一种高性能锂离子电池负极材料铁酸铜超细粉的制备方法

文档序号:7106653阅读:235来源:国知局
专利名称:一种高性能锂离子电池负极材料铁酸铜超细粉的制备方法
技术领域
本发明涉及一种高性能锂离子电池负极材料铁酸铜单晶超细粉的制备方法,属于电化学和新能源材料技术领域。
背景技术
锂离子电池作为目前研究最多的一种便携式化学能源,已经广泛地应用于人们的日常生活当中;它具有输出电压高、放电电压平稳和工作寿命长等优点。但是随着科学技术的日益发展,特别是当今电子设备小型化和微型化的飞速发展,人们对于锂离子电池的功率密度和能量密度提出了更高的要求。目前的商用锂离子电池的负极材料主要是石墨化的碳材料,其理论比容量仅为372mAh/g ;因此,寻找一种能量密度高的锂离子电池负极材料对于锂离子电池的应用和研究都具有重要的意义。·近几十年来,特别是法国Tarascon课题组揭示了 3d过渡金属氧化物氧化还原的储锂机理之后(Nature, 407,2000,496. Chem. Mater.,19,2007,3032),对过渡金属氧化物(如Co3O4, CoO, NiO, Fe2O3, Fe3O4等)储锂性质的研究便引起了研究者的普遍关注。其中,铁系金属氧化合物以其天然丰度高、耐腐蚀性好和环境友好性等特点,有望成为新一代的商业锂离子电池负极材料;而铁酸铜(CuFe2O4)由于其相对较高的比容量和较好的循环性能,引起了业界人士的广泛关注。CN200710044111.2提供了一种采用自蔓延燃烧法制备纳米铁酸铜的制备方法,但其实际反应温度较难控制,晶粒尺寸分布较宽,一定程度上限制了其应用;CN200810116825.4公开了一种采用溶胶-凝胶和真空冷冻干燥(VFD)相结合的方法制备出了纳米催化剂铁酸铜,该方法操作步骤相对繁琐且某些条件较难控制,制备的铁酸铜粒径较小,在催化领域有较好的应用,但由于粒径过小,其表面能较高,易团聚,用于锂离子电池领域容易和电解液发生副反应,因而其循环性能较差。

发明内容
本发明针对现有技术的不足,提供一种高性能锂离子电池负极材料铁酸铜(CuFe2O4)超细粉的制备方法。术语说明立方相CuFe2O4(C-CuFe2O4)超细粉是指具有立方晶系晶体结构的CuFe2O4,且粒度为50-100纳米级。四方相CuFe2O4(t-CuFe204)超细粉是指具有四方晶系晶体结构的CuFe2O4,且粒度为300-500纳米级。TEM照片透射电子显微镜照片。SEM照片扫描电子显微镜照片。HRTEM图片高分辨透射电子显微镜照片。本发明的技术方案如下一种高性能锂离子电池负极材料铁酸铜超细粉的制备方法,包括以下步骤
(I)铁源为亚铁盐,选自水合氯化亚铁(FeCl2 4H20)、水合草酸亚铁(FeC2O4 2H20)、水合硝酸亚铁(Fe (NO3)2 6H20)、水合硫酸亚铁(Fe2SO4 7H20)或者水合醋酸亚铁(Fe (CH3COO)2 4H20);铜源为二价铜盐,选自水合乙酸铜(Cu(CH3COO)2 .H2O)、水合氯化铜(CuCl2 *2H20)、水合草酸铜(CuC2O4 *1/240)、水合硝酸铜(Cu(NO3)2 *3H20)或者水合硫酸铜(CuSO4 AH2O)。将铁源与铜源按摩尔比(I. 5^3) 1并加入助溶剂后搅拌混合均匀;(2)将步骤(I)得到的混合物料移至刚玉坩埚中,将刚玉坩埚放入管式炉中在气体氛围中于300-850°C条件下烧结4-8小时即得高性能锂离子电池负极材料CuFe2O4超细粉。本发明所述步骤(2 )中,在空气氛围中于600-850 °C条件下烧结4_8小时得到高性能锂离子电池负极材料四方相CuFe2O4超细粉;在氩气或氮气氛围中于300-500°C条件下烧·结4-8小时得到高性能锂离子电池负极材料立方相CuFe2O4超细粉;在空气、氩气或氮气氛围中于500-600°C条件下烧结4-8小时得到高性能锂离子电池负极材料立方相CuFe2O4超细粉和四方相CuFe2O4超细粉的混合粉体。根据本发明,所述步骤(I)中的助溶剂优选水、甲醇、乙醇、乙二醇、丙酮或苯;助溶剂的用量与铜源的质量体积比为I :2 5,单位g/ml。根据本发明,优选的,步骤(I)中铁源为水合草酸亚铁(FeC2O4 2H20)或水合硫酸亚铁(Fe2SO4 7H20)。根据本发明,优选的,步骤(I)中铜源为水合乙酸铜(Cu(CH3COO)2 H2O)或水合氯化铜(CuCl2 2H20)。根据本发明,所述步骤(2)中的气体氛围优选空气、氩气或氮气;所述氩气或氮气的纯度为98%-99. 999% ;特别优选氩气制备立方相CuFe2O4或空气制备四方相CuFe204。根据本发明,所述步骤(2)中优选空气氛围中于750-810°C条件下烧结5_7小时,特别优选于800°C条件下烧结6小时,制备高性能锂离子电池负极材料四方相CuFe2O4超细粉;优选氩气氛围中于350-450°C条件下烧结5-7小时,特别优选于400°C条件下烧结6小时,制备高性能锂离子电池负极材料立方相CuFe2O4超细粉。本发明采用一步固相烧结法得到一种物相可控(四方相和立方相),操作可控性高,粒径分布均匀,颗粒尺寸合适的单晶体,且易于大规模工业化生产的铁酸铜单晶粉末制备方法,并将之应用于锂离子电池负极材料获得了较高的比容量及良好的循环稳定性。本发明具有如下优良效果I、本发明方法制备出的高性能锂离子电池负极材料CuFe2O4超细粉为单晶纳米粉体,粉体粒径分布窄,立方相CuFe2O4粒径50-100纳米,四方相CuFe2O4粒径300-500纳米,无团聚现象,且粒径大小可灵活控制。2、所用的原料廉价易得,制备步骤简单,一步烧结即能得到纯相单晶产品,而且无需后续处理过程,制备步骤及条件易于工业化。3、制备的CuFe2O4具有优异的电化学性质,比容量高,循环性能好,倍率性能优秀,是良好的新一代锂离子电池负极材料,应用前景广阔。


图I为本发明实施例I立方相CuFe2O4超细粉的粉末X射线衍射图;其中左纵坐标为相对强度(Intensity),横坐标为衍射角度(2 0 )。图2为本发明实施例I立方相CuFe2O4超细粉的扫描电子显微镜图。图3为本发明实施例I立方相CuFe2O4超细粉的透射电子显微镜图。 图4为本发明实施例I立方相CuFe2O4超细粉的循环性能图,测试电流为IOOmA g—1 ;其中,左纵坐标是比容量(Capacity),比容量单位毫安时每克,右纵坐标是库伦效率(Coulombic efficiency),横坐标是循环圈数(Cycle Number)。图5为本发明实施例I立方相CuFe2O4超细粉的倍率性能图;其中,左纵坐标是比容量(Capacity),比容量单位毫安时每克,横坐标是循环圈数(Cycle Number)。图6为本发明实施例2四方相CuFe2O4超细粉的粉末X射线衍射图;其中左纵坐标为强度值(Intensity),横坐标为衍射角度(2 0 )。
·
图7为本发明实施例2四方相CuFe2O4超细粉的扫描电子显微镜图。图8为本发明实施例2四方相CuFe2O4超细粉的透射电子显微镜图。图9为本发明实施例2四方相CuFe2O4超细粉的循环性能图,测试电流为IOOmA其中,左纵坐标是比容量(Capacity),比容量单位毫安时每克,右纵坐标是库伦效率(Coulombic efficiency),横坐标是循环圈数(Cycle Number)。图10为本发明实施例2四方相CuFe2O4超细粉的倍率性能图;其中,左纵坐标是比容量(Capacity),比容量单位毫安时每克,横坐标是循环圈数(Cycle Number)。
具体实施例方式下面通过具体实施例并结合附图对本发明做进一步说明。实施例I :I、立方相CuFe2O4 (C-CuFe2O4)超细粉的制备取I. 8g 水合草酸亚铁(FeC2O4 2H20)和 I. Og 水合乙酸铜(Cu(CH3COO)2 H2O)放入容器中并加入3ml乙醇,混合搅拌均匀;将混匀后的物料取出后转移至刚玉坩埚中,待乙醇挥发之后放入管式炉中,在氩气氛围下400°C烧结6小时得到立方相CuFe2O4超细粉。2、立方相CuFe2O4超细粉的物相分析采用Bruker D8 ADVANCE X射线粉末衍射仪以Cu Ka射线(波长A 二 I. 5418A,扫描步速为0. 08° /秒)对立方相CuFe2O4超细粉作物相分析,结果如图I所示;由图I可知,X射线衍射谱图中主要成分为面心立方相CuFe2O4,与JCPDS卡标准值(JCPDS,No. 25-0283)相匹配,且无其他杂质峰的出现;根据XRDO数据计算立方相CuFe2O4超细粉的晶格常数a=8. 343A,与JCPDS卡标准值a=8. 349 A十分接近。采用JEMlOlI透射电子显微镜(电压100千伏)和JSF-6700扫描电镜观察立方相CuFe2O4超细粉的形貌,如图2、图3所示,图2、图3分别为其扫描和透射电镜照片;由图2、图3可知,立方相CuFe2O4超细粉主要由粒径尺寸分布在50-100nm之间的纳米颗粒组成,大小均匀,尺寸分布较窄;BET法氮气吸附测试得到其比表面积约为18. 94m2 g'3、以立方相CuFe2O4超细粉为锂离子电池负极材料的活性物质组装扣式电池(CR2032)将导电剂粘结剂活性物质(立方相CuFe2O4超细粉)以质量比30:10:60混合浆料,导电剂采用乙炔黑,粘结剂采用聚偏二氟乙烯(PVDF),粘结剂在混料之前溶解在N-甲基吡咯烷酮中配成质量浓度为10%的溶液;用涂膜器均匀地涂覆于铜箔集流体上,于真空中80°C温度下烘干12小时,然后裁剪成直径为12mm的电极片,在手套箱中以lmol/LLiPF6-EC/EMC/DMC(体积比为1:1:1)为电解液,隔膜采用商业锂离子电池隔膜Celgard2300 (PE-PP-PE三层复合膜),组装成扣式电池(CR2032),电池工作区间为0. 01-3. 0V。4、扣式电池(CR2032)的电化学性能测试图4为扣式电池(CR2032)的循环性能图;由图4所示在IOOmA g_1的电流条件下,放电比容量在60圈以后仍然能达到950mAh g_S库伦效率除首次充放电之外均高于97%。图5为扣式电池(CR2032)的倍率性能图;由图5所示在100、200、500,、1000、2000及5000mA g_1的电流条件下平均放电比容量分别约为960、880、810、690、540和150mAh g'且在5000mA g—1大电流放电以后其比容量仍能够很好地恢复。
·
实施例2 I、四方相CuFe2O4 (t_CuFe204)超细粉的制备取I. 8g 水合草酸亚铁(FeC2O4 2H20)和 I. Og 水合乙酸铜(Cu (CH3COO) 2 H2O)放入容器中并加入3ml乙醇,混合搅拌均匀,将混均后的物料取出后转移至刚玉坩埚中,待乙醇挥发之后放入管式炉中,在空气氛围下800°C烧结6小时得到四方相CuFe2O4超细粉。2、四方相CuFe2O4超细粉的物相分析采用Bruker D8ADVANCE X射线粉末衍射仪以Cu Ka射线(波长A 二 I. 5418A,扫描步速为0. 08° /秒)对四方相CuFe2O4超细粉作物相分析,结果如图6所示;由图6可知,X射线衍射谱图中主要成分为四方相CuFe2O4 Ct-CuFe2O4),与JCPDS卡标准值(JCPDS,No. 34-0425)相匹配,且无其他杂质峰的出现;根据XRD数据计算四方相CuFe2O4超细粉的晶格常数a=5. 796A,c=8. 710 A,与卡片值a=5. 844 A,c=8. 630 A十分接近。采用JEM1011透射电子显微镜(电压100千伏)和JSF-6700扫描电镜观察四方相CuFe2O4超细粉的形貌如图7、图8所示,图7、图8分别为其扫描和透射电镜照片;由图7、图8所示,四方相CuFe2O4超细粉主要由粒径尺寸分布在300-500nm之间的纳米颗粒组成,大小均匀,尺寸分布较窄,BET法氮气吸附测试得到其比表面积约为I. 35m2 g'3、以四方相CuFe2O4超细粉为锂离子电池负极材料的活性物质组装扣式电池(CR2032)将导电剂粘结剂四方相CuFe2O4活性物质以质量比30:10:60的比例混合浆料,导电剂采用乙炔黑,粘结剂采用聚偏二氟乙烯(PVDF),粘结剂在混料之前溶解在N-甲基吡咯烷酮中配成质量浓度为10%的溶液,用涂膜器均匀地涂覆于铜箔集流体上,于真空中80°C温度下烘干12小时,然后裁剪成直径为12mm的电极片,在手套箱中以lmol/LLiPF6-EC/EMC/DMC(体积比为1:1:1)为电解液,隔膜采用商业锂离子电池隔膜Celgard2300 (PE-PP-PE三层复合膜),组装成扣式电池(CR2032),电池工作区间为0. 01-3. 0V。4、扣式电池(CR2032)的电化学性能测试图9为扣式电池(CR2032)的循环性能图;由图9所示在IOOmA g_1的电流条件下,放电比容量在60圈以后仍然能达到510mAh 库伦效率除首次充放电外均高于97%。图10为扣式电池(CR2032)的倍率性能图;由图10所示在100、200、500、1000、2000、及5000mA g_1的电流条件下,平均放电比容量约为500、450、355、287、210和145mAh g'且在5000mA g—1大电流放电以后其比容量仍能够很好地恢复。 实施例3 :立方相CuFe2O4 (C-CuFe2O4)超细粉的制备取 2. 78g 水合硫酸亚铁(Fe2SO4 7H20)和 I. Og 水合乙酸铜(Cu (CH3COO) 2 *H20)放入容器中并加入3ml乙醇,混合搅拌均匀;将混匀后的物料取出后转移至刚玉坩埚中,待乙醇挥发之后放入管式炉中,在氩气氛围下400°C烧结6小时得到立方相CuFe2O4超细粉。所得超细粉为纯立方相CuFe2O4,结晶性良好;由平均粒径为100_300nm的纳米颗粒组成。实施例4 :四方相CuFe2O4 Ct-CuFe2O4)超细粉的制备取2. 78g 水合硫酸亚铁(Fe2SO4 7H20)和 I. Og 水合乙酸铜(Cu (CH3COO) 2 *H20)放入容器中并加入3ml乙醇,混合搅拌均匀,将混均后的物料取出后转移至刚玉坩埚中,待乙·醇挥发之后放入管式炉中,在空气氛围下800°C烧结6小时得到四方相CuFe2O4超细粉。所得超细粉为纯四方相CuFe2O4,结晶性良好;由平均粒径约为200_600nm的纳米颗粒组成。实施例5 一种高性能锂离子电池负极材料立方相CuFe2O4超细粉的制备方法,包括以下步骤(I)将 I. 99g 的氯化亚铁(FeCl2 4H20)、1. 21g 的硝酸铜(Cu(NO3)2_3H20)放入容器中并加入3ml蒸馏水,混合搅拌均匀;(2)混合物料烧结后制得锂离子电池负极材料CuFe2O4超细粉将混匀后的物料取出后转移至刚玉坩埚中,待水挥发之后放入管式炉中,在氩气氛围下400°C烧结4小时得到立方相CuFe2O4超细粉。实施例6:一种高性能锂离子电池负极材料四方相CuFe2O4超细粉的制备方法,包括以下步骤(I)将 I. 8g 的硝酸亚铁(Fe (NO3)2 6H20)、0. 85g 的氯化铜(CuCl2 2H20)放入容器中并加入3ml甲醇,混合搅拌均匀;(2)混合物料烧结后制得锂离子电池负极材料CuFe2O4超细粉将混匀后的物料取出后转移至刚玉坩埚中,待甲醇挥发之后放入管式炉中,于空气条件下800°C烧结6小时即得锂离子电池负极材料四方相CuFe2O4超细粉。实施例I —种高性能锂离子电池负极材料立方相CuFe2O4超细粉的制备方法,包括以下步骤(I)将 I. 39g 的硫酸亚铁(Fe2SO4 7H20)、0. 76g 的草酸铜(CuC2O4 1/2H20)放入容器中并加入3ml甲醇,混合搅拌均匀;(2)混合物料烧结后制得锂离子电池负极材料立方相CuFe2O4超细粉将混匀后的物料取出后转移至刚玉坩埚中,待甲醇挥发之后放入管式炉中,在氩气氛围下460°C烧结8小时得到锂离子电池负极材料立方相CuFe2O4超细粉。实施例8:
一种高性能锂离子电池负极材料四方相CuFe2O4超细粉的制备方法,包括以下步骤(I)将 I. 8g 的草酸亚铁(FeC2O4 2H20)、0. 76g 的草酸铜(CuC2O4 1/2H20)放入容器中并加入4ml丙酮,混合搅拌均匀;(2)混合物料烧结后制得锂离子电池负极材料四方相CuFe2O4超细粉将混匀后的物料取出后转移至刚玉坩埚中,待丙酮挥发之后放入管式炉中,于空气条件下850°C烧结7小时即得锂离子电池负极材料四方相CuFe2O4超细粉。实施例9 一种高性能锂离子电池负极材料立方相CuFe2O4超细粉的制备方法,包括以下步骤
·
(I)将 I. 74g 的醋酸亚铁(Fe (CH3COO) 2 4H20)、Ig 的乙酸铜(Cu (CH3COO) 2 H2O)放入容器中并加入4ml苯,混合搅拌均勻;(2)混合物料烧结后制得锂离子电池负极材料CuFe2O4超细粉将混匀后的物料取出后转移至刚玉坩埚中,待苯挥发之后放入管式炉中,在氩气氛围下380°C烧结8小时得到锂离子电池负极材料立方相CuFe2O4超细粉。实施例10 一种高性能锂离子电池负极材料四方相CuFe2O4超细粉的制备方法,包括以下步骤(I)将 I. 74g 的醋酸亚铁(Fe (CH3COO)2 4H20)、0. 76g 的草酸铜(CuC2O4 1/2H20)放入容器中并加入5ml乙二醇,混合搅拌均匀;(2)混合物料烧结后制得锂离子电池负极材料CuFe2O4超细粉将混匀后的物料取出后转移至刚玉坩埚中,待乙二醇挥发之后放入管式炉中,于空气氛围中800°C条件下烧结8小时即得锂离子电池负极材料四方相CuFe2O4超细粉。
权利要求
1.一种锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于包括以下步骤 (1)铁源为亚铁盐,选自水合氯化亚铁(FeCl2 4H20)、水合草酸亚铁(FeC2O4 2H20)、水合硝酸亚铁(Fe (NO3) 2 6H20)、水合硫酸亚铁(Fe2SO4 7H20)或者水合醋酸亚铁(Fe (CH3COO) 2 4H20), 铜源为二价铜盐,选自水合乙酸铜(Cu(CH3COO)2 H2O)、水合氯化铜(CuCl2 2H20)、水合草酸铜(CuC2O4 1/2H20)、水合硝酸铜(Cu(NO3)2 3H20)或者水合硫酸铜(CuSO4 5H20), 将铁源与铜源按摩尔比(I. 5^3) 1并加入助溶剂后搅拌混合均匀; (2)将步骤(I)得到的混合物料移至刚玉坩埚中,将刚玉坩埚放入管式炉中在气体氛围中于300-850°C条件下烧结4-8小时即得。
2.根据权利要求I所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于所述步骤(I)中的助溶剂选自水、甲醇、乙醇、乙二醇、丙酮或苯;助溶剂的用量与铜源的质量体积比为I :2 5,单位g/ml。
3.根据权利要求I所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于步骤(I)中铁源为水合草酸亚铁(FeC2O4 2H20)或水合硫酸亚铁(Fe2SO4 7H20)。
4.根据权利要求I所述的一种锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于步骤(I)中铜源为水合乙酸铜(Cu(CH3COO)2 H2O)或水合氯化铜(CuCl2 2H20)。
5.根据权利要求I所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于所述步骤(2)中的气体氛围选自空气、氩气或氮气,所述氩气或氮气的纯度为98%-99. 999%。
6.根据权利要求I所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于所述步骤(2)中在空气氛围中于600-850°C条件下烧结4-8小时得到高性能锂离子电池负极材料四方相CuFe2O4超细粉;或在氩气或氮气氛围中于300-500°C条件下烧结4_8小时得到高性能锂离子电池负极材料立方相CuFe2O4超细粉;或在空气、氩气或氮气氛围中于500-600°C条件下烧结4-8小时得到高性能锂离子电池负极材料立方相CuFe2O4超细粉和四方相CuFe2O4超细粉的混合粉体。
7.根据权利要求I所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于所述步骤(2)中在空气氛围中750-810°C条件下烧结5-7小时,制得四方相CuFe2O4超细粉。
8.根据权利要求I或7所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于所述步骤(2)中在空气氛围中800°C条件下烧结6小时,制得四方相CuFe2O4超细粉。
9.根据权利要求I所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于所述步骤(2)中在氩气或氮气氛围中350-450°C条件下烧结5-7小时,制得立方相CuFe2O4超细粉。
10.根据权利要求I或9所述的锂离子电池负极材料铁酸铜超细粉的制备方法,其特征在于所述步骤(2)中在氩气或氮气氛围中400°C条件下烧结6小时,制得立方相CuFe2O4超细粉。
全文摘要
本发明公开了一种高性能锂离子电池负极材料铁酸铜超细粉的制备方法,属于电化学和新能源材料技术领域;将铁源和铜源按摩尔比(1.5~3)1置于容器中并加入助溶剂后搅拌混合均匀;干燥后在气氛中于300~850℃条件下烧结4~8小时即得;本发明制备出的CuFe2O4超细粉为单晶粉体,粒径分布窄且具有比容量高,循环性能好,倍率性能优等电化学优势,应用前景广阔;所用的原料廉价易得,一步烧结即能得到纯相产品,而且无需后续处理过程,易于工业化生产。
文档编号H01M4/52GK102790211SQ20121030530
公开日2012年11月21日 申请日期2012年8月23日 优先权日2012年8月23日
发明者杨剑, 邢政, 钱逸泰, 鞠治成, 马小健 申请人:山东大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1