一种全钒液流电池用电解液制备方法

文档序号:7049287阅读:222来源:国知局
专利名称:一种全钒液流电池用电解液制备方法
技术领域
本发明涉及一种电池电解液制备方法,具体涉及一种全钒液流电池用电解液制备方法。
背景技术
全钒液流电池简称钒电池,是一种利用在外部驱动下分别发生还原和氧化反应的包含有不同价态的钒离子电解液作为其正、负电极上的活性物质,从而完成充放电过程的电池。全钒液流电池具有使用寿命长,能量转化率高,安全环保,容量大小可调等优点,其电解液工作原理如下负极反应V2+-e-= V3+E0 = -0. 26V正极反应V02++2H++e-= V02++H20 E0 = 1. OOV由上可以看出,钒电池的核心就是电解液。现有钒电池电解液的制备方法一般采用直接将V2O5粉末与浓硫酸混合加热,用S粉或二氧化硫将V2O5还原得到VOSO4溶液;然后将VOSO4直接溶于硫酸中,从而进行电池的充放电。此制备方法在生产过程中会产生大量含硫的污染物,污染环境的同时也不利于大规模生产,成本偏高。另外,钢铁企业在炼铁过程中经常会有大量经提钒后的钒渣产生,在这些钒渣中又以转炉炼铁时产生的钒渣即转炉钒渣较大量,且含钒量丰富,以V2O5计占了转炉钒渣质量的10%左右。这些丰富的钒资源通常情况下并没有得到很好的利用,而是被当做废弃物处理。

发明内容
有鉴于此,本发明提供一种全钒液流电池用电解液制备方法,此制备方法可以有效减少制取钒电池电解液的工艺流程和有害气体的排放,有利于提高钒的转化率,增加钒电池电解液的产量,减少对环境的污染,降低生产成本;同时此方法还可对现有钒资源如钒渣进行合理利用,避免钒资源的浪费,降低生产成本。为解决以上技术问题,本发明的技术方案是采用一种全钒液流电池用电解液的制备方法,包括以下步骤A、钒渣经钠盐焙烧、水性浸取、除杂制得偏钒酸钠溶液;B、所述偏钒酸钠溶液经调酸、与浓盐酸反应制得VOSO4溶液;C、所述VOSO4溶液经浓缩制备得全钒液流电池电解液。优选的,所述A步骤中钒渣为转炉钒渣。优选的,所述A步骤中转炉钒渣钠盐焙烧时的钠盐采用碳酸钠。优选的,所述A步骤中转炉钒渣与碳酸钠的质量比为4-5 1。优选的,所述A步骤中钒渣在钠盐焙烧之前经过自然氧化、研磨、除铁和筛分。优选的,所述A步骤中钠盐焙烧温度为780°C -820°C。优选的,所述A步骤中水性浸取采用80°C _90°C的热水。
优选的,所述A步骤中除杂包括调节溶液pH值为7. 5-13. 5、过滤;所得滤液加氯化钙,过滤;所得滤液按Al/Si摩尔比为0. 8 1. 0加硫酸铝,过滤。优选的,所述B步骤中偏钒酸钠溶液的调酸为用浓硫酸调节其pH值为2-4。优选的,所述C步骤中包括在浓缩后所得全钒液流电池电解液中加入稳定剂硫酸钠和乙醇。本发明制取全钒液流电池用电解液所采用的制备方法的原理如下A、钒渣经钠盐焙烧、水性浸取、除杂制得偏钒酸钠溶液。这一步中,钒渣中的钒资源大部分以氧化物的形式存在,这其中包括有%03、V2O5 等,而这些钒氧化物中又以V2O5为主,且均为不溶于水的氧化物,其可与钠盐如碳酸钠或者氯化钠和氧气共同焙烧后产生可溶于水的钒酸钠Na3VO4固体,其反应方程式如下V205+3Na2C03 = 2Na3V04+3C02 个这一步的目的是为了使钒渣中的五氧化二钒转变成钒酸钠,方便下一步水性浸取时钒与渣的分离。焙烧后的固体混合物经过水性浸取后溶于水中形成含有一定杂质离子如铁离子、铝离子、磷酸根离子、硅酸根离子等的偏钒酸钠NaVO3溶液;其反应方程式如下Na3V04+H20 = NaV03+2Na0H所述含有一定杂质的偏钒酸钠NaVO3溶液经过调节pH或加入除杂剂等除杂步骤后得到偏钒酸钠NaVO3溶液。B、制得的偏钒酸钠NaVO3溶液经调酸,与浓盐酸反应制得硫酸氧钒VOSO4溶液。这一步中,在上一步所制得的偏钒酸钠NaVO3溶液中加入酸性溶液,调节溶液pH 为酸性后,加入浓盐酸参与氧化还原反应制得硫酸氧钒VOSO4溶液;其反应方程式如下2NaV03+3H2S04+2HCl (浓)=2V0S04+C12 丨 +Na2S04+4H20C、制得的硫酸氧钒VOSO4溶液经浓缩后得到全钒液流电池用电解液。这一步中,所制得的硫酸氧钒VOSO4溶液浓度较低,可经过浓缩步骤后得到适宜浓度的VOSO4溶液作为全钒液流电池用的电解液。本发明制备方法与现有技术相比有着以下优点现有技术中,五氧化二钒原料与浓硫酸混合加热后,直接与S粉或二氧化硫反应,这一步中采用的S粉经过反应后会产生 S的氧化物如SO2等,这类气体对环境的污染较大,不利于大规模生产的同时增加了生产成本;而采用二氧化硫反应,若气体发生泄漏,将会产生严重的生产事故,对环境造成不利的因素,也不利于大规模生产,增加了生产成本。而本发明制备方法中并没有采用S粉或二氧化硫来参与制备全钒液流电池用电解液的反应,因此,此制备方法可以有效减少制取钒电池电解液的工艺流程和有害气体的排放,有利于提高钒的转化率,增加钒电池电解液的产量,减少对环境的污染,降低生产成本;同时此制备方法采用现有资源钒渣为原料,不仅对钒渣中的钒资源进行了很好的回收利用,而且避免了钒资源的浪费,降低了生产成本。进一步的,本发明A步骤中钒渣优选采用转炉钒渣;转炉钒渣来源于在铁水中转炉提钒时所产生的钒渣,此钒渣产量大且含钒量丰富,以V2O5重量计含量约为10%左右;由于转炉钒渣来源丰富且成本低廉,优选采用转炉钒渣为原料,可以在较大程度上降低生产成本。进一步的,本发明A步骤中钒渣进行钠盐焙烧时优选钠盐为碳酸钠;碳酸钠具有一定的碱性,可以使V2O5与其进行充分的反应,其反应式如下
V205+3Na2C03 = 2Na3V04+3C02 个进一步的,本发明A步骤中在采用转炉钒渣与钠盐碳酸钠进行焙烧时优选采用转炉钒渣与碳酸钠的质量比为4-5 1 ;由于转炉钒渣中V2O5的含量约为10%左右,采用转炉钒渣与碳酸钠的质量比为4-5 1时,转炉钒渣中的V2O5与碳酸钠的质量比即为1 2-2.5, 而且由上述反应方程式可知V2O5与碳酸钠的反应质量比为1 1.6,过量的碳酸钠可以保证钒渣中的V2O5得到充分的反应,做到最大限度的利用钒资源,避免浪费,减少成本的目的。进一步的,本发明A步骤中在钒渣进行钠盐焙烧时优选焙烧温度为780V -820V; 优选采用此温度可以使转炉钒渣中的V2O5得到更充分的反应。进一步的,本发明A步骤中优选在钒渣进行钠盐焙烧之前进行研磨、除铁、筛分; 将转炉钒渣进行研磨后,其颗粒较细,可以与钠盐充分混勻,后续反应更加充分,提高钒的转化率,避免钒资源的浪费;将研磨后的钒渣除铁,得到的富铁料可以回收利用,可进一步降低生产成本;筛分后的钒渣,可以提高反应速度,缩短后续反应时间,提高生产效率,节约后续所使用的钠盐的用量,达到减少成本的目的。进一步的,本发明A步骤中钒渣在钠盐焙烧之前进行自然氧化;如上述所说的,钒渣中的钒资源除了以V2O5为主外,还有少量的低价钒氧化物如V2O3等;使钒渣经过充分自然氧化步骤的目的是为了使其低价钒氧化物经过氧化后成为V2O5,这样可以有利于下一步与钠盐焙烧的反应,提高钒转化率。进一步的,本发明A步骤中水性浸取优选采用80°C -90°C的热水;五氧化二钒原料经钠盐焙烧后得到水溶性的钒酸钠Na3VO4固体,为了使焙烧后得到的固体混合物中的钒酸钠能够充分的溶解于水中,本发明优选采用温度为80°C -90°C的热水来浸取钒酸钠。进一步的,本发明A步骤中除杂优选采用先调节水性浸取后得到的偏钒酸钠溶液的PH值为7. 5-13. 5来使溶液中的金属阳离子如铁离子、铝离子和锰离子等发生沉淀后过滤;然后在所得滤液中加入除杂剂如氯化钙来使磷酸根离子发生沉淀后过滤;最后在所得滤液中加入除杂剂如硫酸铝(可按Al/Si的摩尔比为0.8 1.0)来使硅酸根离子沉淀后过滤;所得滤液即为较高纯度的偏钒酸钠溶液。进一步的,本发明B步骤中偏钒酸钠溶液的调酸优选为用浓硫酸调节其pH值为 2-4;优选采用浓硫酸作为调酸剂可以使获得的电解液不会引入其他的杂质离子,使其纯度较高;优选采用调节溶液PH值为2-4,这可以使溶液有利于下一步的反应。进一步的,本发明优选在C步骤中加入稳定剂如硫酸钠和乙醇;优选在C步骤中加入稳定剂的步骤可以使所得溶液使用更加长久。


附图是本发明制备方法的流程图。
具体实施例方式为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明作进一步的详细说明。实施例1IOOgV2O5粉末和300g碳酸钠于富氧回转窑中在800°C下焙烧2个小时,分别用300mL,温度为80°C的水浸取三次后过滤,每次浸取时间为20分钟;合并三次滤液得偏钒酸钠浸取液900mL ;浸取液加入少量碳酸钠固体调节pH值为10,搅拌后过滤得IOOOmL滤液; 所得滤液加入少量氯化钙,搅拌后过滤得IlOOmL滤液;所得滤液加入少量硫酸铝,搅拌后过滤得1200mL滤液;所得滤液加入0. 5N硫酸调节pH值为3后所得偏钒酸钠溶液加入SOmL 浓盐酸发生氧化还原反应得1200mL0. 41mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经 100°C蒸发浓缩得M6mL2mol/L硫酸氧钒溶液,即全钒液流电池用电解液。实施例2IOOgV2O5粉末和300g碳酸钠于富氧回转窑中在800°C下焙烧2个小时,分别用 300mL,温度为85°C的水浸取三次后过滤,每次浸取时间为20分钟;合并三次滤液得偏钒酸钠浸取液900mL ;浸取液加入少量碳酸钠固体调节pH值为10,搅拌后过滤得IOOOmL滤液; 所得滤液加入少量氯化钙,搅拌后过滤得IlOOmL滤液;所得滤液加入少量硫酸铝,搅拌后过滤得1200mL滤液;所得滤液加入0. 5N硫酸调节pH值为3后所得偏钒酸钠溶液加入SOmL 浓盐酸发生氧化还原反应得1200mL0. 43mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经 100°C蒸发浓缩得258mL2mol/L硫酸氧钒溶液,即全钒液流电池用电解液。实施例3IOkgV2O5转炉钒渣固体混合2. Okg碳酸钠于富氧回转窑中在780°C下焙烧3个小时;焙烧后反应混合物用100L、90°C的水分三次浸取固体反应混合物中的钒酸钠,每次浸取时间为30分钟,每次浸取后装载于底部有滤布和溶液收集器的料斗中,合并三次滤液得偏钒酸钠浸取液100L ;浸取液加入少量碳酸钠固体调节pH值为13. 5,于反应器中搅拌一段时间后同样倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量氯化钙于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L 滤液;所得滤液加入少量硫酸铝于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液转入反应釜中,搅拌情况下加入少量浓硫酸调节pH 值为2后所得偏钒酸钠溶液加入5L浓盐酸发生氧化还原反应得105L0. 046mol/L硫酸氧钒 VOSO4溶液,所得硫酸氧钒溶液经100°C蒸发浓缩后加入少量的硫酸钠和乙醇作为稳定剂, 最终得到1. 61L3mol/L硫酸氧钒溶液,即全钒液流电池用电解液。实施例4IOkgV2O5转炉钒渣固体经研磨1. 5小时后除铁、过筛,过筛后的钒渣粉末混合 2. Okg碳酸钠于富氧回转窑中在780°C下焙烧3个小时;焙烧后反应混合物用100L、90°C 的水分三次浸取固体反应混合物中的钒酸钠,每次浸取时间为30分钟,每次浸取后装载于底部有滤布和溶液收集器的料斗中,合并三次滤液得偏钒酸钠浸取液100L ;浸取液加入少量碳酸钠固体调节PH值为13. 5,于反应器中搅拌一段时间后同样倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量氯化钙于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量硫酸铝于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液转入反应釜中,搅拌情况下加入少量浓硫酸调节PH值为2后所得偏钒酸钠溶液加入5L 浓盐酸发生氧化还原反应得105L0. 046mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经 100°C蒸发浓缩后加入少量的硫酸钠和乙醇作为稳定剂,最终得到1. 68L3mol/L硫酸氧钒溶液,即全钒液流电池用电解液。
实施例5IOkgV2O5转炉钒渣固体敞放于空气中2天,然后经研磨1. 5小时后除铁、过筛,过筛后的钒渣粉末混合2. Okg碳酸钠于富氧回转窑中在780°C下焙烧3个小时;焙烧后反应混合物用100L、90°C的水分三次浸取固体反应混合物中的钒酸钠,每次浸取时间为30分钟,每次浸取后装载于底部有滤布和溶液收集器的料斗中,合并三次滤液得偏钒酸钠浸取液100L ;浸取液加入少量碳酸钠固体调节pH值为13. 5,于反应器中搅拌一段时间后同样倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量氯化钙于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量硫酸铝于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中, 过滤得100L滤液;所得滤液转入反应釜中,搅拌情况下加入少量浓硫酸调节pH值为2后所得偏钒酸钠溶液加入5L浓盐酸发生氧化还原反应得105L0. 05mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经100°C蒸发浓缩后加入少量的硫酸钠和乙醇作为稳定剂,最终得到 1. 75L3mol/L硫酸氧钒溶液,即全钒液流电池用电解液。实施例6IOkgV2O5转炉钒渣固体敞放于空气中2天,然后经研磨1. 5小时后除铁、过筛,过筛后的钒渣粉末混合2. 5kg碳酸钠于富氧回转窑中在780°C下焙烧3个小时;焙烧后反应混合物用100L、90°C的水分三次浸取固体反应混合物中的钒酸钠,每次浸取时间为30分钟,每次浸取后装载于底部有滤布和溶液收集器的料斗中,合并三次滤液得偏钒酸钠浸取液100L ;浸取液加入少量碳酸钠固体调节pH值为13. 5,于反应器中搅拌一段时间后同样倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量氯化钙于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量硫酸铝于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液转入反应釜中,搅拌情况下加入少量浓硫酸调节pH值为2后所得偏钒酸钠溶液加入5L浓盐酸发生氧化还原反应得105L0. 053mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经100°C蒸发浓缩后加入少量的硫酸钠和乙醇作为稳定剂,最终得到 1. 85L3mol/L硫酸氧钒溶液,即全钒液流电池用电解液。实施例7IOkgV2O5转炉钒渣固体敞放于空气中2天,然后经研磨1. 5小时后除铁、过筛,过筛后的钒渣粉末混合2. 5kg碳酸钠于富氧回转窑中在820°C下焙烧3个小时;焙烧后反应混合物用100L、90°C的水分三次浸取固体反应混合物中的钒酸钠,每次浸取时间为30分钟,每次浸取后装载于底部有滤布和溶液收集器的料斗中,合并三次滤液得偏钒酸钠浸取液100L ;浸取液加入少量碳酸钠固体调节pH值为13. 5,于反应器中搅拌一段时间后同样倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量氯化钙于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量硫酸铝于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液转入反应釜中,搅拌情况下加入少量浓硫酸调节pH值为2后所得偏钒酸钠溶液加入5L浓盐酸发生氧化还原反应得105L0. 055mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经100°C蒸发浓缩后加入少量的硫酸钠和乙醇作为稳定剂,最终得到 1. 92L3mol/L硫酸氧钒溶液,即全钒液流电池用电解液。
7
实施例8IOkgV2O5转炉钒渣固体敞放于空气中2天,然后经研磨1. 5小时后除铁、过筛,过筛后的钒渣粉末混合2. 5kg碳酸钠于富氧回转窑中在820°C下焙烧3个小时;焙烧后反应混合物用100L、90°C的水分三次浸取固体反应混合物中的钒酸钠,每次浸取时间为30分钟,每次浸取后装载于底部有滤布和溶液收集器的料斗中,合并三次滤液得偏钒酸钠浸取液100L ;浸取液加入少量碳酸钠固体调节pH值为13. 5,于反应器中搅拌一段时间后同样倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量氯化钙于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量硫酸铝于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液转入反应釜中,搅拌情况下加入少量浓硫酸调节pH值为4后所得偏钒酸钠溶液加入5L浓盐酸发生氧化还原反应得105L0. 054mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经100°C蒸发浓缩后加入少量的硫酸钠和乙醇作为稳定剂,最终得到 1. 89L3mol/L硫酸氧钒溶液,即全钒液流电池用电解液。实施例9IOkgV2O5转炉钒渣固体敞放于空气中2天,然后经研磨1. 5小时后除铁、过筛,过筛后的钒渣粉末混合2. 5kg碳酸钠于富氧回转窑中在820°C下焙烧3个小时;焙烧后反应混合物用100L、90°C的水分三次浸取固体反应混合物中的钒酸钠,每次浸取时间为30分钟,每次浸取后装载于底部有滤布和溶液收集器的料斗中,合并三次滤液得偏钒酸钠浸取液100L ;浸取液加入少量碳酸钠固体调节pH值为7. 5,于反应器中搅拌一段时间后同样倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量氯化钙于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液加入少量硫酸铝于反应器中搅拌一段时间后倒入底部有滤布和溶液收集器的料斗中,过滤得100L滤液;所得滤液转入反应釜中,搅拌情况下加入少量浓硫酸调节pH值为4后所得偏钒酸钠溶液加入5L浓盐酸发生氧化还原反应得105L0. 048mol/L硫酸氧钒VOSO4溶液,所得硫酸氧钒溶液经100°C蒸发浓缩后加入少量的硫酸钠和乙醇作为稳定剂,最终得到 1. 68L3mol/L硫酸氧钒溶液,即全钒液流电池用电解液。以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
权利要求
1.一种全钒液流电池用电解液制备方法,其特征在于包括以下步骤A、钒渣经钠盐焙烧、水性浸取、除杂制得偏钒酸钠溶液;B、所述偏钒酸钠溶液经调酸、与浓盐酸反应制得VOSO4溶液;C、所述VOSO4溶液经浓缩制备得全钒液流电池电解液。
2.根据权利要求1所述的制备方法,其特征在于所述A步骤中钒渣为转炉钒渣。
3.根据权利要求2所述的制备方法,其特征在于所述A步骤中钠盐焙烧的钠盐采用碳酸钠。
4.根据权利要求3所述的制备方法,其特征在于所述A步骤中转炉钒渣与碳酸钠的质量比为4-5 1。
5.根据权利要求1所述的制备方法,其特征在于所述A步骤中钒渣在钠盐焙烧之前经过自然氧化、研磨、除铁和筛分。
6.根据权利要求1所述的制备方法,其特征在于所述A步骤中钠盐焙烧温度为 7800C -820"C。
7.根据权利要求1所述的制备方法,其特征在于所述A步骤中水性浸取采用 800C _90°C的热水。
8.根据权利要求1所述的制备方法,其特征在于所述A步骤中除杂包括调节溶液pH 值为7. 5-13. 5、过滤;所得滤液加氯化钙,过滤;所得滤液按Al/Si摩尔比为0. 8 1. 0加硫酸铝,过滤。
9.根据权利要求1所述的制备方法,其特征在于所述B步骤中偏钒酸钠溶液的调酸为用浓硫酸调节其PH值为2-4。
10.根据权利要求1所述的制备方法,其特征在于所述C步骤中包括在浓缩后所得全钒液流电池电解液中加入稳定剂硫酸钠和乙醇。
全文摘要
本发明公开一种全钒液流电池用电解液制备方法,包括以下步骤钒渣经钠盐焙烧、水性浸取、除杂制得偏钒酸钠溶液;所述偏钒酸钠溶液经调酸、与浓盐酸反应制得VOSO4溶液;所述VOSO4溶液经浓缩制备得全钒液流电池电解液。此制备方法可以有效的避免对环境造成污染,有利于进行大规模生产,降低生产成本。同时此方法还可对现有钒资源如钒渣进行合理利用,避免钒资源的浪费,降低生产成本。
文档编号H01M8/18GK102569863SQ201210025410
公开日2012年7月11日 申请日期2012年2月6日 优先权日2012年2月6日
发明者宋龙江, 张琦, 杨海波, 王皎月 申请人:四川省达州钢铁集团有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1