。用显微镜观察上述晶体硅膜,发现晶体结构由多个针状或圆柱状晶体构成。这可以很容易通过用TEM(透射电子显微分析法)观察来确定。此外,用电子衍射可以在晶体硅膜的表面上验证多个{110}面。这可以很容易验证,因为如果分析电子衍射照片,清晰出现对应{110}面的衍射点。此外,可以分析衍射点以具有在同心圆上±1°的分布(散布)。另外,如果用X射线衍射(严格地说,是用aθ-2θ法的X射线衍射)计算定向比,可确定{220}面的定向比为0.7或更高(典型为0.85或更高)。说明一下,在日本专利申请特许公开No.平7-321339中公开的的方法可用于计算定向比。而且,如果用HR-TEM(高分辨率透射电子显微分析法)观测由每个接触圆柱状晶体形成的晶界,可验证晶界中的晶格有连续性。这可以很容易地通过观测到的晶界中的晶格条的连续连接而验证。应该指出,晶界中的晶格连续性起源于晶界是“平面形晶界”。在本说明书中平面形晶界的定义符合“CharacterizationofHigh-EfficiencyCast-SiSolarCellWafersbyMBICMeasurement”RyuichiShimokawaandYutakaHayashi,日本应用物理期刊vol.27,no.5,pp.751-8,1998中的“平面边界”。根据上述文章,该平面边界包括孪晶晶界、特殊堆叠缺陷、特殊扭曲晶界等。该平面边界具有电无源的特性。即,边界可以基本上被看作不存在的,因为它们不能用做阻止载流子移动的陷阱。特别对于晶体轴(垂直于晶面的轴)为<110>轴的情况,{211}孪晶晶界可称做对应∑3的晶界。∑值是表示对应晶界的对准度的参数,并且众所周知,较小的∑值表示良好的晶界匹配。例如,在两个晶体之间的晶界,对于两个晶体都具有{110}面定向的情况,如果对应{111}面的晶格条具有角度θ,则当θ=70.5°时,晶界对应∑3。在通过实施实施例4得到的晶体硅膜中,如果用HR-TEM观察形成在具有<110>晶体轴的两个晶体之间的晶体边界,则有很多按相邻晶格条之间的约70.5°的角度的连续性的晶界。因此,可以推测出该晶界对应∑3边界,即它们是{211}孪晶晶界。如果使用TEM观测实施例4的实际晶体半导体膜的细节,可以推测大部分晶体晶界(90%以上,典型为95%以上)是对应∑3的晶界。换言之,它们是{211}孪晶晶界。这种类型的晶体结构(实际上是晶界结构)表示在晶界处两个不同晶粒按很好的对准方式连接在一起。即,几乎不形成其中在晶界处晶格具有连续性和由晶体缺陷等引起的陷阱的晶体结构。因此可以不考虑有这种类型晶体结构的半导体薄膜,与基本上不存在晶界一样。另外,可以用TEM验证,通过在800-1150℃的高温的热处理步骤,晶界内的缺陷几乎完全消失了。显然通过该热处理大大减少了缺陷数量,如堆叠缺陷。出现的缺陷数量的差别作为通过电子自旋共振(ESR)分析的自旋密度的差别。目前,示出的实施例中的晶体硅膜具有至多5×1017spins/cm3或更少(最好为3×1017spins/cm3或更少)的自旋密度。但是,测量值在本测量设备的检测限度附近,并且希望实际自旋密度甚至更低。从上面的描述看到,认为根据实施例1形成的晶体硅膜是单晶硅膜,或实质上为单晶硅膜,因为晶界中的缺陷数量很少,并且认为晶界基本上不存在。实施例5通过给不与象素电极连接的电极(对于本发明为屏蔽膜)施加固定电位,可以在象素部分中的每个象素中形成电容存储器。在这种情况下,最好设置屏蔽膜为浮置状态(电绝缘状态)或设置为公共电位(作为数据发射的图象信号的中间电位)。在实施例5中使用图9A和9B来介绍设置屏蔽膜为固定电位的连接方法。应指出,基本结构与图1所示的象素部分相同,因此下面的描述中相同部分使用相同标记。在图9A中,参考标记304表示用与实施例1相同的方式制造的象素TFT(n沟道TFT),参考标记134表示用做电容存储器的一个电极的屏蔽膜。延伸到象素部分外部的屏蔽膜901通过形成在第二层间绝缘膜15和钝化膜14中的接触孔902与提供公共电位的电源线903连接。因此,在这种情况下在形成屏蔽膜901之前,需要通过腐蚀第二层间绝缘膜15和钝化膜14形成接触孔的步骤。并在形成源布线或漏布线的同时形成电源线903。通过这样电连接屏蔽膜901和在象素部分外面提供公共电位的电源线903,屏蔽膜134可以保持在该公共电位。图9B中的参考标记304表示用与实施例1相同的方法制造的象素TFT,参考标记134表示用做电容存储器的一个电极的屏蔽膜。延伸到象素部分外面的屏蔽膜904通过氧化物907在由参考标记905表示的区域中与导电膜906叠加。导电膜906是与象素电极136同时形成的,氧化物907是与氧化物135同时形成的。然后导电膜906通过形成在第二层间绝缘膜15和钝化膜14中的接触孔908与提供公共电位的电源线909连接。此时在由屏蔽膜904、氧化物907、和导电膜906形成的区域905中形成电容器。当该电容器的容量足够大时(当其容量是与一个扫描行中的所有象素连接的所有电容存储器的总容量的10倍数量级时),通过形成在区域905中的静态耦合可以减小屏蔽膜904和134的电位波动。此外,当采用图9B的结构时,最好采用源线倒置驱动作为有源矩阵型液晶显示器件的驱动方法。如果使用源线倒置驱动,则施加于象素电极的极性对于每帧来说倒置,因此在屏蔽膜中积累的电荷的时间平均量接近与零。换言之,可以保持极小的电位波动,因此可形成稳定的电容存储器。通过采用图9B的结构,可以使屏蔽膜保持在公共电位,而不增加步骤数量。应该指出,通过只改变实施例1的一部分制造步骤,其它步骤与实施例1的相同,可以实现实施例5的结构。因此,可以将实施例5适用于实施例2所示的有源矩阵型液晶显示器件。此外,可以将实施例5的结构与实施例3或实施例4所示结构自由组合。实施例6在实施例6中介绍制造结构不同于图1结构的有源矩阵衬底。说明中使用了图10A和10B。应该指出,实施例6是改变图1所示结构的一部分的例子,因此相同部件采用与图1相同的标记。此外,没变的部分对应图1的那些部分,因此省略其说明。首先,氧化物31用做用于图10A所示有源矩阵衬底的第三栅绝缘膜。氧化物31是通过氧化浮置栅极107获得的氧化物膜,在实施例6中为氧化钽膜。可使用热氧化、阳极氧化、或等离子体氧化作为氧化方法,但是最好使用热氧化以便得到高质量的膜。此外,形成的膜厚可以与实施例1的相同,为3-20nm(典型为5-10nm)。应指出,也可以同时在形成在驱动电路部分和象素部分中的各TFT栅极116、123、131a和131b的表面上形成氧化物32、33、34a和34b。然而,可以通过掩模驱动电路部分或象素部分,然后进行氧化步骤,只在存储晶体管的浮置栅极上形成氧化物。当然,如果使用阳极氧化,则通过只在浮置栅极中选择流过电流而选择形成氧化物。另外,最好在图4B的步骤和图4C的步骤之间进行该氧化步骤。这是因为通过栅极131a和131b的表面被氧化物34a和34b覆盖的状态进行图4C的步骤,可以形成偏置区域35a-35d,如图11所示。注意图11是图10A所示象素TFT的一部分(漏区附近)的放大剖视图。在这种情况下,偏置区域35a和35b存在于沟道形成区129a和129b和由n型杂质区(c)形成的LDD区128a-128d之间。偏置区域35a和35b的长度近似符合氧化物34a和34的膜厚(严格地讲,该膜厚是在形成在栅极侧壁中的部分的膜厚)。然而,偏置区域35a和35b的长度当然由于在磷掺杂过程中卷绕而比氧化物34a和34b的膜厚短。对于本发明来说,偏置区域35a和35b的长度为零或为1-200nm(20-100nm较好,为30-70nm更好)。可利用氧化物34a和34b的膜厚控制该长度。可以将具有图10A所示结构的象素TFT设置为极低值。即,当TFT具有源和漏之间的14V电压和-17.5V的栅压时,它完全处于截止操作,则可实现5pA或更低的截止电流值(最好为1pA或更低)。另外,图10B的结构类似于图10A的结构,但其特征在于控制栅极36与源布线109和漏布线110同时形成。在形成将源布线连接于漏布线(或将漏布线连接于源布线)的接触孔时,通过在浮置栅极107的顶部形成开口来实现这种类型的结构。应指出,对于开口的形成,第一层间绝缘膜12和第三栅绝缘膜31的腐蚀选择性越高越好。而且,偏置区域35a和35b存在于沟道形成区129a和129b和由n型杂质区(c)形成的LDD区128a-128d之间,与图10A相同。前面已经对于图10A介绍了偏置区域的效果,因此这里省略其说明。应指出,通过用热氧化步骤、阳极氧化步骤或等离子体氧化步骤简单代替实施例1中的第三栅绝缘膜240淀积步骤,可以实现实施例6的结构。可将实施例6的结构与实施例2-5的任一个的结构自由组合。实施例7在实施例7中介绍结构不同于图1的结构的有源矩阵衬底的制造情况。说明中使用了图12。应指出,实施例7是改变图1中所示的一部分结构的例子,因此与图1中相同的部件使用相同的标记。此外,没有改变的部分对应于图1的相同部分,因此省略了其说明。利用低压热CVD形成的绝缘膜1201用做图12中所示的有源矩阵衬底中的第一栅绝缘膜。在实施例7中,用SiH4气体(流速为0.3×10-6m3/s)和N2O(流速为1.5×10-5m3/s)作为淀积气体,可以在800℃的淀积温度和40Pa的淀积压力下进行膜淀积。此外,膜厚可以与实施例1中的相同,为3-20nm(最好为5-10nm)。当然,在淀积第一栅绝缘膜1201之后可以进行与实施例1相同的热氧化步骤。当执行实施例7时,在象素部分中的第二栅绝缘膜13和第一栅绝缘膜1201的层叠膜(如果进行上述热氧化步骤,则还包括热氧化物膜)用做栅绝缘膜。应该指出,除了对实施例1增加了第一栅绝缘膜1201淀积步骤之外,没有必须改变的特别步骤,因此参照实施例1可以很容易地实现实施例7。此外,通过将其与实施例2-6中任何结构自由结合可以实现实施例7的构造。实施例8在玻璃或塑料作为衬底的情况下,也可以实现本发明。当然,在这种情况下,考虑到由玻璃或塑料制成的衬底的热阻而必须形成TFTs。最好是,通过利用激光结晶技术、或利用固态生长技术(热结晶技术)与激光结晶技术一起进行非晶半导体膜的结晶,形成成为有源层的半导体膜。如果使用激光结晶技术,甚至可以在塑料衬底或塑料膜上形成结晶半导体膜。另外,利用等离子体CVD或溅射形成第一栅绝缘膜、第二栅绝缘膜和第三栅绝缘膜。特别是,希望使用ECR(电子回旋共振)等离子体CVD或远程等离子体CVD,因为随着抑制对有源层的损伤,可形成高质量的绝缘膜。应指出,除了第一栅绝缘膜、第二栅绝缘膜、和第三栅绝缘膜的形成步骤变化之外,没有特别的步骤需要改变,因此可以参照实施例1实现实施例8。此外,通过将其与实施例2-6任何结构自由结合可以实现实施例8的构造。实施例9实施例9中介绍可形成本发明的存储部分的非挥发存储器的电路结构。具体地说,说明中参照了用NOR型闪烁存储器作为图7所示液晶显示器件(液晶组件)中的存储部分706的图13A和13B。应该指出,图13A和13B中只示出了并联连接的四个存储晶体管的两个扇区,但该结构不限于此。在图13A中,四个存储晶体管42-45与用参考标记B1表示的位布线41连接。参考标记B2也一样。此外,各存储晶体管42-45由字布线47-50控制,并用参考标记W1-W4表示,作为控制栅极。应该指出,在本说明书中,特别是,叠加TFT的有源层的字布线的区域被称为控制栅极。此外,虽然图中未示出,实际上浮置栅极位于控制栅极下面。用由图13A的电路图表示的NOR型闪烁存储器作为实际元件图形,它示于图13B中。所用的每个标号对应图13A的相同标号。可以通过将其与实施例1-8的任何结构自由结合实现实施例9的构造。实施例10在实施例10中介绍可形成本发明的存储部分的非挥发存储器的电路结构。具体地说,说明中参照了用NAND型闪烁存储器作为图7所示液晶显示器件(液晶组件)中的存储部分706的图14A和14B。应该指出,图14A和14B中只示出了并联连接的八个存储晶体管的两个扇区,但其结构不限于此。在图14A中,两个选择晶体管51和52、和八个存储晶体管56-63与用参考标记B1表示的位布线55连接。参考标记B2也一样。此外,选择晶体管51和52分别由选择栅布线53和54控制,并用参考标记S1和S2表示,各存储晶体管56-63由字布线64-71控制,这些布线用参考标记W1-W8表示,作控制栅极。应注意,在本说明书中,特别是,叠加TFT的有源层的字布线的区域被称为控制栅极。此外,虽然图中未示出,但实际上浮置栅极存在于控制栅极下面。通过表示由图14A的电路图作为实际元件图形示出的NAND型闪烁存储器,并示于图14B中。所用的每个标记对应于图14A中的那些标记。可以通过将其与实施例1-8的任何的结构自由结合可以实现实施例10的构造。而且存储部分可以与实施例9中所示的NOR型闪烁存储器结合形成。实施例11在实施例11中介绍除了存储部分、驱动电路部分或象素部分以外对本发明的电光器件增加γ(gamma)补偿电路作为信号处理电路的情况。应该指出,γ补偿电路是进行γ补偿的电路。术语γ补偿是通过给图象信号添加适当电压以便使施加于象素电极的电压和形成在其上的液晶或EL层的透光强度之间成为线性关系的补偿。图15是用在根据实施例11的液晶显示器件(或EL显示器件)中的有源矩阵衬底的方框图。在象素部分75的周边形成源线驱动电路76和栅线驱动电路77,此外,形成γ补偿电路78和非挥发存储器(在实施例11中为闪烁存储器)79。另外,经过FPC(挠性印刷电路)80发送如图象信号、时钟信号和同步信号等信号。在非挥发存储器79中包含为了将γ补偿施加于从个人计算机或电视接收机天线发送的图象信号的补偿数据,γ补偿电路78参照补偿数据对图象信号进行γ补偿。在运送液晶显示器件之前可以一次存储用于γ补偿的数据,但也可以有规律地再此写入补偿数据。另外,即使在用相同方式制造的液晶显示器件中,也有液晶光学响应特性(如透光强度和施加电压之间的前述关系)细微不同的情况。在这种情况下同样可以存储对于每个液晶显示器件的不同的γ补偿补偿数据,并且在实施例11中可以获得相同的图象质量。应该指出,当在非挥发存储器79中存储用于γ补偿的补偿数据时,最好使用由本发明的申请人提出的日本专利申请No.平10-156696中所述的方法。而且,涉及γ补偿的说明已经包含在上面的描述中了。此外,存储在非挥发存储器中的补偿数据是数字信号,因此当需要时最好在同一衬底上形成D/A转换器或A/D转换器。应说明,可以通过将其与实施例1-10中任何的结构自由结合而实现实施例11的构造。实施例12在实施例12中介绍除了存储部分、驱动电路部分和象素部分之外对本发明的电光器件添加存储器控制电路的情况。应指出,存储器控制电路是用于控制非挥发存储器的存储和读出操作的控制电路。图16是根据实施例12用在液晶显示器件(或EL显示器件)中的有源矩阵衬底的方框图。在象素部分81的周边形成源线驱动电路82和栅线驱动电路83,此外,形成存储器控制电路84和非挥发存储器(在实施例12中为闪烁存储器)85。另外,经过FPC(挠性印刷电路)86发送如图象信号、时钟信号和同步信号等信号。在非挥发存储器85中每帧包含从个人计算机或电视接收天线发送的图象信号,该图象信号依次输入到象素部分用于显示。在非挥发存储器85中存储用于在象素部分81中显示的图象的每帧的图象信息。例如,当发送6位数字信号作为图象信号时,必须具有对应象素数量6位的倍数的存储容量。应该指出,存储在非挥发存储器中的图象数据是数字信号,因此在需要时最好在同一衬底上形成D/A转换器或A/D转换器。利用实施例12的结构,在象素部分81上显示的图象被有规律地存储于非挥发存储器85中,并可以很容易地进行如图象的暂停等操作。换言之,通过具有有规律地将存储在非挥发存储器85中的图象信号发送给象素部分81的存储器控制电路84,可以自由暂停电视播放而不用将其记录在如视频板等器件中。此外,存储1帧的例子示于图12中,但如果非挥发存储器85中的存储容量可以增加到图象信息的几百帧或几千帧的水平,则可以重新播放前面几秒或几分钟图象。应指出,可以通过将其与实施例1-10中任何的结构自由结合而实现实施例12的构造。实施例13在实施例1中所示的制造工艺例子中,前提是在形成n沟道TFT的栅极之前预先形成n型杂质区(b)。该制造工艺的特征在于,然后用自对准方式形成p型杂质区(a)和n型杂质区(c)。但是,为了获得本发明的效果,最终结构应该类似于图5C所示的结构,并且不限制形成该结构的步骤。因此,杂质区形成顺序可以由操作者适当改变。此外,根据环境情况,可利用抗蚀剂掩模形成p型杂质区(a)和n型杂质区(c)。换言之,如图5C所示,只要最后TFTs具有根据每个电路而不同的结构,可以采用任何工艺顺序的组合。实施例14在常规MOSFET上形成层间绝缘膜,然后在其顶部形成TFT时可以使用本发明。换言之,可以实现具有三维结构的半导体器件。此外,可以使用SOI衬底如SIMOX、Smat-Cut(SOITEC公司的注册商标)、或ELTRAN(Canon有限公司的注册商标)作为衬底。另外,可以用单晶半导体薄膜作为有源层。说明一下,可以将实施例14与实施例1-13的任何的结构自由结合。实施例15在根据本发明制造的液晶显示器件中可使用各种类型的液晶材料。给出上述液晶材料的例子如下TN液晶;PDLC(聚合物弥散液晶);FLC(铁电液晶);AFLC(反铁电液晶);和FLC和AFLC(反铁电组合液晶)的混合物。例如,可以使用在下列文献中公开的液晶材料Furue,H,etat.,”CharacteristicsandDrivingSchemeofPolymer-stabilizedMonostableFLCDExhibitingFastResponseTimeandHighContrastRatiowithGray-scaleCapability,”SID,1998;Yoshida,T,etal.,”AFull-colorThresholdlessAntiferroelectricLCDExhibitingWideViewingAnglewithFastResponseTime,”SIDDigest,841,1997;Inui,S.,etal.,“Thresholdlessantiferroelectricityinliquidcrystalsanditsapplicationtodisplays,”J.Mater.Chem.,6(4),pp.671-3,1996;和美国专利号5594569。特别是,在呈现透光度连续随着电场变化的电光响应特性的无阈值反铁电液晶(简称为TL-AFLC)当中,有呈现V形(或U形)电光响应特性的TL-AFLCs,并且具有±2.5V数量级的驱动电压的那些TL-AFLC(单元厚度约为1-2μm)较突出。因此,有被象素电路使用的电源电压位于5-8V范围内的情况,并且建议可以用相同电源电压操作控制电路和象素电路。换言之,整个液晶显示器件可以实现低功耗。此外,铁电液晶和反铁电液晶与TN液晶相比有响应速度快的优点。对于被本发明使用的TFTs可以实现极高速操作的TFTs,因此充分利用铁电液晶和反铁电液晶的快响应速度,可以实现具有快图象响应速度的液晶显示器件。而且,一般情况下,无阈值反铁电混合液晶的自发极化很大,并且液晶本身的介电常数很高。因此,当无阈值反铁电混合液晶用于液晶显示器件时,对于象素来说需要较大的电容存储器。因此,希望使用有小的自发极化的无阈值反铁电混合液晶。为此,实施例1的图1所示的电容存储器可以用小表面面积存储大容量,并且这是优选的。应说明一下,当然,使用实施例15的液晶显示器件作为用于电子设备如个人计算机的显示器也是有效的。此外,可以将实施例15的结构与实施例1-14的任何一个的结构自由组合。实施例16可以将本发明应用于有源矩阵型EL(电致发光)显示器(还称为EL显示器件)。该例示于图17中。图17是实施例16的有源矩阵型EL显示器的电路图。参考标记91表示显示区域,在显示区域的周边形成x方向(源侧)驱动电路92和y方向(栅侧)驱动电路93。显示区域91的每个象素具有开关TFT94、电容器95、电流控制TFT96和EL元件97。x方向信号线(源信号线)98a(或98b)和y方向信号线(栅信号线)99a(或99b或99c)与开关TFT94连接。此外,电源线100a和100b与电流控制TFT96相连。应说明一下,实施例1、4和6-13的任何一个的结构可用于实施例16的有源矩阵型EL显示器。实施例17在实施例17中给出使用本发明的有源矩阵型EL(电致发光)显示器的制造例子的说明。应指出,图18A是实施例17的EL显示器件的顶视图,图18B是其剖视图。在图18A中,参考标记4001表示衬底,4002表示象素部分,4003表示源侧驱动电路,4004表示栅侧驱动电路。两个驱动电路通过布线4005引到FPC(挠性印刷电路)4006上,并由此连接于外部设备。形成第一密封材料4101、覆盖材料4102、填充材料4103和第二密封材料4104,以便包围象素部分4002、源侧驱动电路4003、和栅侧驱动电路4004。此外,图18B对应沿着线A-A’截取的图18A的剖视图,在衬底4001上形成包含于源侧驱动电路4003中的驱动器TFT(但是,这里图中示出n沟道TFT和p沟道TFT)4201和包含于象素部分4002中的电流控制TFT(用于控制到EL元件的电流的TFT)4202。在实施例17中,结构与图1的n沟道TFT302和p沟道TFT303的结构相同的TFTs被用在驱动器TFT4201中,并且结构与图1的p沟道TFT303的结构相同的TFTs被用在电流控制TFT4202中。此外,在同一衬底上形成存储部分,使用结构与图1的存储晶体管301相同的TFT。另外,在象素部分4002中形成与电流控制TFT4202的栅连接的电容存储器(图中未示出)。层间绝缘膜(校平膜)4301由驱动器TFT4201和象素TFT4202上的树脂材料形成,在层间绝缘膜4301上形成电连接于象素TFT4202的漏的象素电极(阳极)4302。有大功函数的透明导电膜用做象素电极4302。氧化铟和氧化锡化合物、或氧化铟和氧化锌化合物可用作透明导电膜。然后在象素电极4302上形成绝缘膜4303,并在象素电极4302上的绝缘膜4303中形成开口。EL(电致发光)层4303形成在开口中的象素电极4302上。EL层4304可以用公知有机EL材料或公知无机EL材料形成。此外,公知有机EL材料属于低分子量型(单体型)材料,并且高分子量型(聚合物)材料也存在,可以使用任何一种。公知蒸发技术或涂敷技术可用做EL层4304的形成方法。而且,EL层结构可以是单层结构,或者是下列层的自由组合的层叠结构空穴注入层、空穴传输层、发光层、电子传输层、或电子注入层。然后在EL层4304上用具有光屏蔽性能的导电膜(典型地,用铝、铜或银作为其基本成分的导电膜,或这些和其它导电膜的层叠膜)形成阴极4305。而且,最好尽可能多地除去存在于阴极4305和EL层4304的边界的潮气和氧。因此,必须接下来在真空中淀积、或在氮气或惰性气体气氛中形成EL层4304,然后形成阴极4305,而不暴露于氧或潮气。可以在实施例17中用多室型(成组工具型)淀积装置进行上述膜淀积。然后阴极4305在由参考标记4306表示的区域中与布线4005电连接。布线4005是给阴极4305提供预定电压的布线,并通过定向导电膜4307与FPC4006电连接。由此EL元件由象素电极(阳极)4302、EL层4304、阴极4305形成。该EL元件被第一密封材料4101和通过第一密封材料4101连接于衬底4001的覆盖材料4102围绕,并被填充材料4103包围。玻璃材料、金属材料(典型为不锈钢片)、陶瓷材料和塑料材料(包括塑料膜)都可用做覆盖材料4102。FPR(纤维玻璃增强塑料)板、PVF(聚氟乙烯)膜、Mylar膜、聚酯膜或丙烯酸树脂膜都可用做塑料材料。此外,还可以使用具有铝膜被PVF膜或Mylar膜夹在其间的结构的板。然而,当来自EL元件的光辐射方向是向着覆盖材料一侧时,则覆盖材料必须是透明的。在这种情况下,使用透明衬底,如玻璃板、塑料板、聚酯膜、或丙烯酸膜。而且,紫外光硬化树脂或热硬化树脂可用做填充材料4103,并可以使用PVC(聚氯乙烯)、丙烯酸、聚酰亚胺、环氧树脂、硅氧烷树脂、PVB(聚乙烯醇缩丁醛)、和EVA(乙撑乙烯基乙酸酯)。如果在填充材料4103内部形成潮气吸收物质(最好为氧化钡),则可以抑制EL元件的退化。此外,在填充材料4103中可以包含间隔物。如果间隔物是由氧化钡形成,则间隔物本身就可以吸收潮气。另外,当形成间隔物时,可有效地在阴极4305上形成树脂膜作为从间隔物释放压力的缓冲层。布线4005通过定向导电膜4307与FPC4006电连接。布线4005将一次发送给象素部分4002、源侧驱动电路4003、和栅侧驱动电路4004的信号传输到FPC4006,并通过FPC4006与外部设备电连接。此外,在实施例17中,第二密封材料4104形成得以便覆盖第一密封材料4101的露出部分和一部分FPC4006,这就是EL元件完全与气氛屏蔽的结构。由此获得具有图18B的剖面结构的EL显示器件。可以通过组合1、4、6-13和16的任何的结构而制造实施例17的EL显示器件。象素部分的更细节的剖面结构示于图19中,顶部结构示于图20A中,而电路图示于图20B中。图19、图20A和图20B中使用相同标号,因此可以一起参考这些图。在图19中,用形成在图1的象素部分中的n沟道TFT304形成形成在衬底4401中的开关TFT4402。因此,关于开关TFT4402的结构说明可以参照n沟道TFT304的说明。此外,用参考标记4403表示的布线是用于电连接开关TFT4402的栅极4404a和4404b的栅布线。应该指出,在实施例17中使用了其中形成两个沟道形成区的双栅结构,但也可以使用形成有一个沟道形成区的单栅结构、或其中形成三个沟道形成区的三栅结构。而且,开关TFT4402的漏布线4405与电流控制TFT4406的栅极4407电连接。应说明一下,电流控制TFT4406是用图1的p沟道TFT303形成的。因此,对于电流控制TFT4406的结构的介绍可以参考p沟道TFT303的说明。另外,虽然实施例17中采用单栅结构,但也可以采用双栅结构或三栅结构。在开关TFT4402和电流控制4406上形成第一钝化膜4408,并在钝化膜4408上用树脂形成校平膜4409。通过使用校平膜4409,在TFTs中有水平台阶变化是非常重要的。后来形成的EL层非常薄,因此由于存在台阶而引起不良发光的情况。因而,最好在形成象素电极之前进行校平,尽可能在水平表面上形成EL层。参考标记4410表示由透明导电膜制成的象素电极(EL元件阳极),该象素电极与电流控制TFT4406的漏布线4410电连接。由如氧化铟和氧化锡化合物、或氧化铟和氧化锌化合物等材料制成的导电膜可用做象素电极4410。在象素电极4410上形成EL层4412。虽然图19中只示出一个象素,但在实施例17中EL层被分割以对应颜色R(红)、G(绿)、和B(蓝),此外,在实施例17中用蒸发方法形成低分子量有机EL材料。具体地说,它是作为空穴注入层形成的20nm厚的酞菁铜(CuPc)膜和形成在顶部作为发光层的70nm厚的三-8-羟基喹啉酸铝(tris-8-quinolinolatealuminum)络合物(Alq3)膜的层叠结构。通过向Alq3中掺杂荧光颜料,可控制发射的光的颜色。然而,上述例子是可以用做EL层的有机EL材料的一个例子,但并不限于此。还可以通过自由组合发光层、载荷流子层、和电荷注入层而形成EL层(用于进行发光和用于发光的载流子移动的层)。例如,实施例17中所示的例子是使用低分子量有机EL材料作为实施例17中的EL层的例子,但也可以使用高分子量EL材料。此外,可以使用无机材料如碳化硅作为载荷流子层或电荷注入层。公知材料可用做这些有机EL材料和无机EL材料。然后用有光屏蔽特性的导电膜在EL层4412上形成阴极4413。在实施例17中,铝和锂的合金膜用做光屏蔽导电膜。当然,也可以使用公知的MgAg膜(镁和银的合金膜)。由位于元素周期表1族或2族的元素制成的导电膜、或用1族或2族元素掺杂的导电膜可用做阴极材料。这样在形成阴极4413时就完成了EL元件4414。应说明,这里使用的EL元件4414指的是由象素电极(阳极)4410、EL层4412、和阴极4413形成的电容器。下面参照图20A介绍实施例17中的象素的顶部结构。开关TFT4402的源与源布线4415连接,其漏与漏布线4405连接。另外,漏布线4405与电流控制TFT4406的栅极4407电连接。此外,电流控制TFT4406的源与电源线4416电连接,其漏与漏布线4417电连接。漏布线4417与由虚线表示的象素电极(阳极)4418电连接。此时在由参考标记4419表示的区域中形成电容存储器。在与电源线4416电连接的半导体膜4420、在同一层上作为栅绝缘膜的绝缘膜(图中未示出)和栅极4407之间形成电容存储器4419。此外,可以用由栅极4407、在同一层上作为第一层间绝缘膜的绝缘膜(图中未示出)、和电源线4416形成的电容作为电容存储器。应该说明一下,可以通过将其与实施例1、4、6-13和16的任何的结构自由组合而实现实施例17的结构。实施例18在实施例18中介绍具有不同于实施例17的象素结构的EL显示器件。说明中参照图21。此外,对于具有与图19中相同标记的部分的说明可以参照实施例17。结构与图1的n沟道TFT302的结构相同的TFT用做图21中的电流控制TFT4501。当然电流控制TFT4501的栅极4502与开关TFT4402的漏布线4405相连。此外,电流控制TFT4501的漏布线4503与象素电极4504电连接。如果施加于EL元件的电压为10V或更高,则由于热载流子效应引起的退化变得显著,因此使用有与图1的n沟道TFT302相同的结构的TFT作为电流控制TFT4501是有效的。此外,如果施加于EL元件的电压为10V或更低,则由于热载流子效应引起的退化不成为问题,因此可以使用具有其中从n沟道TFT302省略LDD区114的结构的TFT。在实施例18中,象素电极4504用做EL元件的阴极,并且是使用有光屏蔽特性的导电膜形成的。具体地说,使用铝和锂的合金膜,但是也可以使用由位于元素周期表1族或2族的元素制成的导电膜、或用1族或2族元素掺杂的导电膜。在象素电极4504上形成EL层505。应指出,在图21中只示出一个象素,在实施例18中,用蒸发方法或涂敷方法(最好是旋涂法)形成对应G(绿)的EL层。具体地说,使用作为电子注入层形成的20nm厚的氟化锂(LiF)膜、和形成在顶部作为发光层的70nm厚的PPV(polyparaphelenevinyl)膜的层叠结构。接着在EL层4505上形成由透明导电膜制成的阳极4506。在实施例18中使用由如氧化铟和氧化锡化合物、或氧化铟和氧化锌化合物等化合物制成的导电膜。由此在形成阳极4506时完成EL元件4507。应该说明,这里EL元件4507表示由象素电极(阴极)4504、EL层4505和阳极4506形成的电容器。应该指出,实施例18的电流控制TFT4501是如此构成的,即在栅极4502、和LDD区4509a和4509b之间形成称为栅电容器的寄生电容。通过调整栅电容器,可以赋予它与图20A和20B所示的电容存储器4418相同的功能。特别是,当按数字驱动方式操作EL显示器件时,电容存储器的容量比EL显示器件在按模拟驱动方式操作时的容量小,因此可以用栅电容器代替电容存储器。应该说明一下,可以通过将其与实施例1、4、6-13和16的任何的结构自由组合而实现实施例18的结构。实施例19在实施例19中,实施例17或实施例18中所示的EL显示器件的象素结构的例子示于22A-22C中。应该指出,在实施例19中,参考标记4601表示开关TFT4602的源布线,参考标记4603表示开关TFT4602的栅布线,参考标记4604表示电流控制TFT,4605表示电容器,4606和4608表示电源线,4607表示EL元件。图22A是电源线4606在两个象素之间公用的情况的例子。即,其特征在于,两个象素形成得关于电源线4606线性对称。在这种情况下,可以减少电源线的数量,因此可以使象素部分具有更高的清晰度。此外,图22B是电源线4608形成得平行于栅布线4603的情况的例子。应该指出,在图22B中,该结构形成得使电源线4608和栅布线4603不叠加,但如果两者是形成在不同层上的布线,则它们通过绝缘膜叠加形成。在这种情况下,电源线4608和栅布线4603的专有表面区域可以共用,并使象素部分具有更高的清晰度。而且,图22C的特征在于,电源线4608和栅布线4603平行形成,与图2B的结构相同,此外,两个象素形成得关于电源线4608线性对称。另外,形成电源线4608以便与栅布线4603之一叠加是有效的。在这种情况下,可减少电源线的数量,因此可使象素部分具有更高的清晰度。实施例20在实施例20中,实施例17或实施例18所示的EL显示器件的象素结构的例子示于图23A和23B中。说明一下,在实施例20中,参考标记4701表示开关TFT4702的源布线,参考标记4703表示开关TFT4702的栅布线,参考标记4704表示电流控制TFT,参考标记4705表示电容器(可以省略该电容器),参考标记4706表示电源线,4707表示电源控制TFT,参考标记4709表示电源控制栅布线,参考标记4708表示EL元件。关于电源控制TFT4707的操作可参考日本专利申请No.平11-341272。另外,在实施例20中电源控制TFT4707形成在电流控制TFT4704和EL元件4708之间,但也可以采用电流控制TFT4704形成在电源控制TFT4707和EL元件4708之间的结构。而且,最好制成具有与电流控制TFT4704相同的结构的电源控制TFT4707,或然后在同一有源层上连续形成。图23A是电源线4706在两个象素之间公用的情况的例子。即,其特征在于两个象素形成得关于电源线4706线性对称。在这种情况下,可减少电源线的数量,因此可使象素部分具有更高的清晰度。此外,图23B是电源线4710平行于栅布线4703形成并且电源控制栅布线4711平行于源布线4701形成的情况的例子。应该指出,在图23B中,该结构形成得使电源线4710和栅布线4703不叠加,但如果两者是形成在不同层上的布线,则它们可以通过绝缘膜叠加形成。在这种情况下,电源线4710和栅布线4703的唯一表面区域被共用,并且使象素部分具有更高的清晰度。实施例21在实施例21中,实施例17或实施例18所示的EL显示器件的象素结构的例子示于图24A和24B中。说明一下,在实施例21中,参考标记4801表示开关TFT4802的源布线,参考标记4803表示开关TFT4802的栅布线,参考标记4804表示电流控制TFT,4805表示电容器(可以省略该电容器),4806表示电源线,4807表示擦除TFT,4808表示擦除栅布线,4809表示EL元件。关于擦除TFT4807的操作可参考日本专利申请特许公开No.平11-338786。擦除TFT4807的漏与电流控制TFT4804的栅连接,并可以强制改变电流控制TFT4804的栅电压。另外,擦除TFT4807可用于n沟道TFT或p沟道TFT,但最好具有与开关TFT4802相同的结构,从而使截止电流更小。图24A是电源线4806在两个象素之间公用的情况的例子。即,其特征在于两个象素形成得关于电源线4806线性对称。在这种情况下,可减少电源线的数量,因此使象素部分呈现更高的清晰度。此外,图24B是电源线4810形成得平行于栅布线4803并且擦除栅布线4811形成得平行于源布线4801的情况的例子。应该指出,在图24B中,该结构形成得使电源线4810和栅布线4803不叠加,但如果两者是形成在不同层上的布线,则它们可以通过绝缘膜叠加形成。在这种情况下,电源线4810和栅布线4803的专有表面区域被共用,并使象素部分呈现更高的清晰度。实施例22根据本发明的EL显示器件可以具有其中象素可包括形成在其中的任何数量的TFTs的结构。实施例20和21各示出在象素中形成三个TFTs的例子。但是,可以在其中形成4-6个TFTs。本发明可以被实施而EL显示器件不限于这种结构。实施例23根据本发明的电光器件和半导体电路可用于电子设备的显示部分或信号处理电路。作为电子设备,列举如下视频摄像机;数字摄像机;投影仪;投影式电视机;护目镜式显示器(头部安装式显示器)导航系统;声音重放装置;笔记本式个人计算机;博弈设备;便携式信息终端(如可移动计算机;移动电话;便携式博弈设备和电子笔记本);和有记录介质的图象重放装置。其具体例子示于图25A-27B中。图25A是移动电话,由主体2001、声音输出部分2002、声音输入部分2003、显示部分2004、操作开关2005、和天线2006构成。本发明的电光器件可应用于显示部分2004,本发明的半导体电路可应用于声音输出部分2002、声音输入部分2003、CPU、存储器等。图25B是视频摄像机,由主体2101、显示部分2102、声音输入部分2103、操作开关2104、电池2105、和图象接收部分2106构成。本发明的电光器件可应用于显示部分2102,本发明的半导体电路可应用于声音输入部分2103、CPU、存储器等。图25C是可移动计算机,并由主体2201、摄像部分2202、图象接收部分2203、操作开关2204和显示部分2205构成。本发明的电光器件可应用于显示部分2205,本发明的半导体电路可应用于CPU、存储器等。图25D是护目镜式显示器,并由主体2301、显示部分2302、和臂部分2302构成。本发明的电光器件可应用于显示部分2302,本发明的半导体电路可应用于CPU、存储器等。图25E是背面式投影仪(投影式电视机),由主体2401、光源2402、液晶显示器件2403、极化束分离器2404、反射器2405和2406、和荧光屏2707构成。本发明可应用于液晶显示器件,本发明的半导体电路可应用于CPU、存储器等图25F是正面式投影仪,由主体2501、光源2502、液晶显示器件2503、光学系统2504、和荧光屏2505构成。本发明可应用于液晶显示器件2503,本发明的半导体电路可应用于CPU、存储器等图26A是个人计算机,并由主体2601、图象输入部分2602、显示部分2603、键盘2604等构成。本发明的电光器件可应用于显示部分2603,本发明的半导体电路可应用于CPU、存储器等。图26B是包括主体2701、记录介质2702、显示部分2703和控制器2704的电子博弈设备(博弈设备)。从电子博弈设备输出的声音和图象在具有主体2705和显示部分2706的显示器中重放。作为控制器2704和主体2701或电子博弈设备和显示器之间的通信手段,可采用有线通信、无线通信或光学通信。在本例中,采用这样的结构,从而用传感器部分2707和2708检测红外辐射。本发明的电光器件可应用于显示部分2703,本发明的半导体电路可应用于CPU、存储器等。图26C是使用其上记录了程序的记录介质(以下简称为记录介质)的播放机(图象重放装置),并由主体2801、显示部分2802、扬声器部分2803、记录介质2804、和操作开关2805构成。应该指出,DVD(数字通用盘)、CD等用做用于该装置的记录介质,并且可用之进行音乐欣赏、电影欣赏、游戏和Internet。本发明可应用于象素部分2802、CPU、存储器等。图26D是数字摄像机,由主体2901、显示部分2902、目镜部分2903、操作开关2904、和图象接收部分(未示出)构成,根据本发明的电光器件可应用于显示部分2902、CPU、存储器等。可应用于图25E的背面式投影仪和图25F的正面式投影仪的光学引擎示于图27A和27B。图27A是光学引擎。图27B是结合到光学引擎中的光学光源系统。图27A中所示的光学引擎由光学光源系统3001、镜子3002和3005-3007、二向色镜3003和3004、光学透镜3008a-3008c、棱镜3011、液晶显示部分3010和光学投影系统3012构成。光学投影系统3012由提供有投影透镜的光学系统构成。本例展示了使用三个液晶显示部分3010的三板型的例子,但也可以采用单板型。此外,在由图27A中的箭头表示的光学路径中,可提供有光学透镜、具有极化功能的胶片、调整相差的胶片、IR胶片等。如图27B中所示,光学光源系统3001包括光源3013和3014、复合棱镜3015、准直透镜3016和3020、透镜阵列3017和3018、和极化转换元件3019。应该指出,图27B中所示的光学光源系统使用两个光源,但单个光源也是适用的。还可以采用三个或更多个光源。此外,在光学光源系统的光路径的某个位置,可以提供光学透镜、具有极化功能的胶片、调整相差的胶片、IR胶片等。如上所述,本发明的应用范围很宽,因此可应用于任何领域中的电子设备。另外,利用实施例1-22的任何的组合可实现本例的电子设备的制造。利用本发明,可以在同一衬底上设置具有符合电路和元件所要求的指标的合适性能的TFTs,并且可以大大提高电光器件的可操作性能和可靠性。另外,除了象素部分和驱动电路部分之外,可以在同一衬底上形成存储部分,因此大大提高了电光器件的性能。此外,可以实现具有上述电光器件作为显示器(显示部分)的电子设备广泛利用,并且还可以实现高性能操作和高可靠性。权利要求1.一种显示装置,包括衬底;设在所述衬底之上的电流控制p沟道薄膜晶体管;以及设在所述电流控制p沟道薄膜晶体管之上的电发光层;其中,所述电流控制p沟道薄膜晶体管的沟道区域设在含硅的半导体薄膜中,并且所述半导体薄膜具有{110}平面。2.一种显示装置,包括衬底;设在所述衬底之上的沟道区域;设在所述衬底之上且夹所述沟道区域的p型源区和p型漏区;邻近所述沟道区域设置的栅电极,所述栅电极与所述沟道区域之间具有栅绝缘膜;设在所述衬底之上并与所述p型源区和所述p型漏区之一相连的阳极;以及设在所述阳极之上的电发光层,其中所述沟道区域设在含硅的半导体薄膜中,并且所述半导体薄膜具有{110}平面。3.如权利要求1所述的显示装置,其中,所述电发光层包括有机EL材料。4.如权利要求1所述的显示装置,其中,所述电发光层包括无机EL材料。5.如权利要求1所述的显示装置,还包括设在所述衬底之上的开关薄膜晶体管,其中,所述开关薄膜晶体管的源区和漏区之一与所述电流控制p沟道薄膜晶体管的栅电极相连。6.如权利要求5所述的显示装置,其中,所述开关薄膜晶体管具有n沟道类型。7.如权利要求1所述的显示装置,其中,所述显示装置被结合到从包括便携式电话、摄像机、移动计算机、护目镜型显示器、背面型投影仪、正面型投影仪、个人计算机、电子游戏设备、图像重放装置和数字相机的组中选择的一个设备中。8.如权利要求2所述的显示装置,其中,所述电发光层包括有机发光EL材料。9.如权利要求2是的显示装置,其中,所述电发光层包括无机发光EL材料。10.如权利要求2所述的显示装置,还包括设在所述衬底之上的开关薄膜晶体管,其中,所述开关薄膜晶体管的源区和漏区之一与所述栅电极相连。11.如权利要求10所述的显示装置,其中,所述开关薄膜晶体管具有n沟道类型。12.如权利要求2所述的显示装置,其中,所述显示装置被结合到从包括便携式电话、摄像机、移动计算机、护目镜型显示器、背面型投影仪、正面型投影仪、个人计算机、电子游戏设备、图像重放装置和数字相机的组中选择的一个设备中。全文摘要根据本发明的一种半导体器件,包括一p沟道TFT;一n沟道TFT,其中至少有一部分LDD区与栅极叠加,在LDD区和栅极之间夹有第二栅绝缘膜;一存储晶体管,其包括一源区、一漏区、一沟道区、第一栅绝缘膜、一浮置栅极、第三栅绝缘膜、和一控制栅极,其中,所述p沟道TFT和所述n沟道TFT和所述存储晶体管都设置在同一绝缘体之上,所述p沟道TFT和所述n沟道TFT都设置在一个CMOS电路中,并且,所述存储晶体管的所述漏区叠加在所述的浮置栅极。文档编号H01L29/04GK1881610SQ200610101410公开日2006年12月20日申请日期2000年4月15日优先权日1999年4月15日发明者山崎舜平,北角英人,福永健司申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1