半导体装置的制作方法

文档序号:7180431阅读:95来源:国知局
专利名称:半导体装置的制作方法
技术领域
本发明涉及半导体装置,特别是涉及高耐压功率用半导体装置。
背景技术
图49是整体用700标示、传统的横向n沟道IGBT(绝缘栅双极 型晶体管)的顶视图;此外,图50是从X-X方向看图49的截面图。
如图50所示,IGBT700包含p型衬底1。 n层2设置在p型衬 底l中,此外在n—层2内形成n型緩沖层3。此外,在n型緩冲层3 中形成p型集电极层4。
另一方面,在n-层2中,与p型集电极层4相隔规定的距离,形 成p型基极层5。在p型基极层5内,n型发射极层(n+)6在p型基极 层5周围部分的内侧形成,比p型基极层5浅。此外,在p型基极 层5内,还形成p型发射极层(p+)7。
在夹在n型緩冲层3和p型基极层5之间的n-层2的表面上,形 成场氧化膜8。此外,在发射极层6和n-层2之间的p型基极层5中 形成的沟道区域15上,隔着栅极氧化膜9设置栅极布线10。此外, 设置保护膜ll,覆盖场氧化膜8等。
设置栅极电极12,在电气上连接到栅极布线10。此外,形成发 射极电极13,在电气上连接到n型发射极层6和p型发射极层7两 者。此外,形成集电极电极14,在电气上连接到p型集电极层4。 发射极电极13及集电极电极14和栅极电极12在电气上相互分离。
如图49所示,IGBT700在中央有p型集电极层4,具有由n型緩冲层3、 n—层2、 p型基极层5、 n型发射极层6、 p型发射极层7依 次包围其周围的结构,直线部分连结两个半圆部分成无端状。另外, 为了在图49上易于理解,省略了场氧化膜8、栅极氧化膜9、栅极 布线10、栅极电极12、保护膜11、发射极电极13以及集电极电极14。 专利文献1:专利第3647802号公才艮

发明内容
图51表示在IGBT 700中施加一定的栅极.发射极之间电压(VGE) 的状态下,施加集电极.发射极间电压(VcE)时的集电极'发射极电流电 流(Ice)的特性。横轴表示集电极.发射极间电压(VcE),纵轴表示集电 极-发射极电流(IcE)。测定的温度是室温。
正如从图51可以看出的,VcE逐渐增大时,VcE接近6V时IcE约
变为0.2A,从这附近起趋向于饱和。因此,有即使VcE增大,Ice也
无法显著增大的问题。
此外,即使在Vce从OV到6V之间,IcE也呈现出平緩的斜率, 还有导通电阻(VCE/ICE)高的问题。
图52表示IGBT 700的关断波形。横轴表示关断时间,纵轴表
示集电极.发射极间电压(VcE)或集电极'发射极电流(IcE)。在图35中, (Av)表示VcE值的改变,(A!)表示IcE值的改变。
正如从图52看出的,下降时间(IcE从最大值的90%变为10%所 需要的时间)是超过llis的大值。这样,在p型衬底l上的iT层2上 形成IGBT的结分离(JI)横向IGBT700,有开关速度慢,开关损失大 的问题。
此外,在横向IGBT700上,在反相器电路上短路时等,还有p 型集电极层4/n型緩沖层3/n—层2/p型基极层5/n型发射极层6上形 成的寄生半导体开关元件闭锁,IGBT700电流密度增大,容易破坏 的问题。
本发明旨在解决这样的问题,目的是提供提高集电极'发射极电流特性、缩短下降时间、此外提高寄生半导体开关元件闭锁耐受性 的半导体装置。
本发明是一种半导体装置,其特征在于,它是由多个单元半导体
元件组成的横向半导体装置,各单元半导体元件由IGBT组成,包含 第1导电型的半导体衬底、在半导体衬底上设置的第2导电型的半 导体区、在半导体区中设置的第l导电型的集电极层、在半导体区 中设置得与集电极层隔开的包围集电极层的环形第1导电型的基极 层、在基极层中设置的环形配置的第2导电型的第l发射极层,第1 发射极和集电极层之间的载流子移动用在基极层内形成的沟道区域 控制,单元半导体元件相邻设置。
正如从以上说明可以看出的,用本发明可以得到集电极.发射极 电流特性良好,下降时间短,而且寄生半导体开关元件的闭锁耐受 性高的半导体装置。


图1是本发明实施例1的IGBT的顶—见图; 图2是本发明实施例1的IGBT的截面图; 图3是本发明实施例1的另 一种IGBT的顶—见图; 图4是包含于本发明实施例1的IGBT中的单元IGBT的个数和 总的沟道宽度的关系;
图5表示把传统构造的IGBT沟道区重叠在本发明实施例的IGBT
上;
图6是本发明实施例1的IGBT和传统构造的IGBT表面积的比 较曲线图7是本发明实施例1的IGBT和传统构造的IGBT表面积比较 的曲线图8表示本发明实施例1的IGBT的集电极.发射 电压(VcE)和 集电极-发射极电流(Ice)的关系;图9是本发明实施例2的IGBT的顶视图10是本发明实施例2的IGBT的截面图11是本发明实施例2的另一种IGBT的顶视图12表示本发明实施例2的IGBT的关断波形;
图13表示本发明实施例1的IGBT的电阻负载切换关断时的电
位分布、电流分布以及耗尽区边界线;
图14表示本发明实施例1的IGBT的电阻负载切换关断时的空
穴分布;
图15表示本发明实施例1的IGBT的电阻负载切换关断时的空 穴分布、电子分布以及在平衡状态下的浓度分布;
图16表示本发明实施例2的IGBT的电阻负载切换关断时的电 位分布、电流分布以及耗尽区边界线;
图17表示本发明实施例2的IGBT的电阻负载切换关断时的空 穴分布;
图18表示本发明实施例2的IGBT的电阻负载切换关断时的空
穴分布、电子分布以及在平4軒状态下的浓度分布; 图19是本发明实施例3的IGBT的截面图; 图20是本发明实施例3的另 一种IGBT的截面图; 图21表示本发明实施例2的IGBT的电阻负栽切换关断时的电
场分布、电流分布以及耗尽区边界线;
图22表示本发明实施例3的IGBT的电阻负载切换关断时的电
场分布、电流分布以及耗尽区边界线;
图23是表示本发明实施例4的IGBT —部分的顶一见图24是本发明实施例4的IGBT的截面图25是本发明实施例4的IGBT的截面图26是表示本发明实施例4的IGBT —部分的顶视图27是表示本发明实施例4的IGBT的p型发射极层配置的顶
视图;图28是表示本发明实施例5的IGBT —部分的顶视图; 图29是本发明实施例5的IGBT的截面图; 图30是本发明实施例6的IGBT的顶视图; 图31是本发明实施例6的另一种IGBT的顶一见图; 图32是本发明实施例6的IGBT的截面图; 图33是本发明实施例7的IGBT的截面图; 图34是本发明实施例7的另 一种IGBT的截面图; 图35是表示本发明实施例8的IGBT的顶视图; 图36是本发明实施例8的IGBT的截面图; 图37是本发明实施例8的IGBT的截面图; 图38是表示本发明实施例9的IGBT的p型发射极层配置的顶 视图39是本发明实施例9的IGBT的截面图40是本发明实施例10的IGBT的顶视图41是本发明实施例10的IGBT的放大图42是本发明实施例10的IGBT的放大图。
图43是本发明实施例10的IGBT的放大图。
图44是本发明实施例IO的另一种IGBT的顶视图45是本发明实施例IO的另一种IGBT的放大图。
图46是本发明实施例10的另 一种IGBT的放大图。
图47是本发明实施例IO的另一种IGBT的放大图。
图48是本发明实施例10的IGBT的截面图49是传统IGBT的顶视图50是传统IGBT的截面图51表示传统IGBT的集电极.发射极电压(VCE)和集电极-发 射极电流(ICE)的关系;
图52表示传统IGBT的关断波形;符号说明
I p型衬底 2 n-层3緩冲层 4 p型集电极层5 p型基极层 6 n发射极层 7 p型发射极层
8 场氧化膜9 栅极氧化膜 10 栅极电极
II 保护膜12 栅极电极 13 发射极电极14 集电极电极 15 沟道区 100 半导体装置
具体实施方式
实施例1
图l是整体用IOO标示的本发明的实施例1的横向n沟道IGBT(绝缘栅双极型晶体管)的顶视图。此外,图2是在A-A方向看图l的截面图。
如图2所示,IGBT 100包含硅等的p型衬底1。在p型衬底1中设置n-层2。在n-层2内选择性地形成n型緩冲层3。此外,在n型緩冲层3中,选择性地形成p型集电极层4。另外,也可以不设置緩冲层3(在以下的实施例中也一样)。
另一方面,在n-层2中,与p型集电极层4相隔规定的距离,选择性地形成p型基极层5。在p型基极层5内,在p型基极层5的周围部分的内侧,比p型基极层5浅地选择性地形成n型发射极层(n+)6。此外,在p型基极层5内,形成p型发射极层(p+)7。
在夹在n型緩冲层3和p型基极层5之间的n层2的表面上,例如,形成硅氧化膜等场氧化膜8。此外,发射极层6和n-层2之间的在p型基极层5内形成的沟道区15上,隔着硅氧化膜等栅极氧化膜9设置栅极布线10。栅极布线IO由例如铝组成。此外,例如,设置硅的氮化膜等保护膜11,覆盖场氧化膜8。
设置栅极电极12,电气上连接到栅极布线10。栅极电极12由例如铝组成。
此外,形成发射极电极13,在电气上连接n型发射极层6和p型发射极层7两者。此外,形成集电极电极14,在电气上连接到p型集电极层4。发射极电极13、集电极电极14例如由铝组成。发射才及电极13、集电极电才及14、栅极电才及12在电气上相互分离。
此外,如图1所示,本实施例1的IGBT 100,采取在中央有p型集电极层4,其周围被n型緩冲层3、 i层2、 p型基极层5、 n型发射极层6、 p型发射极层7依次包围所形成的环形单元IGBT,平行排列成多个相邻的结构。这里,单元IGBT呈圆形,但是呈接近圓形的椭圆形、接近圆形的多角形亦可。
另外,为了在图2中易于理解,省略了场氧化膜8、栅极氧化膜9、栅极布线10、栅极电极12、保护膜11、发射极电极13以及集电极电极14。此外,单元IGBT的发射极电极13、集电极电极14、栅极电极12分别在电气上连接。
图3是整体用150标示的本实施例1的另一种IGBT的顶视图。除了相邻的圆形的单元IGBT的p型发射极层7部分重叠,其它与IGBT 100结构相同。
图4表示IGBT由传统那样细长的一个无端的IGBT 700形成时和由本实施例1的IGBT150那样多个圆形单元IGBT形成时,单元IGBT的个数和总沟道宽度的关系。在图4中,横轴是单元IGBT的个数,纵轴是总的沟道宽度。
与细长的一个IGBT相比,多个圆形单元IGBT平行排列的情况的总沟道宽度长,IO个单元IGBT平行排列时,总的沟道宽度是一个IGBT沟道宽度的约2倍。
图5是在由3个单元IGBT组成的IGBT150上,重叠了传统结构的IGBT700的沟道区域。可以看出,采用本实施例1的IGBT 150,可增大沟道宽度。
图6是图5中比较的本实施例1的IGBT 150和传统结构的IGBT700的表面积(占有表面)的比较图。横轴表示单元IGBT的个数,纵轴表示IGBT的表面积。可以看出,单元IGBT的个数越多的结构,与传统的结构相比,表面积可越小。
例如,如图7所示,在由3个单元IGBT形成IGBT150的情况下,与传统结构的IGBT700比较,可以缩小IGBT的表面积,少了斜线表示的部分的面积。
这样,在面积有限的区域形成横向IGBT的情况下,采用本实施例1的IGBT100、 150,与传统结构的IGBT700相比,表面积(占有面积)小且可以加长总的沟道宽度。
图8表示在实施例1的IGBT 150施加一定的栅极发射极间电压
(VcjE)的状态下,施加集电极.发射极间电压(VcE)时,集电极.发射极的电流(IcE)特性。横轴表示集电极.发射极间电压(VcE),纵轴表示集电极-发射极电流(IcE)。测定的温度是室温。
正如/人图8看出的,在VcE逐渐增大的情况下,Vce接近6V时ICE约变为0.4A,从这附近开始呈现饱和趋向,但是此时的IcE与传统结构的IGBT(参见图51)比较,数值约大了2倍左右。此外,可以看出,即使在Vce从OV到6V为止,与传统结构的IGBT比较,导通电阻(Vce/Ice)低。
它们的IcE特性的提高是由于与传统结构的IGBT 700相比,总的沟道宽度变长了。
另夕卜,在图4~8中,采用IGBT 150进行说明,但是用IGBT 100结果也大体相同。
实施例2
图9是整体用200标示、本发明实施例2的横向n沟道IGBT的顶视图。此外,图IO是从B-B方向看图9的截面图。在图9, 10中,与图1、 2相同的符号表示相同的或相当的部位。
如图10所示,IGBT 200采取在p型衬底1和n层2之间,例如,形成由硅氧化膜组成的掩埋氧化膜20的SOI结构。其他结构与IGBT100相同。图9顶3见图所示的IGBT 200的结构与图2的IGBT 100的结构相同。在这样的结构中,可以与n-层2的导电型无关地选择衬底1的导电型。
图ll是整体用250标示的本实施例2的另一种IGBT的顶视图。除相邻的圆形单元IGBT的p型发射极层7部分重叠外,与IGBT 200结构相同。
另外,实施例1的IGBT 100、 150称为结分离型,本实施例2的IGBT200, 250可以称为绝缘体分离。
图12表示IGBT 200的关断波形。横轴表示关断时间,纵轴表
示集电极.发射极间电压(VcE)或集电极.发射极电流(IcE)。在图12中,
(lv)(lc)表示实施例1的IGBT 100的Vce但、IcE值的变化,(2v)、 (2c)表示实施例2的IGBT200的VcE值、IcE值的变化。
在图35所示的传统结构的IGBT700中,下降时间(tf:IcE从最大值的90%变为10%所需要的时间)数值大,超过lps,但是,实施例2的IGBT((参见(2c))约变为0.5ps。这样,在实施例2的IGBT中,与传统的IGBT(图52)相比,开关速度加快,开关损失减小。另外,在进行电阻负载切换时的关断波形中,在Vce上升的情况下,Ice以与VCE上升率与绝对值大致同样程度的下降率减小。
图13表示上述实施例1的结分离横向IGBT IOO的电阻负载切换关断时(10.6ias)的电流分布(实线)、电压分布(虚线)以及耗尽区的边界线(点划线),对应于图l的截面图。
在结分离横向IGBT 100的情况下,从发射极侧扩大的耗尽层,不仅在集电极侧,而且还扩大到p型衬底侧,电位分布和电流分布也分布在p型衬底侧。因此,抑制了向集电极侧耗尽化,Vce的上升变得比较平稳。其结果是,与此相应的IcE的减小也变得比较平稳。
图14表示上述实施例1的结分离横向IGBT IOO的电阻负载切换关断时(10.6fis)的空穴分布(用实线表示),对应于图l的截面图。
结分离横向IGBT100,如图13所示,为了抑制从发射极侧向集电极侧的耗尽化,在n-层内和p型村底内分布大量空穴。若n-层内和p型衬底内分布大量空穴,则由于到空穴消失需要时间,下降时间(tf)变得比较长。
图15表示在上述实施例l的结分离横向IGBT IOO的电阻负载切换关断时(10.6ias)的(a)空穴分布、(b)电子分布以及(c)平衡状态下的浓度分布、n-层内 一定深度的从集电极侧到发射极侧的分布。
如图13所示,在结分离横向IGBT 100中,由于抑制了从发射极侧向集电极侧的耗尽,在耗尽层不扩大的rf层内,分布着超过平衡状态浓度的过剩空穴和过剩电子。过剩空穴和过剩电子大量分布在n层内,因此到过剩空穴和过剩电子从n-层内消失的时间变长。因此,与传统结构的IGBT700相比,下降时间(tf)加速有限。
另一方面,图16表示实施例2的绝缘体分离横向IGBT 200的电阻负载切换关断时(10,6ias)的电位分布(实线)、(b)电流分布(虚线)以及耗尽区边界线(点划线),对应于10的截面图。
在绝缘体分离横向IGBT200的情况下,由于n-层和p型衬底之间存在掩埋氧化膜,从发射极侧扩大的耗尽层不向p型衬底扩大,而在n-层内向集电极侧扩大。因而,在p型衬底内,不存在电流分布和电位分布。因此,向集电极侧耗尽加剧,Vce上升。其结果是,对应的ICE也上升,下降时间(tf)加速。
图17表示实施例2的绝缘体分离横向IGBT 200的电阻负载切换关断时(10.6ps)的空穴分布(用实线表示),对应于图IO的截面图。
绝缘体分离横向IGBT 200,如图16所示,由于从发射极侧向集电极侧耗尽加剧,在n-层内分布的空穴少。因此,分布于n层内的空穴到消失的时间缩短,下降时间(tf)缩短。
图18表示绝缘体分离横向IGBT 200的电阻负载切换关断时(l0.6ps)的(a)空穴分布、(b)电子分布以及(c)在平衡状态下的浓度分布,在n-层内 一定的深度下从集电极侧到发射极侧的分布。
在绝缘体分离横向IGBT200中,如上所述,由于从发射极侧向集电极侧的耗尽加剧,在n-层中,耗尽层不扩大的区域少。因此,在n-层中,平衡状态下的浓度以上的空穴和电子(过剩空穴,过剩电子)少。若n-层内的过剩空穴和过剩电子少,则过剩空穴和过剩电子到消 失的时间缩短,结果下降时间加速(tf)。
因而,在实施例2的IGBT 200中,除了可以用实施例1的IGBT
100实现的发射极电流(IcE)特性的提高以外,还可以缩短下降时间
(tf)。
在图16~18中,就IGBT200进行了说明,但是在IGBT250上 也可以获得大致相同的效果。
另外,在p型村底1和n-层2之间设置绝缘膜20的结构也可以 适宜传统结构的IGBT。
实施例3
图19是整体用300标示的本发明实施例3的横向n沟道IGBT 的截面图,表示从与图1的A-A方向相同的方向看的情况。在图19 中,与图2相同的符号表示相同或相当的部位。
在图19所示的IGBT300中,在发射极侧,设置比p型基极层5 宽度窄、比p型基极层5深但未达到p型衬底1的深度的f层30, 连接到p型基极层5的底面。其他结构与图2的IGBT100相同。
图20是整体用350标示的本发明的实施例3的另一种横向n沟 道IGBT的截面图,表示从与图9的B-B方向相同的方向看的情况。 图20中,与图IO相同的符号表示同一或相当的部位。
在图20所示的IGBT 350中,在发射极侧,设置比p型基极层5 的宽度(图20中的左右方向的长度)窄、而且未达到比p型基极层5 还深的掩埋绝缘膜20的深度的p-层30,连接到p型基极层5的底面。 其他结构与图10的IGBT 200相同。
图21是上述实施例2的绝缘体分离横向IGBT 200的电阻负载 切换关断时(10.6(xs)的电流分布(实线)、电场分布(虚线)以及耗尽区边 界线(点划线),对应于图IO的截面图。
此外,图22是本实施例3的绝缘体分离横向IGBT 350的电阻 负载切换关断时(10.6ps)的电流分布(实线)、电场分布(虚线)以及耗尽区边界线(点划线),对应于图20的截面图。
参见图21,可以看出,在设有掩埋绝缘膜的绝缘体分离结构的 情况下,电流流过掩埋氧化膜正上方的n-层。
因此,在p型基极层下部设置p-层,从而使达到发射极侧的n-层 的空穴电流,变得容易流入f层底部的高电场部分。
参见表示IGBT 350的图22,流过n型发射极层正下面的空穴电 流,与IGBT250(图21)相比变少了。其结果是,在IGBT 350中,与 IGBT250相比,使寄生半导体开关元件难以动作,提高了闭锁耐受 性。
此外,在IGBT350中,p-层的宽度比p型基极层的宽度窄。因 此,达到发射极侧的n-层的空穴电流,大致向上通过p-层内流向发射 极电极,与没有p—层的IGBT250相比,可以进一步缩短下降时间(tf)。
这样,在本实施例的IGBT 300, 350中,通过在p型下部设置p 层,可以在防止寄生半导体开关元件的闭锁的同时,缩短下降时间 (tf)。特别是,在设置掩埋绝缘膜的IGBT 350中,可以得到显著的效 果。
另外,在p型基极层的下部设置p-层的结构,也可以适用于传统 结构的IGBT,获得相同的效果。 实施例4
图23是整体用400标示的本发明的实施例4的横向n沟道IGBT 的一部分的顶视图,表示了在p型基极层5内形成的n型发射极(n+) 层6(与发射极电极连接的区域(发射极接触区))。
如图23所示,在IGBT 400中,n型发射极层6包含向外的多个 突出部分(凸出区)16。如图23所示,突出部分16的宽度(W2),对相 邻的突出部分16的间隔(W1)具有W1>W2的关系。其他结构与IGBT 100相同。
此外,图24是在C-C方向看图23的截面图,图25是在D-D方 向看图23的截面图。在图24、 25中,同时记录IGBT关断时和稳态,接通时的空穴流。
这里,在图24中记栽的截面图中的n型发射极层的宽度,与图 1所示的IGBT 100的n型发射极层6的宽度大致相等。另一方面, 在图25中记载的截面图上n型发射极层的宽度,比图1所示的IGBT 100的n型发射极层6的宽度窄。
在图25中,n型发射极(n+)层的宽度变窄,所以n—层/p型基极层/n 型发射极层中形成的寄生npn双极型晶体管的n型发射极层正下面 的p型基极层的宽度变窄,p型基极区的基极电阻减小。其结果是, 抑制寄生叩n双极型晶体管的动作,可以防止p型集电极层/n型緩 沖层/n+层/P型基极层/n型发射极层中形成的寄生半导体开关元件的 闭锁。
这样,在本实施例4的IGBT 400中,提高了 IGBT关断时和稳 态接通时的寄生半导体开关元件的闭锁耐受性。
此外,在IGBT 400中,突出部分16是n型发射极层6的一部 分,由于两者在电气上连接,即使釆用这样的结构,也不比IGBT 100
沟道宽度减小。因此,在施加一定的栅极.发射极间电压(VGE)的状态 下,施加集电极.发射极间电压(VcE)时,集电极'发射极电流(Ice)特性
与IGBT 100同样地变得良好。
此外,在IGBT400中,n型发射极层具有突出部分,而且其尺 寸变为W1〉W2(参见图23)。就是说,如图26所示,栅极电极引出 布线配置得通过两个突出部分之间,没有必要像传统的结构那样, 切断与栅极电极引出布线相交的n型发射极层。从而,不减小沟道 宽度,配置栅极电极引出布线变得可能。
因而,在施加一定的栅极.发射极间电压(VGE)的状态下,施加集 电极.发射极间电压(VcE)时,集电极'发射极电流(IcE)特性变好。
另外,这样的结构的n型发射极层也可以适用于传统结构的 IGBT。
图27是相对于图23中所示的横向n沟道IGBT的n型发射极层的p型发射极层(在图24、 25中记载为「P+」)的配置的顶视图。 如图27(a)所示,p型发射极层也可以呈包围n发射极层的带状。 此外,如图27(b)、 (c)所示,p型发射极层也可以沿着n型发射
极层呈环形。这里,(b)是在p型发射极层和n型发射极层之间设置
规定的间隔的形状,(c)是连接p型发射极层和n型发射极层的形状。 此外,如图27(d)所示,p型发射极层也可以沿着n型发射极层
呈不继续并排的形状。
另外,这样的p型发射极层的形态也可以适用于其他实施例所示
的p型发射极层。 实施例5
图28是整体用500标示的本发明的实施例5的横向n沟道IGBT 的一部分的顶-见图,表示n型发射极层和发射极电极的连接区(发射 极接触区)。此外,图29是在E-E方向看图28的IGBT 500的截面图。
在本实施例5的IGBT500中,在IGBT400(图25)上,如图28 所示,n型发射极层的突出部分具有前端部分,呈T字形,从而增大 n型发射极层和发射极电极布线的接触面积。其他结构与IGBT400 相同。
在IGBT 500中新设置的n型发射极层,如图29所示,形成得 使宽度(图29的横向长度)变窄。因此,在n-层/p型基极区/n发射极 层中形成的寄生叩n双极型晶体管中,n型发射极层正下面的p型基 极区的基极电阻降低。从而,抑制寄生npn双极型晶体管的动作, 还可以防止由p型集电极层/n型緩沖层/n-层/p型基极层/n发射极层 中形成的寄生半导体开关元件的闭锁。其结果是,在横向n沟道IGBT 500中,提高IGBT500关断时和稳态接通时寄生半导体开关元件的 闭锁耐受性。
此外,在IGBT 500中,由于n型发射极层和电极布线的接触面 积增加,n型发射极层和发射极电极布线的接触电阻减小。这样,在本实施例5的横向n沟道IGBT 500中,对于实施例4 的IGBT,使n型发射极层的突出部分呈T字形,从而增加n型发射 极层和发射极电极布线的接触面积,降低n型发射极层和发射极电 极布线的接触电阻。其结果是,在施加一定的栅极.发射极间电压(VGE ) 的状态下,施加集电极.发射极间电压(VcE)时,可以使集电极'发射极
电流(IcE)特性提高。
另外,这样的结构的n型发射极层也可以适用于传统结构的 IGBT。
实施例6
图30是实施例1的IGBT 150的双组合、整体用600标示的IGBT 的顶视图。此外,图31是IGBT700的双组合、整体用650标示的IGBT 的顶一见图。此外,图32是在F-F方向看图30的IGBT 600的截面图。 图30、 31中,与图2、 3相同的符号表示相同或相当的部位。
像图30、31中用斜线表示的那样,在本实施例6的IGBT 600,650 中,在相邻的两个单元IGBT的共同的切线与两个IGBT夹着的区域 和相邻的3个单元IGBT夹着的区域上,设置p型发射极层17,增 大p型发射极层和发射极电极布线的接触面积。
在这样的结构中,与n型发射极层6相比,p发射极层发射极层 7, 17相对变宽。其结果是,可以减小p型发射极层7、 17和发射极 布线的接触电阻,如图32所示,空穴不停留在n型发射极层的正下 面,平滑地流向p型发射极(p+)层和发射极布线(发射极电极)的接触 区域。这间接地是因为n型发射极层正下面的p型基极区的基极电 阻减少。
从而,抑制n层/p型基极层/n型发射极层中形成的寄生叩n双 极型晶体管的动作,可以防止p型集电极层/n型緩冲层/n-层/p型基 极层/n型发射极层中形成的寄生半导体开关元件的闭锁。其结果是, 在横向n沟道IGBT 600中,提高了 IGBT 600关断时和稳态接通时 寄生半导体开关元件的闭锁耐受性。实施例7
图33是整体用IIOO标示的本发明的实施例7的横向n沟道IGBT 的截面图,表示在与图1的A-A方向相同的方向看的情况。图33中, 与图19相同的符号表示相同或相当的部位。
本实施例7的IGBT IIOO(参见图33),与实施例3的IGBT 300(参 见图19)比较,形成为不设置p型发射极层7的结构,除此以外,与 IGBT300结构相同。在IGBT1100中,形成不i殳置p型发射极而由 p型基极层5兼作p型发射极的结构。
此外,图34是整体用1150标示的本发明的实施例7的另一个横 向n沟道IGBT的截面图,表示在与图1的A-A方向相同的方向看的 情况。图34中,与图20相同的符号表示相同或相当的部位。GBT1150 的结构形成为在IGBT 1100的结构上加上掩埋绝缘膜20的结构。
本实施例7的IGBT 1150(参见图34),与实施例3的IGBT 350(参 照图20)比较,除不设置p型发射极层7外,与IGBT350结构相同。 在IGBT 1150中,也是不设置p型发射极而由p型基极层5兼作p 型发射极。
这样,在本实施例7的IGBT 1100、 1150中,在p型基极层下部 设置p-层,从而防止寄生半导体开关元件的闭锁,同时可以缩短下降 时间(tf)。特别是,在设置掩埋绝缘膜的IGBT 1150中可以获得显著 的效果。
此外,p型基极层5兼作p型发射极,从而可以简化结构,省略 制造工序。 实施例8
图35是整体用1200标示的表示本发明的实施例8的横向n沟道 IGBT —部分的顶视图,表示p型基极层5中形成的n型发射极(n+) 层6(与发射极电极连接的区域(发射极接触区))。
与图23所示的IGBT 400相同,在IGBT 1200中,n型发射极层 6包含多个向外突出的部分(凸出区)16,突出部分16的宽度(W2),对于相邻的突出部分16的间隔(W1),具有W1>W2的关系。
图36是在C-C方向看图35的截面图,图37是在D-D方向看图 35的截面图。
本实施例8的IGBT 1200(参见图36,37),与实施例4的IGBT 400(参见图24、 25)比较,成为不设置p型发射极层的结构,除此以 外,与IGBT400结构相同。在IGBT 1200中,形成为不设置p型发 射极而由p型基极层5兼作p型发射极的结构。
通过设置这样的结构,在本实施例8的IGBT 1200中,可以收 到与上述的IGBT 400大体相同的效果。而且,p型基极层5兼作p 型发射极,从而可以简化结构,减少制造工序。
就是说,在图37中,使n型发射极(n+)层的宽度变窄,所以n'层 /P型基极层/n型发射极层中形成的寄生npn双极型晶体管的n型发 射极层正下面的p型基极层的宽度变窄,P型基极区的基极电阻减小。 其结果是,可以抑制寄生npn双极型晶体管的动作,防止p型集电 极层/n型緩冲层/n'层/p型基极层/n型发射极层中形成的寄生半导体 开关元件的闭锁。
这样,在本实施例8的IGBT 1200中,与IGBT 400相同,提高 了 IGBT关断时和稳态接通时寄生半导体开关元件的闭锁耐受性。
实施例9
图38是整体用1300标示的表示本发明的实施例9的横向n沟道 IGBT的一部分的顶视图,表示n型发射极层和发射极电极的连接区 (发射极接触区)。此外,图39是在E-E方向看图38的IGBT 1300的
截面图。
本实施例9的IGBT 1300(参见图38,39),与实施例5的IGBT 500(参见图28,29)比较,是不设置p型发射极层的结构,除此以外, 与IGBT 500结构相同。在IGBT 1300中,是不设置p型发射极而由 p型基极层兼作p型发射极的结构。
通过设置这样的结构,在本实施例9的IGBT 1300中,可以收到与上述的IGBT 500大体相同的效果。而且,p型基极层5兼作p 型发射极,从而可以简化结构,减少制造工序。
就是说,在IGBT 1300中,对于实施例4的IGBT,把n型发射 极层的突出部分设置为T字形,从而增加n型发射极层和发射极电 极布线的接触面积,降低n型发射极层和发射极电极布线的接触电
阻。其结果是,在施加一定的栅极.发射极间电压(VcE)的状态下,可
以使施加集电极.发射极间电压(VcE)时集电极'发射极电流(Ice)特性提高。
实施例10
图40是整体用1400标示的本实施例10的横向n沟道IGBT的 顶视图,与图30相同的符号表示相同或相当的部位。此外,图41~ 4 3是放大图40符号A的部分的放大图。
在本实施例10的IGBT 1400中,在相邻的两个单元IGBT的共 同切线与两个IGBT夹着的区域中,设置p型发射极层17,增大p 型发射极层和发射极电极布线的接触区域(发射极接触区)的面积(表 示图41~43中的发射极接触区)。从而,可以收到与上述实施例6 的IGBT650(参见图31)同样的效果。
就是说,可以抑制n-层/p型基极层/n型发射极层中形成的寄生npn 双极型晶体管的动作,防止p型集电极层/n型緩沖层/n-层/p型基极 层/n型发射极层中形成的寄生半导体开关元件的闭锁。其结果是, 在横向n沟道IGBT 1400中,提高了 IGBT 1400关断时和稳态接通 时寄生半导体开关元件的闭锁耐受性。
如图40,41所示,在IGBT 1400中,n型发射极层6也可以沿着 p型基极层5不连续配置。此外,尽管图中没有示出,但也可以进行 无端的连续配置。
此外,如图42所示,在IGBT 1400中,n型发射极层6也可以 做成设有多个向外突出的部分(凸出区)的无端结构。
此外,如图43所示,对于图42的结构,也可以做成不设置p型发射极层7的结构。
这样,设置在本实施例的IGBT 1400的p型发射极层17,无论 n型发射极层6的形状和p型发射极层7的有无,都可以形成,从而 在IGBT 1400中,可以提高关断时和稳态接通时寄生半导体开关元 件的闭锁耐受性。
图44是整体用1500标示、本实施例lO的另一种横向n沟道IGBT 的顶视图,与图30相同的符号表示相同或相当的部位。此外,图45~ 47是放大图44的符号B的部分的放大图。
在IGBT 1500中,在相邻的两个单元IGBT共同的切线和两个 IGBT夹着的区域,和相邻的3个单元IGBT夹着的区域上,设置p 型发射极层17,增大p型发射极层和发射极电极布线接触的区域(发 射极接触区)的面积(表示图45~47中的接触区)。从而,可以收到与 上述实施例6的IGBT600(参见图30)同样的效果。
就是说,可以抑制n-层/p型基极层/n型发射极层中形成的寄生npn 双极型晶体管的动作,防止由p型集电极层/n型緩沖层/n层/p型基 极层/n型发射极层形成的寄生半导体开关元件的闭锁。其结果是, 在横向n沟道IGBT !500中,提高IGBT 1500关断时和稳态接通时 寄生半导体开关元件的闭锁耐受性。
如图44、 45所示,在IGBT 1500中,n发射极层也6可以沿着 p型基极层5不连续配置。此外,尽管图中没有示出,但也可以采取 无端连续配置。
此外,如图46所示,在IGBT 1500中,n型发射极层6也可以 采取设有多个向外突出部分(凸出区)的无端结构。
此外,如图47所示,对于图46的结构,也可以采取不设置p型 发射极层7的结构。
采取这样的结构,与n型发射极层6相比,p型发射极层7、 17 相对变宽。其结果是,可以减少p型发射极层7、 17和发射极布线 的接触电阻,如图48(在H-H方向看图46的截面图)所示,空穴不停留在n型发射极层的正下方,平滑地流向p型发射极(p+)层和发射极 布线(发射极电极)的接触区。这间接地是由于n型发射极层正下面的 p型基极区的基极电阻减少。
从而,可以抑制n-层/p型基极层/n型发射极层中形成的寄生叩n 双极型晶体管的动作,防止p型集电极层/n型緩沖层/n-层/p型基极 层/n型发射极层中形成的寄生半导体开关元件的闭锁。其结果是, 在横向n沟道IGBT 1500中,提高了 IGBT 1500关断时和稳态接通 时寄生半导体开关元件的闭锁耐受性。
另外,在实施例1~10中,就横向n沟道IGBT作了说明,但是 本发明也可以适用于横向p沟道IGBT。在这种情况下,上述实施例 1 ~ 10的说明中的p型和n型互换。
此外,本发明也可以适用于横向MOSFET和具有其他MOS栅 极结构的横向器件。
权利要求
1.一种由多个单元半导体元件组成的横向半导体装置,其特征在于,各单元半导体元件由IGBT组成,其包含第1导电型的半导体衬底;设置在该半导体衬底上的第2导电型的半导体区;设置在该半导体区中的第1导电型的集电极层;在该半导体区中,与该集电极层隔开,设置得包围该集电极层的环形第1导电型基极层;以及设置在该基极层中,呈环形配置的第2导电型的第1发射极层,该第1发射极层和该集电极层之间的载流子移动,用形成于该基极层上的沟道区进行控制,各个单元半导体元件设置得彼此相邻,在由分别包含于相邻的两个上述单元半导体元件的上述第2发射极层和两个该第2发射极层共同的切线包围的区域中,设置第1导电型的区域。
2.—种由多个单元半导体元件组成的横向半导体装置,其特征在于,各单元半导体元件由IGBT组成,其包含 半导体衬底;设置在该半导体衬底上的第2导电型半导体区;设置在该半导体区中的第l导电型的集电极层;在该半导体区中与该集电极层隔开,设置得包围该集电极层的环 形第l导电型基极层;以及设置在该基极层中,呈环形配置的第2导电型的第l发射极层,该第1发射极层和该集电极层之间的载流子移动,用形成于该基 极层上的沟道区进行控制,各单元半导体元件设置得彼此相邻,而且,在该半导体衬底和该半导体区之间设置绝缘膜,在由分别包含于相邻的两个上述单元半导体元件的上述第2发射 极层和两个该第2发射极层共同的切线包围的区域中,设置第1导 电型的区域。
3. 权利要求1或2所述的横向半导体装置,其特征在于, 上述第l发射极层形成为连续的环形。
4. 权利要求1或2所述的横向半导体装置,其特征在于, 在上述基极层中设置第l导电型的第2发射极层,以包围上述第1发射极层。
5. 权利要求1或2所述的横向半导体装置,其特征在于, 上述第1发射极层由环形而且连续的主体区和从该主体区向外突出的凸出区组成,在凸出区中与发射极电极连接。
6. 权利要求1或2所述的横向半导体装置,其特征在于, 在上述凸出区的端部,包含在上述主体区切线方向延伸的端部区域,该端部区域连接到上述发射极电极。
7. —种由多个单元半导体元件組成的横向半导体装置,其特征在于,各单元半导体元件由IGBT组成,其包含第1导电型的半导体衬底;设置在该半导体衬底上的第2导电型的半导体区;设置在该半导体区中的第1导电型的集电极层;在该半导体区中,与该集电极层隔开,设置得包围该集电极层的 环形第1导电型基极层;以及设置在该基极层中,呈环形配置的第2导电型的第l发射极层,该第1发射极层和该集电极层之间的载流子移动,用形成于该基 极层上的沟道区进行控制,各个单元半导体元件设置得彼此相邻,在由分别包含于彼此相邻的3个上述单元半导体元件中的上述第 2发射极层包围的区域中,设置第l导电型的区域。
8. —种由多个单元半导体元件组成的;f黄向半导体装置,其特征在于,各单元半导体元件由IGBT组成,其包含 半导体4十底;设置在该半导体衬底上的第2导电型半导体区;设置在该半导体区中的第1导电型的集电极层;在该半导体区中与该集电极层隔开,设置得包围该集电极层的环 形第1导电型基极层;以及设置在该基极层中,呈环形配置的第2导电型的第l发射极层,该第1发射极层和该集电极层之间的载流子移动,用形成于该基 极层上的沟道区进行控制,各单元半导体元件设置得彼此相邻,而且,在该半导体衬底和该半导体区之间设置绝缘膜,在由分别包含于彼此相邻的3个上述单元半导体元件中的上述第 2发射极层包围的区域中,设置第l导电型的区域。
9. 权利要求7或8所述的横向半导体装置,其特征在于, 上述第l发射极层形成为连续的环形。
10. 权利要求7或8所述的横向半导体装置,其特征在于, 在上述基极层中设置第1导电型的第2发射极层,以包围上述第1发射极层。
11. 权利要求7或8所述的横向半导体装置,其特征在于, 上述第1发射极层由环形而且连续的主体区和从该主体区向外突出的凸出区组成,在凸出区中与发射极电极连接。
12. 权利要求7或8所述的横向半导体装置,其特征在于, 在上述凸出区的端部,包含在上述主体区切线方向延伸的端部区域,该端部区域连接到上述发射极电极。
全文摘要
本发明提供一种提高集电极-发射极电流特性、缩短下降时间、特别是提高寄生半导体开关元件闭锁耐受性的半导体装置。本发明是由多个单元半导体元件组成的横向型半导体装置,各单元半导体元件由IGBT组成,包含第1导电型的半导体衬底;设置在该半导体衬底内的第2导电型的半导体区;设置在该半导体区内的第1导电型的集电极层;在该半导体区中、与该集电极层隔开、设置得包围该集电极层的环形第1导电型基极层;设置在该基极层中,呈环形配置的第2导电型的第1发射极层,该第1发射极层和该集电极层之间的载流子移动用形成于该基极层内的沟道区进行控制,各个单元半导体元件设置得彼此相邻。
文档编号H01L29/739GK101685819SQ20091020495
公开日2010年3月31日 申请日期2006年12月13日 优先权日2005年12月21日
发明者幡手一成 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1