形成扇出封装体叠层器件的半导体方法和器件与流程

文档序号:14135459阅读:243来源:国知局
形成扇出封装体叠层器件的半导体方法和器件与流程

本申请是于2012年3月23日提交的美国专利申请第13/429119的部分继续申请,该美国专利申请通过参考合并于此。

技术领域

本发明一般涉及半导体器件,且更具体地涉及一种形成具有印刷线路板(PWB)模块化垂直互连单元的扇出封装体叠层(Fo-PoP)的半导体器件和方法。



背景技术:

常常在现代电子产品中发现半导体器件。半导体器件在电部件的数目和密度方面变化。分立的半导体器件一般包含一种类型的电部件,例如发光二极管(LED)、小信号晶体管、电阻器、电容器、电感器、以及功率金属氧化物半导体场效应晶体管(MOSFET)。集成半导体器件典型地包含几百个到数以百万的电部件。集成半导体器件的示例包括微控制器、微处理器、电荷耦合器件(CCD)、太阳能电池以及数字微镜器件(DMD)。

半导体器件执行各种的功能,诸如信号处理、高速计算、发射和接收电磁信号、控制电子器件、将太阳光转变为电力以及产生用于电视显示的视觉投影。在娱乐、通信、功率转换、网络、计算机以及消费产品的领域中发现半导体器件。还在军事应用、航空、汽车、工业控制器和办公设备中发现半导体器件。

半导体器件利用半导体材料的电属性。半导体材料的原子结构允许通过施加电场或基电流(base current)或通过掺杂工艺而操纵其导电性。掺杂向半导体材料引入杂质以操纵和控制半导体器件的导电性。

半导体器件包含有源和无源电结构。包括双极和场效应晶体管的有源结构控制电流的流动。通过改变掺杂水平和施加电场或基电流,晶体管要么促进要么限制电流的流动。包括电阻器、电容器和电感器的无源结构创建为执行各种电功能所必须的电压和电流之间的关系。无源和有源结构电连接以形成电路,这使得半导体器件能够执行高速计算和其他有用功能。

半导体器件一般使用两个复杂的制造工艺来制造,即,前端制造和和后端制造,每一个可能涉及成百个步骤。前端制造涉及在半导体晶片的表面上形成多个管芯。每个半导体管芯典型地是相同的且包含通过电连接有源和无源部件而形成的电路。后端制造涉及从完成的晶片分割(singulate)各个半导体管芯且封装管芯以提供结构支撑和环境隔离。如此处使用的术语“半导体管芯”指该措词的单数以及复数形式,并且因此可以指单个半导体器件以及多个半导体器件。

半导体制造的一个目的是生产较小的半导体器件。较小的器件典型地消耗较少的功率、具有较高的性能且可以更高效地生产。另外,较小的半导体器件具有较小的占位区(footprint),这对于较小的终端产品而言是希望的。较小的半导体管芯尺寸可以通过前端工艺中的改进来获得,该前端工艺中的改进导致半导体管芯具有较小、较高密度的有源和无源部件。后端工艺可以通过电互联和封装材料中的改进而导致具有较小占位区的半导体器件封装。

实现更高集成和更小半导体器件的目的的一种方法是侧重于包括PoP的三维(3D)封装技术。然而,PoP经常需要激光钻孔以形成互连结构,这增加了设备成本并且要求钻孔穿过整个封装厚度。激光钻孔增加周期时间并且降低制造吞吐量。排他地通过激光钻孔工艺形成的垂直互连会导致对垂直互连的控制的降低。不受保护的接触也会引起利用后续的表面安装技术(SMT)形成的互连的成品率损失增加。另外,用于在PoP中形成垂直互连的导电材料,诸如铜(Cu),在封装形成期间可能偶然被转移到半导体管芯,由此污染封装中的半导体管芯。



技术实现要素:

对于一种不必激光钻孔穿过封装的Fo-PoP中的垂直互连存在需求。因此,在一个实施例中,本发明是一种制作半导体器件的方法,其包括步骤:为载体提供管芯附连区域,将第一半导体管芯安装到管芯附连区域,在第一半导体管芯周围的外围区域中将模块化互连单元安装在载体上,将第一密封剂沉积在载体、第一半导体管芯和模块化互连单元上,移除密封剂的一部分以露出第一半导体管芯和模块化互连单元,移除载体,以及在第一半导体管芯和模块化互连单元上形成互连结构。

在另一实施例中,本发明是一种制作半导体器件的方法,其包括步骤:提供载体,将半导体管芯安装到载体,在半导体管芯周围的外围区域中将模块化互连单元安装在载体上,将密封剂沉积在载体、半导体管芯和模块化互连单元上,以及移除密封剂的一部分以露出模块化互连单元和半导体管芯。

在另一实施例中,本发明是一种制作半导体器件的方法,其包括步骤:提供半导体管芯,将模块化互连单元布置在半导体管芯周围的外围区域中,以及在半导体管芯和模块化互连单元上沉积密封剂。

在另一实施例中,本发明是一种半导体器件,其包括半导体管芯。模块化互连单元布置在半导体管芯周围的外围区域中。密封剂沉积在半导体管芯和模块化互连单元周围。

附图说明

图1说明不同类型的封装安装到其表面的印刷电路板(PCB);

图2a-2c说明安装到PCB的代表性半导体封装的另外细节;

图3a-3c说明具有通过锯道分离的多个半导体管芯的半导体晶片;

图4a-4h说明形成用于Fo-PoP的,具有垂直互连结构的PWB模块化单元的工艺;

图5a-5i说明形成具有半导体管芯的Fo-PoP的工艺,该半导体管芯通过具有垂直互连结构的PWB模块化单元而互连;

图6a-6r说明形成具有半导体管芯的Fo-PoP的另一工艺,该半导体管芯通过具有垂直互连结构的PWB模块化单元而互连;

图7a-7i说明用于PWB模块化单元的各种导电垂直互连结构;

图8a-8c说明形成PWB模块化单元的工艺,该PWB模块化单元具有包含凸块的垂直互连结构;

图9说明具有半导体管芯的一种Fo-PoP,该半导体管芯通过具有包含凸块的垂直互连结构的PWB模块化单元而互连;

图10说明具有半导体管芯的另一种Fo-PoP,该半导体管芯通过具有垂直互连结构的PWB模块化单元而互连;

图11a-11b说明将第二半导体管芯安装到PWB模块化单元;

图12a-12b说明从具有精细填料的密封剂面板形成模块化单元的工艺;

图13a-13i说明形成具有从没有嵌入的导电柱或凸块的密封剂面板形成的模块化单元的Fo-PoP的另一工艺;

图14说明具有从没有嵌入的导电柱或凸块的密封剂面板形成的模块化单元的另一Fo-PoP;

图15a-15b说明从PCB面板形成模块化单元的工艺;以及

图16说明具有从没有嵌入的导电柱或凸块的PCB面板形成的模块化单元的另一Fo-PoP。

具体实施方式

在下面的描述中,参考图以一个或更多实施例描述本发明,在这些图中相似的标号代表相同或类似的元件。尽管就用于实现本发明目的的最佳模式描述本发明,但是本领域技术人员应当理解,其旨在覆盖可以包括在如下面的公开和图支持的所附权利要求及其等价物限定的本发明的精神和范围内的替换、修改和等价物。

半导体器件一般使用两个复杂制造工艺来制造:前端制造和后端制造。前端制造涉及在半导体晶片的表面上形成多个管芯。晶片上的每个管芯包含有源和无源电部件,它们电连接以形成功能电路。诸如晶体管和二极管的有源电部件具有控制电流流动的能力。诸如电容器、电感器、电阻器和变压器的无源电部件创建为执行电路功能所必须的电压和电流之间的关系。

通过包括掺杂、沉积、光刻、蚀刻和平坦化的一系列工艺步骤在半导体晶片的表面上形成无源和有源部件。掺杂通过诸如离子注入或热扩散的技术将杂质引入到半导体材料中。掺杂工艺修改了有源器件中半导体材料的导电性,将半导体材料转变为绝缘体、导体,或者响应于电场或基电流而动态地改变半导体材料的导电性。晶体管包含不同类型和掺杂程度的区域,其按照需要被布置为使得当施加电场或基电流时晶体管能够促进或限制电流的流动。

由具有不同电属性的材料层形成有源和无源部件。层可以通过部分由被沉积的材料类型确定的各种沉积技术来形成。例如,薄膜沉积可能涉及化学汽相沉积(CVD)、物理汽相沉积(PVD)、电解镀覆和化学镀覆工艺。每一层一般被图案化以形成有源部件、无源部件或部件之间的电连接的部分。

可以使用光刻对层进行图案化,光刻涉及例如光致抗蚀剂的光敏材料在待被图案化的层上的沉积。使用光,图案从光掩模转印到光致抗蚀剂。在一个实施例中,受光影响的光致抗蚀剂图案的部分使用溶剂来去除,露出待被图案化的底层的部分。在另一实施例中,不受光影响的光致抗蚀剂图案的部分,即负光致抗蚀剂,使用溶剂来去除,露出待图案化的底层的部分。光致抗蚀剂的剩余部分被去除,留下图案化层。替换地,一些类型的材料通过使用诸如化学镀覆和电解镀覆这样的技术来直接向原先沉积/蚀刻工艺形成的区域或空位沉积材料而被图案化。

图案化是移除半导体晶片表面上的顶层的部分的基础操作。可以使用光刻、光掩模、掩模、氧化物或金属移除、摄影和模板印刷、以及显微光刻移除半导体晶片的部分。光刻包括在中间掩模或光掩模中形成图案以及将图案转移到半导体晶片的表面层中。光刻在两步工艺中形成半导体晶片的表面上的有源和无源部件的水平尺度。首先,中间掩模或掩模上的图案转移到光致抗蚀剂层中。光致抗蚀剂是当曝光于光时经历结构和属性变化的光敏感材料。改变光致抗蚀剂的结构和属性的过程或者作为负性作用光致抗蚀剂或者作为正性作用光致抗蚀剂发生。第二,光致抗蚀剂层被转移到晶片表面中。当蚀刻移除半导体晶片的顶层不被光致抗蚀剂覆盖的部分时,发生该转移。光致抗蚀剂的化学性质使得光致抗蚀剂保持基本上完整并且耐受通过化学蚀刻溶液的移除,而半导体晶片的顶层不被光致抗蚀剂覆盖的部分被移除。形成、曝光和移除光致抗蚀剂的过程以及移除一部分半导体晶片的过程可以根据所使用的具体抗蚀剂和期望的结果来修改。

在负性作用光致抗蚀剂中,光致抗蚀剂曝光于光并且在称为聚合的过程中从可溶解状态改变为不可溶解状态。在聚合中,未聚合材料曝光于光或能量源并且聚合物形成具有蚀刻抗性的交联材料。在大多数负性抗蚀剂中,聚合物为聚异戊二烯。利用化学溶剂或显影剂移除可溶解部分(即,不曝光于光的部分)在抗蚀剂层中留下对应于中间掩模上不透明图案的孔。其图案存在于不透明区域中的掩模称为亮场掩模。

在正性作用光致抗蚀剂中,光致抗蚀剂暴露于光并且在称为光溶解的过程中从相对不可溶解状态改变为溶解度高得多的状态。在光溶解中,相对不可溶解的抗蚀剂暴露于适当的光能量并且被转换到溶解度高得多的状态。抗蚀剂的光溶解部分可以在显影过程中由溶剂移除。基本的正光致抗蚀剂聚合物为苯酚甲醛聚合物,也称为苯酚甲醛清漆树脂。利用化学溶剂或显影剂移除可溶解部分(即,暴露于光的部分)在抗蚀剂层中留下对应于中间掩模上透明图案的孔。其图案存在于透明区域中的掩模称为暗场掩模。

在移除半导体晶片的不被光致抗蚀剂覆盖的顶部部分之后,其余的光致抗蚀剂被移除,留下图案化层。替换地,使用诸如化学镀覆和电解镀覆的技术,一些类型的材料通过将材料直接沉积在由先前沉积/蚀刻过程形成的区域或空位中而被图案化。

在现有图案上沉积材料的薄膜可以放大底层图案且形成不均匀的平坦表面。需要均匀的平坦表面来生产更小且更致密堆叠的有源和无源部件。平坦化可以用于从晶片的表面去除材料且产生均匀的平坦表面。平坦化涉及使用抛光垫对晶片的表面进行抛光。研磨材料和腐蚀化学物在抛光期间被添加到晶片的表面。组合的研磨物的机械行为和化学物的腐蚀行为去除任何不规则外貌,导致均匀的平坦表面。

后端制造指将完成的晶片切割或分割为各个半导体管芯且然后封装半导体管芯以用于结构支撑和环境隔离。为了分割半导体管芯,晶片沿着称为锯道或划线的晶片的非功能区域被划片且折断。使用激光切割工具或锯条来分割晶片。在分割之后,各个半导体管芯被安装到封装基板,该封装基板包括引脚或接触焊盘以用于与其他系统部件互连。在半导体管芯上形成的接触焊盘然后连接到封装内的接触焊盘。电连接可以使用焊料凸块、柱形凸块、导电胶或引线接合来制成。密封剂或其他成型材料沉积在封装上以提供物理支撑和电隔离。完成的封装然后被插入到电系统中且使得半导体器件的功能性对于其他系统部件可用。

图1说明具有芯片载体基板或PCB 52的电子器件50,该芯片载体基板或印刷电路板(PCB)52具有安装在其表面上的多个半导体封装。取决于应用,电子器件50可以具有一种类型的半导体封装或多种类型的半导体封装。用于说明性目的,在图1中示出了不同类型的半导体封装。

电子器件50可以是使用半导体封装以执行一个或更多电功能的独立系统。替换地,电子器件50可以是较大系统的子部件。例如,电子器件50可以是蜂窝电话、个人数字助理(PDA)、数码摄像机(DVC)或其他电子通信器件的一部分。替换地,电子器件50可以是图形卡、网络接口卡或可以被插入到计算机中的其他信号处理卡。半导体封装可以包括微处理器、存储器、专用集成电路(ASIC)、逻辑电路、模拟电路、RF电路、分立器件或其他半导体管芯或电部件。微型化和重量减小对于这些产品被市场接受是至关重要的。半导体器件之间的距离必须减小以实现更高的密度。

在图1中,PCB 52提供用于安装到PCB上的半导体封装的结构支撑和电互连的一般性基板。使用蒸发、电解镀覆、化学镀覆、丝网印刷或者其他合适的金属沉积工艺,导电信号迹线54在PCB 52的表面上或其层内形成。信号迹线54提供半导体封装、安装的部件以及其他外部系统部件中的每一个之间的电通信。迹线54还向半导体封装中的每一个提供功率和接地连接。

在一些实施例中,半导体器件具有两个封装级别。第一级封装是用于机械和电附连半导体管芯到中间载体的技术。第二级封装涉及机械和电附连中间载体到PCB。在其他实施例中,半导体器件可以仅具有第一级封装,其中管芯被直接机械和电地安装到PCB。

用于说明目的,在PCB 52上示出包括接合引线封装56和倒装芯片58的若干类型的第一级封装。另外,示出在PCB 52上安装的若干类型的第二级封装,包括球栅阵列(BGA)60、凸块芯片载体(BCC)62、双列直插式封装(DIP)64、岸面栅格阵列(LGA)66、多芯片模块(MCM)68、四方扁平无引脚封装(QFN)70以及方形扁平封装72。取决于系统需求,使用第一和第二级封装类型的任何组合配置的半导体封装以及其他电子部件的任何组合可以连接到PCB 52。在一些实施例中,电子器件50包括单一附连的半导体封装,而其他实施例需要多个互连封装。通过在单个基板上组合一个或更多半导体封装,制造商可以将预制部件结合到电子器件和系统中。因为半导体封装包括复杂的功能性,可以使用较不昂贵的部件和流水线制造工艺来制造电子器件。所得到的器件较不倾向于发生故障且对于制造而言较不昂贵,导致针对消费者的较少的成本。

图2a-2c示出示例性半导体封装。图2a说明安装在PCB 52上的DIP 64的进一步细节。半导体管芯74包括有源区域,该有源区域包含实现为根据管芯的电设计而在管芯内形成且电互连的有源器件、无源器件、导电层以及电介质层的模拟或数字电路。例如,电路可以包括一个或更多晶体管、二极管、电感器、电容器、电阻器以及在半导体管芯74的有源区域内形成的其他电路元件。接触焊盘76是诸如铝(Al)、Cu、锡(Sn)、镍(Ni)、金(Au)或银(Ag)的一层或多层导电材料,且电连接到半导体管芯74内形成的电路元件。在DIP 64的组装期间,半导体管芯74使用金-硅共熔层或者诸如热环氧物或环氧树脂的粘合剂材料而安装到中间载体78。封装体包括诸如聚合物或陶瓷的绝缘封装材料。导线80和接合引线82提供半导体管芯74和PCB 52之间的电互连。密封剂84沉积在封装上,以通过防止湿气和颗粒进入封装且污染半导体管芯74或接合引线82而进行环境保护。

图2b说明安装在PCB 52上的BCC 62的进一步细节。半导体管芯88使用底层填料或者环氧树脂粘合剂材料92而安装在载体90上。接合引线94提供接触焊盘96和98之间的第一级封装互连。模塑料或密封剂100沉积在半导体管芯88和接合引线94上,从而为器件提供物理支撑和电隔离。接触焊盘102使用诸如电解镀覆或化学镀覆之类的合适的金属沉积工艺而在PCB 52的表面上形成以防止氧化。接触焊盘102电连接到PCB 52中的一个或更多导电信号迹线54。凸块104在BCC 62的接触焊盘98和PCB 52的接触焊盘102之间形成。

在图2c中,使用倒装芯片类型第一级封装将半导体管芯58面朝下地安装到中间载体106。半导体管芯58的有源区域108包含实现为根据管芯的电设计而形成的有源器件、无源器件、导电层以及电介质层的模拟或数字电路。例如,电路可以包括一个或更多晶体管、二极管、电感器、电容器、电阻器以及有源区域108内的其他电路元件。半导体管芯58通过凸块110电和机械连接到载体106。

使用利用凸块112的BGA类型第二级封装,BGA 60电且机械连接到PCB 52。半导体管芯58通过凸块110、信号线114和凸块112电连接到PCB 52中的导电信号迹线54。模塑料或密封剂116被沉积在半导体管芯58和载体106上以为器件提供物理支撑和电隔离。倒装芯片半导体器件提供从半导体管芯58上的有源器件到PCB 52上的导电轨迹的短导电路径以便减小信号传播距离、降低电容且改善整体电路性能。在另一实施例中,半导体管芯58可以使用倒装芯片类型第一级封装来直接机械和电地连接到PCB 52而不使用中间载体106。

图3a示出具有用于结构支撑的基底基板材料122的半导体晶片120,该基底基板材料诸如是硅、锗、砷化镓、磷化铟或者碳化硅。如上所述,在晶片120上形成如上所述通过非有源的管芯间晶片区域或者锯道126分离的多个半导体管芯或部件124。锯道126提供切割区域以将半导体晶片120分割成各个半导体管芯124。

图3b示出半导体晶片120的一部分的剖面图。每个半导体管芯124具有后表面128和有源表面130,该有源表面包含实现为根据管芯的电设计和功能而在管芯内形成且电互连的有源器件、无源器件、导电层以及电介质层的模拟或数字电路。例如,电路可以包括一个或更多个晶体管、二极管以及在有源表面130内形成的其他电路元件以实现诸如数字信号处理器(DSP)、ASIC、存储器或其他信号处理电路之类的模拟电路或数字电路。半导体管芯124还可以包含诸如电感器、电容器和电阻器的集成无源器件(IPD)以用于RF信号处理。

使用PVD、CVD、电解镀覆、化学镀覆工艺或其他合适的金属沉积工艺而在有源表面130上形成导电层132。导电层132可以是Al、Cu、Sn、Ni、Au、Ag或其他合适的导电材料中的一层或更多层。导电层132操作为电连接到有源表面130上的电路的接触焊盘。导电层132可以形成为距离半导体管芯124的边缘第一距离并排布置的接触焊盘,如图3b所示。替换地,导电层132可以形成为在多个行中的接触焊盘,使得第一行接触焊盘距离管芯的边缘第一距离布置,并且与第一行交替的第二行接触焊盘距离管芯的边缘第二距离布置。

利用PVD、CVD、丝网印刷、旋涂或喷涂,绝缘或钝化层134共形应用在有源表面130上。绝缘层134包含二氧化硅(SiO2)、氮化硅(Si3N4)、氮氧化硅(SiON)、五氧化二钽(Ta2O5)、氧化铝(Al2O3)或具有类似绝缘和结构属性的其他材料的一层或多层。绝缘层134覆盖有源表面130并且为有源表面130提供保护。通过使用激光136的激光直接消融(LDA)或其他合适工艺,移除绝缘层134的一部分,从而露出导电层132并且为后续电互连做准备。

在图3c中,使用锯条或激光切割工具138通过锯道126将半导体晶片120分割成各个半导体管芯124。

与图1和2a-2c关联,图4a-4h和5a-5i说明形成具有PWB模块化垂直互连单元的Fo-PoP的工艺。图4a示出层叠核心140的一部分的截面视图。可选的导电层142形成于核心140的表面144上,并且可选的导电层146形成于核心的表面148。导电层142和146使用诸如Cu箔层叠、印刷、PVD、CVD、溅射、电解镀覆和化学镀覆的金属沉积工艺来形成。导电层142和146可以是Al、Cu、Sn、Ni、Au、Ag、钛(Ti)、钨(W)或其他合适导电材料的一层或多层。在一个实施例中,导电层142和146为Cu箔,具有20-200微米(µm)的厚度。导电层142和146可以通过湿法蚀刻工艺减薄。

在图4b中,利用激光钻孔、机械钻孔、深度反应离子蚀刻(DRIE)或其他合适工艺,形成穿过层叠核心140以及导电层142和146的多个通孔150。通孔150延伸穿过层叠核心140。通孔150通过去胶渣工艺来清洗。

在图4c中,利用诸如印刷、PVD、CVD、溅射、电解镀覆和化学镀覆的金属沉积工艺,导电层152形成于层叠核心140、导电层142和146以及通孔150的侧壁上。导电层152可以是Al、Cu、Sn、Ni、Au、Ag、Ti、W或其他合适导电材料的一层或多层。在一个实施例中,导电层152包括通过化学镀覆形成的第一Cu层,接着是通过电解镀覆形成的第二Cu层。

在图4d中,通孔150的其余部分利用具有填料材料154的绝缘或导电材料来填充。具有绝缘填料的绝缘材料可以是具有填料以及SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一个或多个的聚合物电介质材料。导电填料材料可以是Al、Cu、Sn、Ni、Au、Ag或其他合适导电材料的一层或多层。在一个实施例中,填料材料154可以是聚合物插塞。替换地,填料材料154为Cu膏料。通孔150也可以被留下成为空位,即不具有填料材料。填料材料154被选择为比导电层152更软或更柔顺。具有填料材料154的通孔150通过允许导电层152在压力下变形或形状改变而减小破裂或分层的发生率。通孔150也可以完全用导电层152填充。

在图4e中,利用诸如印刷、PVD、CVD、溅射、电解镀覆和化学镀覆的金属沉积工艺,导电层156形成于导电层152和填料材料154上。导电层156可以是Al、Cu、Sn、Ni、Au、Ag、Ti、W或其他合适导电材料的一层或多层。在一个实施例中,导电层156包括通过化学镀覆形成的第一Cu层,接着是通过电解镀覆形成的第二Cu层。

在图4f中,导电层142、146、148、152和156的一部分通过湿法蚀刻工艺藉由图案化光致抗蚀剂层被移除,从而露出层叠核心140并且留下穿过层叠核心140的导电柱或导电垂直互连结构158。利用真空层叠、旋涂、喷涂、丝网印刷或其他印刷工艺,绝缘或钝化层160形成于层叠核心140和导电垂直互连结构158上。绝缘层160包含聚合物电介质材料的一层或多层,其具有或不具有SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的绝缘填料。绝缘层160的一部分通过蚀刻工艺或LDA被移除,从而露出导电层156并且促进后续导电层的形成。

利用诸如电解镀覆和化学镀覆的金属沉积工艺,可选的导电层162可以形成于露出的导电层156上。导电层162可以是Al、Cu、Sn、Ni、Au、Ag、Ti、W或其他合适导电材料的一层或多层。在一个实施例中,导电层162为Cu保护层。

具有垂直互连结构158的层叠核心140构造一个或多个PWB模块化垂直互连单元,其布置在半导体管芯或封装之间从而促进用于Fo-PoP的电互连。图4g示出被组织在PWB模块化单元164-166中的层叠核心140的俯视图。PWB模块化单元164-166包含在PWB单元的相对表面之间延伸的多行的垂直互连结构158。PWB单元164-166被配置用于集成在Fo-PoP中,并且因此如下文更详细讨论,根据最终器件配置而在尺寸上彼此不同。尽管PWB单元164-166在图4g中被说明为包括方形或矩形占位区,替换地,PWB单元可包括十字形(+)、成角度的或“L形状”、圆形、椭圆形、六角形、八角形、星形形状或任何几何形状的占位区。图4h示出利用锯条或激光切割工具168分割为各个PWB模块化单元164和166的层叠核心140。

图5a示出载体或临时基板170的部分的截面视图,该载体或临时基板170包含牺牲基底材料,诸如硅、聚合物、氧化铍、玻璃或用于结构支撑的其他合适的低成本刚性材料。界面层或双面胶带172形成于载体170上作为临时粘合接合膜、蚀刻停止层或热释放层。

来自图4h的PWB模块化单元164-166利用拾放操作安装到界面层172和载体170。在放置PWB单元164-166之后,来自图3c的半导体管芯124利用拾放操作以有源表面130朝向载体定向的方式安装到界面层172和载体170。图5b示出半导体管芯124和PWB单元164-166安装到载体170成为重构造晶片174。半导体管芯124在PWB单元164-166上延伸的距离D1大于1µm,例如1-150µm。PWB单元164-166和半导体管芯124之间的偏移在后续背研磨步骤期间减小污染。

在图5c中,利用膏料印刷、压缩成型、转移成型、液体密封剂成型、真空层叠、旋涂或其他合适涂料器,密封剂或模塑料176沉积在半导体管芯124、PWB单元164-166和载体170上。密封剂176可以是聚合物复合物材料,诸如具有填料的环氧树脂、具有填料的环氧丙稀酸脂或者具有适当填料的聚合物。密封剂176是不导电的并且在环境上保护半导体器件免受外部要素和污染物的影响。

在图5d中,载体170和界面层172通过化学蚀刻、机械剥离、化学机械抛光(CMP)、机械研磨、热烘烤、UV光、激光扫描或湿法剥落被移除,从而露出绝缘层134、PWB单元164-166和密封剂176。

在图5e中,堆积互连结构180形成于半导体管芯124、PWB单元164-166和密封剂176上。利用PVD、CVD、层叠、印刷、旋涂或喷涂,绝缘或钝化层182形成于半导体管芯124、PWB单元164-166和密封剂176上。绝缘层182包含低温(低于250ºC)固化聚合物电介质的一层或多层,其具有或不具有这样的绝缘填料,比如SiO2、Si3N4、SiON、Ta2O5、Al2O3、橡胶颗粒或具有类似绝缘和结构属性的其他材料。绝缘层182的部分可以通过蚀刻工艺移除从而露出PWB单元164-166的垂直互连结构158以及半导体管芯124的导电层132。

利用诸如溅射、电解镀覆和化学镀覆的图案化和金属沉积工艺,导电层或RDL 184形成于绝缘层182上。导电层184可以是Al、Cu、Sn、Ni、Au、Ag或其他合适导电材料的一层或多层。在一个实施例中,导电层184包含Ti/Cu、TiW/Cu或Ti/NiV/Cu。导电层184的一个部分电连接到半导体管芯124的接触焊盘132。导电层184的另一部分电连接到PWB单元164-166的垂直互连结构158。根据半导体管芯124的设计和功能,导电层184的其他部分可以电公用或电隔离。

利用PVD、CVD、层叠、印刷、旋涂或喷涂,绝缘或钝化层186形成于绝缘层182和导电层184上。绝缘层186包含低温(低于250ºC)固化聚合物电介质的一层或多层,其具有或不具有这样的绝缘填料,比如SiO2、Si3N4、SiON、Ta2O5、Al2O3、橡胶颗粒或具有类似绝缘和结构属性的其他材料。绝缘层186的部分可以通过蚀刻工艺移除从而露出导电层184。

利用诸如溅射、电解镀覆和化学镀覆的图案化和金属沉积工艺,导电层或RDL 188形成于导电层184和绝缘层186上。导电层188可以是Al、Cu、Sn、Ni、Au、Ag或其他合适导电材料的一层或多层。在一个实施例中,导电层188包含Ti/Cu、TiW/Cu或Ti/NiV/Cu。导电层188的一个部分电连接到导电层184。根据半导体管芯124的设计和功能,导电层188的其他部分可以电公用或电隔离。

利用PVD、CVD、印刷、旋涂或喷涂,绝缘或钝化层190形成于绝缘层186和导电层188上。绝缘层190包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一层或多层。通过蚀刻工艺可以移除绝缘层190的一部分以露出导电层188。

堆积互连结构180中包括的绝缘和导电层的数目取决于电路布线设计的复杂性并且随其变化。因此,堆积互连结构180可包括任意数目的绝缘和导电层以促进有关半导体管芯124的电互连。

利用蒸发、电解镀覆、化学镀覆、球滴或丝网印刷工艺,导电凸块材料沉积在堆积互连结构180上并且电连接到导电层188的露出部分。凸块材料可以是具有可选助焊剂溶液的Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及其组合。例如,凸块材料可以是共熔Sn/Pb、高铅焊料或无铅焊料。利用合适的附连或接合工艺,凸块材料被接合到导电层188。在一个实施例中,凸块材料通过将材料加热到其熔点之上而进行回流以形成球面球或凸块192。在一些应用中,凸块192被二次回流以改善与导电层188的电接触。凸块下金属化部(UBM)可以在凸块192下形成。凸块192也可以被压缩接合到导电层188。凸块192代表可以在导电层188上形成的一种类型的互连结构。该互连结构也可以使用柱形凸块、微凸块或其他电互连。

在图5f中,密封剂176和半导体管芯124的一部分利用研磨器194通过研磨操作被移除,从而平坦化表面并且减小密封剂的厚度。密封剂176在PWB单元164-166上保留的厚度D2为在半导体管芯的后表面128和PWB单元164-166之间1-150µm,在一个实施例中D2为100µm。化学蚀刻、CMP或等离子体干法蚀刻也可以用于移除背研磨损伤以及半导体管芯124和密封剂176上的残余应力从而增强封装强度。

在图5g中,背侧平衡层196应用于密封剂176、PWB单元164-166和半导体管芯124上。背侧平衡层196平衡导电层184和188的热膨胀系数(CTE),例如30-150ppm/K,并且减小封装中的翘曲。在一个实施例中,背侧平衡层196具有厚度10–100µm。背侧平衡层196可以是具有合适热和结构属性的任何合适的平衡层,诸如树脂涂覆铜(RCC)胶带。

在图5h中,背侧平衡层196和密封剂176的一部分被移除从而露出垂直互连结构158。利用锯条或激光切割工具202,重构造晶片174被分割穿过PWB模块化单元164成为分离的Fo-PoP 204。

图5i示出凸块198形成于露出的垂直互连结构158上的Fo-PoP 210。凸块198布置在半导体管芯124的后表面128下至少1µm。替换地,凸块198在背侧平衡层196上延伸并且具有的高度可以为半导体管芯124厚度的25-67%。

布置在Fo-PoP 204中的PWB模块化单元164-166在尺寸和形状上可以彼此不同,同时仍为Fo-PoP提供穿通垂直互连。PWB模块化单元164-166包括具有方形以及矩形形状、十字形(+)、成角度的或“L形状”、圆形或椭圆形形状、六角形形状、八角形形状、星形形状或任何其他几何形状的互锁占位区。在晶片级,并且在分割之前,PWB模块化单元164-166以互锁图案布置在半导体管芯124周围,使得半导体管芯的不同侧面对准到并且对应于重复图案中的PWB单元的多个不同侧面。在堆积互连结构180形成于PWB单元上之前,PWB单元164-166也可包括附加金属层以促进设计集成和增大的布线灵活性。

由于多个原因,PWB模块化单元164-166提供了用于Fo-PoP中的垂直互连的利用标准激光钻孔工艺的成本有效替换方案。首先,PWB单元164-166可以利用诸如基板制造技术的低成本制造技术制作。第二,标准激光钻孔包括高设备成本并且要求钻孔穿过整个封装厚度,这增加了周期时间并且降低制造吞吐量。另外,相对于排他地通过激光钻孔工艺形成的垂直互连,使用PWB单元164-166用于垂直互连提供了对垂直互连的改进控制的优点。

在另一实施例中,图6a示出载体或临时基板220的一部分的截面视图,该载体或临时基板包含牺牲基底材料,诸如硅、聚合物、氧化铍、玻璃或用于结构支撑的其他合适的低成本刚性材料。界面层或双面胶带224形成于载体220上作为临时粘合接合膜、蚀刻停止层或热释放层。

在图6b中,来自图3c的半导体管芯124利用拾放操作以有源表面130朝向载体定向的方式安装到界面层224和载体220。半导体管芯124被压到界面层224中,使得绝缘层134布置在界面层中。当半导体管芯124安装到界面层224时,绝缘层134的表面225与载体220分离了距离D1。

在图6c中,来自图4h的PWB模块化单元164-166利用拾放操作安装到界面层224和载体220。PWB单元164-166被压到界面层224中,使得接触表面226布置在界面层中。当PWB单元164-166安装到界面层224时,表面226与载体220分离了距离D2。D2可以大于D1,使得PWB单元164-166的表面226相对于绝缘层134的表面225垂直偏移。

图6d示出半导体管芯124和PWB模块化单元164-166安装到载体220作为重构造晶片227。PWB单元164-166的与表面226相对的表面228相对于半导体管芯124的后表面128垂直偏移了距离D3,例如1-150µm。通过将PWB单元166的表面228和半导体管芯124的后表面128分离,通过防止来自垂直互连结构158的材料诸如Cu污染半导体管芯124的材料诸如Si,促进了后续的背研磨步骤。

图6e示出具有安装在界面层224上的PWB模块化单元164-166的重构造晶片227的部分的俯视图。PWB单元164-166包含多行垂直互连结构158,其提供PWB单元的相对侧面之间的穿通垂直互连。PWB单元164-166以互锁图案布置在半导体管芯124周围。PWB单元164-166布置在半导体管芯124周围,使得半导体管芯的不同侧面对准到并且对应于跨过重构造晶片227的重复图案中的PWB单元的多个不同侧面。多个锯道230相对于半导体管芯对准并且延伸跨过PWB单元164-166,使得当重构造晶片227沿着锯道被分割时,每个半导体管芯124具有在半导体管芯周围的外围区域周围或中布置的、来自分割的PWB单元164-166的多个垂直互连结构158。尽管PWB单元164-166被说明为具有互锁方形和矩形占位区,布置在半导体管芯124周围的PWB单元可包括具有十字形(+)、成角度的或“L形状”、圆形或椭圆形形状、六角形形状、八角形形状、星形形状或者任何其他几何形状的占位区的PWB单元。

图6f示出具有安装在界面层224上的十字形(+)PWB模块化单元242的重构造晶片240的部分的俯视图。PWB单元242在类似于如图4a-4h所示的PWB单元164-166的工艺中形成。PWB单元242包含类似于垂直互连结构158的多行垂直互连结构244,并且提供PWB单元的相对侧面之间的穿通垂直互连。PWB单元242以互锁图案布置在半导体管芯124周围。PWB单元242布置在半导体管芯124周围,使得半导体管芯的不同侧面对准到并且对应于跨过重构造晶片240的重复图案中的PWB单元的多个不同侧面。多个锯道246相对于半导体管芯124对准并且延伸跨过PWB单元242,使得当重构造晶片240沿着锯道被分割时,每个半导体管芯124具有在半导体管芯周围的外围区域周围或中布置的、来自分割的PWB单元242的多个垂直互连结构244。在通过锯道246分割之后,垂直互连结构244布置在从半导体管芯的周缘偏移的一个或多个行中。

图6g示出具有安装在界面层224上的成角度的或“L形状”PWB模块化单元252的重构造晶片250的部分的俯视图。PWB单元252在类似于如图4a-4h所示的PWB单元164-166的工艺中形成。PWB单元252包含类似于垂直互连结构158的多行垂直互连结构254,并且提供PWB单元的相对侧面之间的穿通垂直互连。PWB单元252以互锁图案布置在半导体管芯124周围。PWB单元252布置在半导体管芯124周围,使得半导体管芯的不同侧面对准到并且对应于跨过重构造晶片250的重复图案中的PWB单元的多个不同侧面。多个锯道256相对于半导体管芯124对准并且延伸跨过PWB单元252,使得当重构造晶片250沿着锯道被分割时,每个半导体管芯124具有在半导体管芯周围的外围区域周围或中布置的、来自分割的PWB单元252的多个垂直互连结构254。在通过锯道256分割之后,垂直互连结构254布置在从半导体管芯的周缘偏移的一个或多个行中。

图6h示出具有安装在界面层224上的圆形或椭圆形形状的PWB模块化单元262和263的重构造晶片260的部分的俯视图。PWB单元262和263在类似于如图4a-4h所示的PWB单元164-166的工艺中形成。PWB单元262和263包含类似于垂直互连结构158的多行垂直互连结构264,并且提供PWB单元的相对侧面之间的穿通垂直互连。PWB单元262和263以互锁图案布置在半导体管芯124周围。PWB单元262-263布置在半导体管芯124周围,使得半导体管芯的不同侧面对准到并且对应于跨过重构造晶片260的重复图案中的PWB单元的多个不同部分。多个锯道265相对于半导体管芯124对准并且延伸跨过PWB单元262和263,使得当重构造晶片260沿着锯道被分割时,每个半导体管芯124具有在半导体管芯周围的外围区域周围或中布置的、来自分割的PWB单元262和263的多个垂直互连结构264。在通过锯道265分割之后,垂直互连结构264布置在从半导体管芯的周缘偏移的一个或多个行中。

图6i示出具有安装在界面层224上的连续PWB或PCB面板267的重构造晶片266的部分的俯视图。PWB面板267与临时载体220上的界面层224对准并且层叠在该界面层224上。PWB面板267在类似于如图4a-4h所示的PWB单元164-166的工艺中形成,并且以面板规模形成,例如形成为300-325毫米(mm)圆形面板或者470mm×370mm矩形面板。最后面板尺寸在直径或长度或宽度方面比最后扇出面板基板尺寸小约5mm至15mm。PWB面板267具有范围为50-250µm的厚度。在一个实施例中,PWB面板267具有80µm的厚度。类似于垂直互连结构158的多行垂直互连结构268穿过PWB面板267形成,从而分离各个PWB单元270。垂直互连结构268在PWB单元270外围区域的周围形成。

每个PWB单元270的中心部分通过冲孔、蚀刻、LDA或其他适合于形成开口271的工艺来移除。开口271相对于每个PWB单元270的垂直互连结构268形成在中心并且穿过PWB单元270形成从而露出界面层224。开口271具有大体上方形占位区并且形成为足够大以容纳来自图3c的半导体管芯124。利用拾放操作以半导体管芯124的有源表面130朝向界面层224定向的方式,半导体管芯124被安装到位于开口271内的界面层224。开口271的边缘272与半导体管芯124之间的间隙或距离至少为50µm。PWB面板267沿着锯道269被分割为各个PWB单元270,并且每个半导体管芯124具有在半导体管芯的外围区域周围或中布置的多个垂直互连结构268。在通过锯道269分割之后,垂直互连结构268可以布置在半导体124的外围区域中成为从半导体管芯的周缘偏移的一个或多个行。

从图6d继续,图6j示出在半导体管芯124和PWB模块化单元164-166安装到界面层224之后,重构造晶片227利用锯条或激光切割工具274通过锯道230被部分地分割,从而形成通道或开口276。通道276延伸穿过PWB单元164-166,并且另外可以延伸穿过界面层224以及部分但不彻底穿过载体220。通道276形成垂直互连结构158与在Fo-PoP中导电通孔随后将结合到其的半导体管芯124之间的分离。

在图6k中,利用膏料印刷、压缩成型、转移成型、液体密封剂成型、真空层叠、旋涂或其他合适涂料器,密封剂或模塑料282沉积在半导体管芯124、PWB单元164-166和载体220上。密封剂282可以是聚合物复合物材料,诸如具有填料的环氧树脂、具有填料的环氧丙稀酸脂或具有适当填料的聚合物。密封剂282是不导电的并且在环境上保护半导体器件免受外部要素和污染物的影响。

在图6l中,密封剂282的表面290利用研磨器292进行研磨操作,从而平坦化表面并且减小密封剂的厚度。研磨操作移除密封剂材料的部分向下直至半导体管芯124的后表面128。化学蚀刻也可以用于移除和平坦化密封剂282。因为PWB单元166的表面228相对于半导体管芯124的后表面128垂直偏移了距离D3,可以实现密封剂282的移除,而不将来自垂直互连结构158的材料诸如Cu移除以及偶然地转移到半导体管芯124,诸如Si。防止导电材料从垂直互连结构158转移到半导体管芯124减小了污染半导体管芯的材料的风险。

在图6m中,利用PVD、CVD、丝网印刷、旋涂或喷涂,绝缘或钝化层296共形应用在密封剂282和半导体管芯124上。绝缘层296包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一层或多层。绝缘层296均匀地覆盖密封剂282和半导体管芯124并且形成于PWB单元164-166上。绝缘层296是在移除密封剂282的第一部分之后形成并且接触半导体管芯128的露出的后表面128。绝缘层296是在密封剂282的第二部分被移除以露出PWB单元164-166之前形成。在一个实施例中,绝缘层296的属性被选择为帮助控制后续形成的Fo-PoP的翘曲。

在图6n中,绝缘层296和密封剂282的部分被移除以形成开口298并且露出垂直互连结构158。开口298通过蚀刻、激光或其他合适工艺形成。在一个实施例中,开口298通过使用激光300的LDA形成。来自垂直互连结构158的材料在移除密封剂282期间被防止接触半导体管芯124,这是因为开口298在半导体管芯124周围的外围区域周围或中形成于垂直互连结构158上,使得垂直互连结构158相对于半导体管芯124偏移并且不延伸到后表面128。另外,在密封剂282从后表面128上移除的时间以及在半导体管芯124露出并且易受污染的时间,不形成开口298。因为在绝缘层296布置在半导体管芯124上之后,开口298形成,该绝缘层充当来自被转移到半导体管芯124的垂直互连结构158的材料的阻挡层。

在图6o中,通过化学蚀刻、机械剥离、CMP、机械研磨、热烘烤、UV光、激光扫描或湿法剥落,载体220和界面层224从重构造晶片227移除,从而促进在半导体管芯124的有源表面130和PWB单元164-166的垂直互连结构158上形成互连结构。

图6o还示出互连或RDL的第一部分通过绝缘或钝化层304的沉积和图案化来形成。绝缘层304共形应用到密封剂282、PWB单元164-166和半导体管芯124,并且具有遵从其轮廓的第一表面。绝缘层304具有与第一表面相对的第二平坦表面。绝缘层304包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一层或多层。绝缘层304利用PVD、CVD、印刷、旋涂、喷涂或其他合适工艺来沉积。绝缘层304的部分通过使用激光305的LDA、蚀刻或其他合适工艺来移除,从而在垂直互连结构158上形成开口306。开口306露出垂直互连结构158的导电层164,用于根据半导体管芯124的配置和设计的后续电连接。

在图6p中,导电层308被图案化和沉积在绝缘层304和半导体管芯124上,并布置在开口306中从而填充开口以及接触垂直互连结构158的导电层164并且接触导电层132。导电层308可以是Al、Cu、Sn、Ni、Au、Ag或其他合适导电材料的一层或多层。导电层308的沉积使用PVD、CVD、电解镀覆、化学镀覆或其他合适工艺。导电层308作为RDL操作,从而将电连接从半导体管芯124延伸到半导体管芯124外部的各点。

图6p还示出绝缘或钝化层310共形应用到绝缘层304和导电层308,并且遵从绝缘层304和导电层308的轮廓。绝缘层310包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一层或多层。绝缘层310利用PVD、CVD、印刷、旋涂、喷涂或其他合适工艺来沉积。绝缘层310的部分通过使用激光311的LDA、蚀刻或其他合适工艺来移除,从而形成开口312,该开口露出导电层308的部分以用于后续电互连。

在图6q中,导电层316图案化和沉积在绝缘层310和导电层308上,并且布置在开口312中从而填充开口以及接触导电层308。导电层316可以是Al、Cu、Sn、Ni、Au、Ag或其他合适导电材料的一层或多层。导电层316的沉积使用PVD、CVD、电解镀覆、化学镀覆或其他合适工艺。导电层316作为RDL操作,从而将电连接从半导体管芯124延伸到半导体管芯124外部的各点。

图6q还示出绝缘或钝化层318共形应用到绝缘层310和导电层316,并且遵从绝缘层310和导电层316的轮廓。绝缘层318包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一层或多层。绝缘层318利用PVD、CVD、印刷、旋涂、喷涂或其他合适工艺来沉积。绝缘层318的部分通过LDA、蚀刻或其他合适工艺来移除,从而形成开口320,该开口露出导电层316的部分以用于后续电互连。

在图6r中,利用蒸发、电解镀覆、化学镀覆、球滴或丝网印刷工艺,导电凸块材料沉积在导电层316上和绝缘层318的开口320内。凸块材料可以是具有可选助焊剂溶液的Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及其组合。例如,凸块材料可以是共熔Sn/Pb、高铅焊料或无铅焊料。凸块材料利用合适附连或接合工艺接合到导电层316。在一个实施例中,凸块材料通过将材料加热到其熔点之上而进行回流以形成球面球或凸块322。在一些应用中,凸块322被二次回流以改善与导电层316的电接触。在一个实施例中,凸块322形成于具有润湿层、阻挡层和粘合层的UBM上。凸块也可以压缩接合到导电层316。凸块322代表可以在导电层316上形成的一种类型的互连结构。互连结构也可以使用接合引线、导电膏料、柱形凸块、微凸块或其他电互连。

合起来,绝缘层304、310和318以及导电层308、316,以及导电凸块322形成堆积互连结构324。包括在堆积互连结构324中的绝缘和导电层的数目取决于电路布线设计的复杂性并且随其变化。因此,堆积互连结构324可包括任意数目的绝缘和导电层以促进有关半导体管芯124的电互连。类似地,在堆积互连结构324形成于PWB单元上之前,PWB单元164-166可包括附加金属层以促进设计集成和增大的布线灵活性。另外,否则将包括在背侧互连结构或RDL中的元件可以被集成成为堆积互连结构324的部分,从而相对于包括前侧和背侧互连或RDL的封装简化制造并且减小制作成本。

图6r还示出具有堆积互连结构324的重构造晶片227利用锯条或激光切割工具326被分割,从而形成各个Fo-PoP 328。在一个实施例中,Fo-PoP 328具有在小于1mm的范围的高度。由于多个原因,Fo-PoP 328中的PWB模块化单元164-166提供了用于Fo-PoP中的垂直互连的利用标准激光钻孔工艺的成本有效替换方案。首先,PWB单元164-166可以利用诸如基板制造技术的低成本制造技术制作,而不是包括高设备成本并且要求钻孔穿过整个封装厚度(这增加了周期时间并且降低制造吞吐量)的标准激光钻孔。另外,相对于排他地通过激光钻孔工艺形成的垂直互连,使用PWB单元164-166用于Fo-PoP垂直互连提供了对垂直互连的改进控制的优点。

PWB模块化单元164-166包含一行或多行垂直互连结构158,其提供PWB单元的相对侧面之间的穿通垂直互连并且配置成集成在后续形成的Fo-PoP中。垂直互连结构158包括通孔150,其被被留下成为空位或替换地用例如导电材料或绝缘材料的填料材料154填充。填料材料154被特别地选择为比导电层152更软或更柔顺。通过允许垂直互连结构158在压力下变形或形状改变,填料材料154减小破裂或分层的发生率。在一个实施例中,垂直互连结构158包括导电层162,该导电层是铜保护层用于防止导电通孔的氧化,由此降低SMT应用中的成品率损失。

PWB模块化单元164-166布置在Fo-PoP 328内,使得PWB单元166的表面228和PWB单元164的相应表面相对于半导体管芯124的后表面128垂直偏移了距离D3。D3的分离防止来自垂直互连结构158的材料诸如Cu被偶然地转移到并且污染半导体管芯124的材料,诸如Si。利用LDA或者与图6l所示研磨操作分离的另一移除工艺通过露出导电层162,进一步促进了防止半导体管芯124受垂直互连结构158的材料污染。另外,在形成开口298之前,绝缘层296在半导体管芯124的后表面128上的存在起到阻挡来自垂直互连结构158的材料到达半导体管芯的作用。

布置在Fo-PoP 328中的PWB模块化单元164-166在尺寸和形状上可以彼此不同,同时仍为Fo-PoP提供穿通垂直互连。PWB单元164-166包括具有方形和矩形形状、十字形(+)、成角度的或“L形状”、圆形或椭圆形形状、六角形形状、八角形形状、星形形状或任何其他几何形状的互锁占位区。在晶片级,并且在分割之前,PWB单元164-166以互锁图案布置在半导体管芯124周围,使得半导体管芯的不同侧面对准到并且对应于重复图案中的PWB单元的多个不同侧面。在堆积互连结构324形成于PWB单元上之前,PWB单元164-166也可包括附加金属层以促进设计集成和增大的布线灵活性。

由于多个原因,PWB模块化单元164-166提供了用于Fo-PoP中的垂直互连的利用标准激光钻孔工艺的成本有效替换方案。首先,PWB单元164-166可以利用诸如基板制造技术的低成本制造技术制作。第二,标准激光钻孔包括高设备成本并且要求钻孔穿过整个封装厚度,这增加了周期时间并且降低制造吞吐量。另外,相对于排他地通过激光钻孔工艺形成的垂直互连,使用PWB单元164-166用于垂直互连提供了对垂直互连的改进控制的优点。

图7a示出导电柱或导电垂直互连结构340的实施例,其具有层叠核心342、导电层344和346以及填料材料348。填料材料348可以是导电材料或绝缘材料。导电层344与层叠核心342交叠0-200µm。Cu保护层350形成于导电层346上。绝缘层352形成于层叠核心342的一个表面上。绝缘层352的部分被移除以露出Cu保护层350。

图7b示出导电柱或导电垂直互连结构360的实施例,其具有层叠核心362、导电层364和366以及填料材料368。填料材料368可以是导电材料或绝缘材料。导电层364与层叠核心362交叠0-200µm。Cu保护层370形成于导电层366上。

图7c示出导电柱或导电垂直互连结构380的实施例,其具有层叠核心382、导电层384和386以及填料材料388。填料材料388可以是导电材料或绝缘材料。导电层384与层叠核心382交叠0-200µm。Cu保护层390形成于导电层346上。绝缘层392形成于层叠核心382的一个表面上。绝缘层394形成于层叠核心382的相对表面上。绝缘层394的部分被移除以露出Cu保护层386。

图7d示出导电柱或导电垂直互连结构400的实施例,其具有层叠核心402、导电层404和406以及填料材料408。填料材料408可以是导电材料或绝缘材料。导电层404与层叠核心402交叠0-200µm。

图7e示出导电柱或导电垂直互连结构410的实施例,其具有层叠核心412、导电层414和填料材料416。填料材料416可以是导电材料或绝缘材料。导电层414与层叠核心412交叠0-200µm。绝缘层418形成于层叠核心412的一个表面上。绝缘层418的部分被移除以露出导电层414。导电层420形成于露出的导电层414上。Cu保护层422形成于导电层420上。绝缘层424形成于层叠核心412的相对表面上。导电层426形成于露出的导电层414上。

图7f示出导电柱或导电垂直互连结构430的实施例,其具有层叠核心432、导电层434和填料材料436。填料材料436可以是导电材料或绝缘材料。导电层434与层叠核心432交叠0-200µm。绝缘层438形成于层叠核心432的一个表面上。绝缘层438的部分被移除以露出导电层434。导电层440形成于露出的导电层434上。Cu保护层442形成于导电层420上。绝缘层444形成于层叠核心432的相对表面上。导电层446形成于露出的导电层434上。Cu保护层446形成于导电层446上。

图7g示出导电柱或导电垂直互连结构450的实施例,其具有层叠核心452、导电层454和456以及填料材料458。填料材料458可以是导电材料或绝缘材料。导电层454与层叠核心452交叠0-200µm。Cu保护层460形成于导电层456上。绝缘层462形成于层叠核心452的一个表面上。绝缘层462的部分被移除以露出Cu保护层460。绝缘层464形成于层叠核心452的相对表面上。绝缘层464的部分被移除以露出Cu保护层460。

图7h示出导电柱或导电垂直互连结构470的实施例,其具有层叠核心472、导电层474和476以及填料材料478。填料材料478可以是导电材料或绝缘材料。导电层474与层叠核心472交叠0-200µm。Cu保护层480形成于导电层476上。绝缘层482形成于层叠核心472的一个表面上。绝缘层484形成于层叠核心472的相对表面上。绝缘层484的部分被移除以露出Cu保护层480。

图7i示出导电柱或导电垂直互连结构490的实施例,其具有层叠核心492、导电层494和496以及填料材料498。填料材料498可以是导电材料或绝缘材料。导电层494与层叠核心492交叠0-200µm。Cu保护层500形成于导电层496上。绝缘层502形成于层叠核心492的相对表面上。绝缘层502的部分被移除以露出Cu保护层480。Cu保护层504形成于露出的导电层496上。

在图8a中,多个凸块510形成于Cu箔512或者其他箔或者具有薄图案化Cu或其他润湿材料层的载体上。箔或支撑层可以利用能够耐受回流温度的热释放胶带而均匀地接合到临时载体。在图8b中,密封剂514形成于凸块510和Cu箔512上。在图8c中,Cu箔512被移除并且嵌在密封剂514中的凸块510利用锯条或激光切割工具516被分割为PWB垂直互连单元518。

图9示出包括半导体管芯522的Fo-PoP 520,该半导体管芯类似于来自图3c的半导体管芯124。半导体管芯522具有后表面524以及与后表面524相对的有源表面526,该有源表面526包含实现为根据管芯的电设计和功能而在管芯内形成的且电互连的有源器件、无源器件、导电层以及电介质层的模拟或数字电路。导电层528形成于有源表面526上被作为电连接到有源表面526上的电路的接触焊盘来操作。绝缘或钝化层530共形应用在有源表面526上。

图9还示出从半导体管芯522横向偏移并且在半导体管芯522周围的外围区域周围或中布置的,来自图8a-8c的PWB模块化单元518。半导体管芯522的后表面524从PWB模块化单元518偏移了至少1µm,类似于图5b。密封剂532沉积在PWB单元518周围。堆积互连结构534,类似于图5e的堆积互连结构180,形成于密封剂532、PWB单元518和半导体管芯522上。绝缘或钝化层536形成于密封剂532、PWB单元518和半导体管芯522上。密封剂514和绝缘层536的部分被移除以露出凸块510。凸块510从半导体管芯522的后表面524偏移了至少1µm。

图10示出类似于图5h的Fo-PoP 540的实施例,其中密封剂542布置在PWB单元164-166周围。

在图11a中,半导体管芯550具有后表面552和有源表面554,该有源表面包含实现为根据管芯的电设计和功能而在管芯内形成的且电互连的有源器件、无源器件、导电层以及电介质层的模拟或数字电路。导电层556在有源表面554上形成并且作为电连接到有源表面554上的电路的接触焊盘来操作。

以后表面552朝向基板560定向的方式安装半导体管芯550。基板560可以是PCB。多个接合引线562形成于导电层556和在基板560上形成的迹线或接触焊盘564之间。密封剂566沉积在半导体管芯550、基板560和接合引线562上。凸块568形成于基板560上的接触焊盘570上。

图11b示出来自图10的Fo-PoP 540,其中PWB模块化单元164-166横向偏移并且布置在半导体管芯124周围的外围区域周围或中。具有半导体管芯550的基板560安装到Fo-PoP 540,其中凸块568机械和电连接到PWB模块化单元164-166。Fo-PoP 540的半导体管芯124穿过接合引线562、基板560、凸块556和PWB模块化单元164-166电连接到用于垂直互连的堆积互连结构180。

图12a-12b说明从具有精细填料的密封剂面板形成模块化单元的过程。图12a示出密封剂面板578的一部分的截面视图。密封剂面板578包括聚合物复合物材料,诸如环氧树脂、环氧丙稀酸脂或者聚合物,合适的精细填料材料(即小于45µm)沉积在该聚合物复合物材料中。精细填料材料使得密封剂面板578的CTE能够被调节,使得密封剂面板578的CTE大于后续沉积的封装密封剂材料。密封剂面板578具有多个锯道579,用于将密封剂面板578分割为各个模块化单元。

在图12b中,使用锯条或激光切割工具582通过锯道579将密封剂面板578分割为各个模块化单元580。模块化单元580具有与图6e-6i所示PWB模块化单元164-166类似的形状或占位区,但是不具有嵌入的导电柱或导电凸块。模块化单元580的CTE大于后续沉积的密封剂材料的CTE,从而减小在热应力下翘曲的发生率。模块化单元580的密封剂材料中的精细填料也使能实现改善的激光钻孔以用于后续形成的开口,所述开口形成为穿过模块化单元580。

图13a-13i说明形成Fo-PoP的另一过程,其中模块化单元从不具有嵌入的导电柱或凸块的密封剂面板形成。从图6b继续,利用拾放操作,来自图12b的模块化单元580被安装到载体220上的界面层224。在另一实施例中,在安装半导体管芯124之前,来自图12a的密封剂面板578安装到界面层224成为300-325mm圆形面板或者470mm×370mm矩形面板,并且开口穿通密封剂面板578以容纳半导体管芯124,并且密封剂面板578被分割为各个模块化单元580,类似于图6i。

当模块化单元580安装到界面层224时,模块化单元580的表面583与界面层224的露出表面584共平面,使得表面583不嵌在界面层224中。因而,模块化单元580的表面583相对于绝缘层134的表面225垂直偏移。

图13b示出半导体管芯124和模块化单元580安装在载体220上成为重构造晶片590。模块化单元580的表面592相对于半导体管芯124的后表面128垂直偏移。重构造晶片590利用锯条或激光切割工具596在半导体管芯124之间通过模块化单元580被部分地分割,从而形成通道或开口598。通道598延伸穿过模块化单元580,并且附加地可以延伸穿过界面层224以及部分地但不是完全穿过载体220。通道598形成模块化单元580和半导体管芯124之间的分离。

在图13c中,利用膏料印刷、压缩成型、转移成型、液体密封剂成型、真空层叠、旋涂或其他合适涂料器,密封剂或模塑料600沉积在半导体管芯124、模块化单元580和载体220上。密封剂600可以是聚合物复合物材料,诸如具有填料的环氧树脂、具有填料的环氧丙稀酸脂或具有适当填料的聚合物。密封剂600是不导电的并且在环境上保护半导体器件免受外部要素和污染物的影响。密封剂600的CTE低于模块化单元580。在图13d中,通过化学蚀刻、机械剥离、CMP、机械研磨、热烘烤、UV光、激光扫描或湿法剥落,载体220和界面层224从重构造晶片移除,从而促进在半导体管芯124的有源表面130和模块化单元580上形成互连结构。

在图13e中,绝缘或钝化层602形成于密封剂600、模块化单元580和半导体管芯124上。绝缘层602包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一个或多个层。利用PVD、CVD、印刷、旋涂、喷涂或其他合适工艺来沉积绝缘层602。绝缘层602的一部分通过LDA、蚀刻或其他合适工艺被移除,从而露出导电层132以及模块化单元580的表面182。

导电层603被图案化和沉积在绝缘层602上,半导体管芯124上,并且在穿过绝缘层602形成的开口中。导电层603电连接到半导体管芯124的导电层132。导电层603可以是Al、Cu、Sn、Ni、Au、Ag或其他合适导电材料的一个或多个层。在一个实施例中,导电层603包含Ti/Cu、TiW/Cu或Ti/NiV/Cu。导电层603的沉积使用了PVD、CVD、电解镀覆、化学镀覆或其他合适工艺。导电层603作为RDL操作,将电连接从半导体管芯124延伸到半导体管芯124外部的各点,从而跨过封装将半导体管芯124的电信号横向地重新分配。根据半导体管芯124的设计和功能,导电层603的各部分可以电公用或电隔离。

绝缘或钝化层604形成于导电层603和绝缘层602上。绝缘层604包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一个或多个层。利用PVD、CVD、印刷、旋涂、喷涂或其他合适工艺来沉积绝缘层604。绝缘层604的一部分通过LDA、蚀刻或其他合适工艺被移除,从而露出导电层603用于后续电互连。

导电层605被图案化和沉积在绝缘层604,在穿过绝缘层604形成的开口中,并且电连接到导电层603和132。导电层605可以是Al、Cu、Sn、Ni、Au、Ag或其他合适导电材料的一个或多个层。在一个实施例中,导电层605包含Ti/Cu、TiW/Cu或Ti/NiV/Cu。导电层605的沉积使用了PVD、CVD、电解镀覆、化学镀覆或其他合适工艺。导电层605作为RDL操作,将电连接从半导体管芯124延伸到半导体管芯124外部的各点,从而跨过封装将半导体管芯124的电信号横向地重新分配。根据半导体管芯124的设计和功能,导电层605的各部分可以电公用或电隔离。

绝缘层606形成于绝缘层604和导电层605上。绝缘层606包含SiO2、Si3N4、SiON、Ta2O5、Al2O3或具有类似绝缘和结构属性的其他材料的一个或多个层。利用PVD、CVD、印刷、旋涂、喷涂或其他合适工艺来沉积绝缘层606。绝缘层606的一部分通过LDA、蚀刻或其他合适工艺被移除,从而形成开口以露出导电层605的部分用于后续电互连。

利用蒸发、电解镀覆、化学镀覆、球滴或丝网印刷工艺,导电凸块材料沉积在导电层605的露出部分上。凸块材料可以是具有可选助焊剂溶液的Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及其组合。例如,凸块材料可以是共熔Sn/Pb、高铅焊料或无铅焊料。利用合适的附连或接合工艺,凸块材料接合到导电层605。在一个实施例中,凸块材料通过将材料加热到其熔点之上而进行回流以形成球面球或凸块607。在一些应用中,凸块607被二次回流以改善与导电层605的电接触。在一个实施例中,凸块607形成于具有润湿层、阻挡层和粘合层的UBM上。凸块也可以压缩接合到导电层605。凸块607代表可以在导电层605上形成的一种类型的互连结构。该互连结构也可以使用接合引线、导电膏料、柱形凸块、微凸块或其他电互连。

合起来,绝缘层602、604和606,导电层603、605,以及导电凸块607构成堆积互连结构610。包括在堆积互连结构610中的绝缘和导电层的数目取决于电路布线设计的复杂性并且随其变化。因此,堆积互连结构610可包括任意数目的绝缘和导电层以促进有关半导体管芯124的电互连。另外,否则将包括在背侧互连结构或RDL中的元件可以被集成成为堆积互连结构610的部分,从而相对于包括前侧和背侧互连或RDL的封装简化制造并且减小制作成本。

在图13f中,利用层叠或其他合适应用工艺,背研磨胶带614应用在堆积互连结构610上。背研磨胶带614接触堆积互连结构610的绝缘层606和凸块607。背研磨胶带614遵从凸块607的表面的轮廓。背研磨胶带614包括热阻高达270ºC的胶带。背研磨胶带614还包括具有热释放功能的胶带。背研磨胶带614的示例包括UV胶带HT 440和非UV胶带MY-595。背研磨胶带614为后续背研磨以及从密封剂600的与堆积互连结构610相对的背侧表面624移除密封剂600的一部分提供结构支撑。

密封剂600的背侧表面624利用研磨器628进行研磨操作从而平坦化并且减小密封剂600和半导体管芯124的厚度。化学蚀刻也可以用于平坦化和移除密封剂600和半导体管芯124的一部分。在研磨操作完成之后,半导体管芯124的露出的后表面630与模块化单元580的表面592以及密封剂600的露出表面632共平面。

在图13g中,利用为重构造晶片590提供结构支撑的背研磨胶带614,背侧平衡层640应用在密封剂600、模块化单元580和半导体管芯124上。在另一实施例中,在形成背侧平衡层640之前,背研磨胶带614被移除。背侧平衡层640的CTE可以被调节以平衡堆积互连结构610的CTE,从而减小封装的翘曲。在一个实施例中,背侧平衡层640平衡堆积互连结构610的CTE,例如30-150ppm/K,并且减小封装中的翘曲。背侧平衡层640也为封装提供结构支撑。在一个实施例中,背侧平衡层640具有10-100 µm的厚度。背侧平衡层640也可以用作热沉以增强从半导体管芯124的热散逸。背侧平衡层640可以是具有合适热和结构属性的任何合适平衡层,诸如RCC胶带。

在图13h中,背侧平衡层640和模块化单元580的一部分被移除以形成通孔或开口644并且通过模块化单元580露出堆积互连结构610的导电层603。通过蚀刻、激光或其他合适工艺,利用具有用于结构支撑的支撑胶带的恰当夹紧或真空真空泡沫夹头,形成开口644。在一个实施例中,开口644通过利用激光650的LDA形成。模块化单元580的精细填料使能实现改善的激光钻孔以形成开口644。开口644可具有垂直、斜坡或台阶状侧壁,并且延伸穿过绝缘层640和模块化单元580的表面583以露出导电层603。在形成开口644后,开口644进行去胶渣或清洗工艺,包括颗粒和有机残余物湿法清洗,诸如利用合适溶剂,或者碱和二氧化碳起泡去离子水的单个晶片高压喷射清洗,从而移除来自钻孔工艺的任何颗粒或残余物。利用使用O2以及四氟化碳(CF4)、氮气(N2)或过氧化氢(H2O2)中的一种或多种的下游/微波等离子体或反应离子蚀刻(RIE),也执行等离子体清洗以从露出的导电层603清洗任何污染物。在导电层603包括TiW或Ti粘合剂层的实施例中,导电层603的粘合剂层在单晶片或分批工艺中利用湿法蚀刻剂来蚀刻,并且接着是氧化铜清洗。

在图13i中,利用蒸发、电解镀覆、化学镀覆、球滴、丝网印刷、喷射或其他合适工艺,导电凸块材料沉积在开口644中的堆积互连结构610的露出的导电层603上。凸块材料可以是具有可选助焊剂溶液的Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及其组合。例如,凸块材料可以是共熔Sn/Pb、高铅焊料或无铅焊料。利用合适的附连或接合工艺,凸块材料接合到导电层603。在一个实施例中,凸块材料通过将材料加热到其熔点之上而进行回流以形成球面球或凸块654。在一些应用中,凸块654被二次回流以改善与导电层603的电接触。UBM层可以形成于凸块654下。凸块也可以压缩接合到导电层603。凸块654代表可以在导电层603上形成的一种类型的互连结构。该互连结构也可以使用接合引线、导电膏料、柱形凸块、微凸块或其他电互连。利用锯条或激光切割工具656将该组件分割以形成各个Fo-PoP 660,并且移除背研磨胶带614。

在图14中示出分割之后的Fo-PoP 660。模块化单元580嵌在半导体管芯124周围的密封剂600中以提供Fo-PoP 660中的垂直互连。模块化单元580由具有精细填料的密封剂面板形成,并且模块化单元580的CTE高于密封剂600,这提供调节Fo-PoP 660的整体CTE的灵活性。模块化单元580可以具有与图6e-6i所示模块化单元类似的形状或占位区。在将密封剂600沉积在模块化单元580和半导体管芯124上之后,封装进行背研磨工艺以移除密封剂600和半导体管芯124的一部分,使得模块化单元580的厚度基本上等于半导体管芯124的厚度。背侧平衡层640形成于模块化单元580、密封剂600和半导体管芯124上,从而提供附加结构支撑并且防止Fo-PoP 660翘曲。开口644穿过背侧平衡层640和模块化单元580形成以露出堆积互连结构610的导电层603。凸块654在开口644中形成,从而形成穿过Fo-PoP 660的三维(3-D)垂直电互连结构。因而,模块化单元580不具有用于垂直电互连的嵌入的导电柱或凸块材料。穿过模块化单元580形成开口644和凸块654减少制造步骤数目,同时仍为垂直电互连提供模块化单元。

图15a-15b说明从PCB面板形成模块化单元的过程。图15a示出PCB面板670的一部分的截面视图。PCB面板670包括聚四氟乙烯预浸渍材料(预浸料)、FR-4、FR-1、CEM-1或CEM-3结合酚醛棉纸、环氧物、树脂、玻璃织物、毛面玻璃、聚酯纤维和其他增强纤维或织物的一个或多个层叠层。PCB面板670具有多个锯道672,用于将PCB面板670分割为各个模块化单元。在图15b中,利用锯条或激光切割工具674,PCB面板670通过锯道672被分割为各个模块化单元676。模块化单元676的形状或占位区类似于图6e-6i所示的PWB模块化单元164-166,但是不具有嵌入的导电柱或导电凸块。模块化单元676的CTE大于后续沉积的密封剂材料的CTE,从而减小在热应力下出现翘曲。

图16示出与图14类似的Fo-PoP 660的实施例,其中模块化单元676嵌在密封剂600中而不是模块化单元580中。模块化单元676嵌在半导体管芯124周围的密封剂600中以提供Fo-PoP 660中的垂直互连。模块化单元676从PCB面板形成,并且模块化单元676的CTE高于密封剂600,这提供了调节Fo-PoP 660的整体CTE的灵活性。模块化单元676的形状或占位区可以类似于图6e-6i所示的PWB模块化单元。在将密封剂600沉积在模块化单元676和半导体管芯124上后,封装进行背研磨工艺从而移除密封剂600和半导体管芯124的一部分,使得模块化单元676的厚度基本上等于半导体管芯124的厚度。背侧平衡层640形成于模块化单元676、密封剂600和半导体管芯124上,从而提供附加结构支撑,并且防止Fo-PoP 660翘曲。开口644穿过背侧平衡层640和模块化单元580形成以露出堆积互连结构610的导电层603。凸块654在开口644内形成从而形成穿过Fo-PoP 660的3-D垂直电互连结构。因而,模块化单元676不具有用于垂直电互连的嵌入的导电柱或凸块材料。穿过模块化单元676形成开口644和凸块654减小了制造步骤的数目,同时仍提供用于垂直电互连的模块化单元。

尽管已经详细说明了本发明的一个或更多实施例,但是本领域技术人员应当意识到,可以在不偏离如随后的权利要求提及的本发明的范围的情况下对那些实施例做出修改和改写。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1