用于生产用于具有硫化铟钠缓冲层的薄膜太阳能电池的层系统的方法与流程

文档序号:11289435阅读:392来源:国知局
用于生产用于具有硫化铟钠缓冲层的薄膜太阳能电池的层系统的方法与流程

本发明属于太阳能电池制造的技术领域,并且涉及一种生产用于具有硫化铟钠缓冲层的薄膜太阳能电池的层系统的方法。



背景技术:

用于将太阳光直接转换成电能的用于太阳能电池的光伏层系统是众所周知的。术语“薄膜太阳能电池”是指仅具有几微米厚度的层系统,该层系统需要(载体)衬底,以便获得足够的机械稳定性。已知的衬底包括无机玻璃,塑料(聚合物)或金属,特别是金属合金,并且可以根据各自的层厚度和具体的材料性质来设计为刚性板或柔性膜。

用于薄膜太阳能电池的层系统可以以各种设计的形式在市场上获得,该设计取决于其上应用的衬底和材料。材料被选择为使得入射的太阳光谱被最大化地利用。由于物理性质和技术处理质量,具有非结晶、微形态(micromorphous)或多晶硅,碲化镉(cdte),砷化镓(gaas),铜铟(镓)硒化物硫化物(cu(in,ga)(s,se)2)和铜锌锡硫硒化物(来自硫铜锡锌铁矿(kesterite)组的czts)以及有机半导体特别适用于薄膜太阳能电池。五元半导体cu(in,ga)(s,se)2属于黄铜矿半导体组,该黄铜矿半导体组经常被称为cis(铜铟二硒化物或铜铟二硫化物)或cigs(铜铟镓二硒化物,铜铟镓二硫化物,或铜铟镓二硫化硒)。在缩写cigs中,s可以表示硒,硫或两种硫族元素的混合物。

目前的基于cu(in,ga)(s,se)2的薄膜太阳能电池和太阳能组件需要p-导电cu(in,ga)(s,se)2吸收层与n-导电前电极之间的缓冲层。前电极通常包括氧化锌(zno)。根据目前的知识,该缓冲层实现在吸收材料与前电极之间的电子适应。此外,该缓冲层通过dc-磁控溅射在后续的前电极沉积工艺步骤中提供保护以防止溅射损坏。另外,通过构造p型和n型半导体之间的高欧姆中间层,该缓冲层防止电流从导电良好的地带排出到不良导电地带中。迄今为止,硫化镉(cds)已经被最常用作缓冲层。为了能够产生良好的电池效率,硫化镉已经在化学浴工艺(cbd工艺)中湿化学沉积。然而,与此相关联的是下述缺点,即,湿化学工艺并不良好地适合于当前生产cu(in,ga)(s,se)2薄膜太阳能电池的工艺循环。cds缓冲层的另一缺点在于cds缓冲层包括有毒的重金属镉。这创建更高的生产成本,因为在生产工艺中必须采取增强的安全保护措施,例如处理废水。由于根据当地法律,制造商可能被迫收回,处理或重复利用产物,所以处理该产物可能导致对于客户的更高成本。

因此,已经对来自cu(in,ga)(s,se)2半导体的系列(family)的不同吸收剂测试了由硫化镉制成的缓冲剂的各种替代物,例如,溅射的znmgo,通过cbd沉积的zn(s,oh),通过cbd沉积的in(o,oh)以及通过原子层沉积(ald)、离子层气体沉积(ilgar),喷雾热解或物理气相沉积(pvd)工艺(诸如,热蒸发或溅射)来沉积的硫化铟。然而,这些材料仍然不适合作为基于cu(in,ga)(s,se)2的太阳能电池的缓冲剂的商业用途,因为它们未实现与具有cds缓冲层的效率相同的效率。效率描述了入射功率与通过太阳能电池产生的电功率的比率,并且对于用于小表面上的实验室电池的cds缓冲层,该效率差不多约为20%,并且对于大面积的组件,该效率在10%与15%之间。此外,当替代的缓冲层暴露于光、热和/或水分时,该替代的缓冲层呈现出过度的不稳定性、滞后效应或者效率的退化。

cds缓冲层的另一缺点在于下述事实:硫化镉是具有大约2.4ev的直接电子带隙的半导体。因此,在已经具有10nm左右的cds膜厚度的cu(in,ga)(s,se)2/cds/zno太阳能电池中,入射光在很大程度上被吸收。由于在该层中产生的载流子立刻重新结合,并且异质结的该区域中和用作重新组合中心的缓冲材料中存在许多晶体缺陷,所以由于电的产生而在缓冲层中吸收的光损失。结果,太阳能电池的效率降低,这对于薄膜太阳能电池是不利的。

例如从wo2009/141132a2中已知具有基于硫化铟的缓冲层的层系统。层系统由cigs系列(family)的黄铜矿吸收剂组成,并且特别地,由cu(in,ga)(s,se)2与由硫化铟制成的缓冲层相结合组成。硫化铟(invsw)缓冲层具有例如v/(v+w)=41%至43%的稍微富含铟的化合物。可以利用各种非湿化学方法来沉积硫化铟缓冲层,例如通过热蒸发,电子束蒸发,离子层气体反应(ilgar),阴极溅射(溅射),原子层沉积(ald)或喷雾热解。

然而,在迄今为止这些层系统和生产方法的发展中,已经证明,具有硫化铟缓冲层的太阳能电池的效率小于具有cds缓冲层的太阳能电池的效率。

从barreau等人的:“studyofthenewβ-in2s3containingnathinfilms,partii:opticalandelectricalcharacterizationofthinfilms”,journalofcrystalgrowth,241(2002),51-56页中已知基于钠合金硫化铟的缓冲层。

如本公开的图5的结果那样,通过在缓冲层中的钠分数从0原子%增加到6原子%,带隙增加到高达2.95ev的值。然而,由于缓冲层除了其他方面之外还具有吸收层对前电极的带适应性的任务,所以与典型的吸收材料相互作用的这种高带隙导致太阳能电池的电性能的退化。



技术实现要素:

相比之下,本发明的目的在于提供一种用于具有吸收层的薄膜太阳能电池的层系统,特别是基于黄铜矿化合物半导体的层系统,以及具有高效率和高稳定性的缓冲层,该缓冲层的生产应该是经济和环保的。这个目的以及其他目的通过用于生产具有独立权利要求的特征的层系统的方法来实现。通过从属权利要求的特征来指示本发明的有利实施例。

根据本发明的用于生产用于薄膜太阳能电池的层系统的方法包括生产用于吸收光的吸收层。优选地,但不是强制性地,吸收层包含黄铜矿化合物半导体,特别是cu2znsn(s,se)4,cu(in,ga,al)(s,se)2,cuinse2,cuins2,cu(in,ga)se2或cu(in,ga)(s,se)2。在吸收层的有利实施例中,吸收层由这样的黄铜矿化合物半导体制成。

方便地,在rtp(“快速热处理”)工艺中将吸收层施加在后电极上的衬底上。对于cu(in,ga)(s,se)2吸收层,首先利用后电极在衬底上沉积前体层。前体层包含通过溅射施加的元素铜、铟和镓。在由前体层涂覆时,将目标钠剂量引入到前体层中,例如从ep715358b1中已知的那样。此外,前体层包含通过热蒸发施加的硒元素。在这些工艺期间,衬底温度低于100℃,从而使得元素作为金属合金和元素硒保持基本上未反应。随后,使该前体层在含硫气氛中以快速热处理方法(rtp)反应,从而形成cu(in,ga)(s,se)2硫族化物半导体。

根据本发明的用于生产层系统的方法还包括生产设置在吸收层上的缓冲层,该缓冲层根据分子式naxiny-x/3s,(其中,0.063≤x≤0.625并且0.681≤y≤1.50)包含硫化铟钠。分子式naxiny-x/3s描述了缓冲层中基于硫化铟钠的钠、铟和硫的摩尔分数,其中指数x表示钠的物质量并且用于铟的物质量,指数x和另一个指数y是决定性的,铟的物质量由y-x/3的值来确定。对于硫的物质量,指数始终为1。为了获得原子%的物质的摩尔分数,物质的指数除以分子式的所有指数的总和。例如,如果x=1且y=1.33,这得到分子式nains,其中,基于硫化铟钠的钠、铟和硫各自具有ca.33原子%的摩尔分数。

如这里和以下使用的那样,基于分子式的所有物质(元素)的物质量的总和,以原子%该物质(元素)在硫化铟钠中的物质量的分数来描述硫化铟钠的物质(元素)的摩尔分数。如果在缓冲层中不存在与钠,铟和硫不同的元素或者这些元素具有可忽略的分数,则基于硫化钠铟的物质的摩尔分数对应于缓冲层中物质的摩尔分数。

缓冲层由根据分子式naxiny-x/3s(其中,0.063≤x≤0.625,并且0.681≤y≤1.50)的硫化铟钠以及与硫化铟钠不同的一种或多种组分(杂质)组成(或制成)。在本发明的有利实施例中,缓冲层基本上由根据分子式naxiny-x/3s(其中0.063≤x≤0.625,并且0.681≤y≤1.50)的硫化铟钠组成。这意味着与硫化铟钠不同的缓冲层的组分(杂质)的分数可以忽略不计。然而,与硫化铟钠不同的缓冲层的组分(杂质)可能具有不可忽略的分数。如果不基于硫化铟钠的分子形式的元素,则以原子%的物质(杂质)的摩尔分数基于缓冲层中所有物质的物质量的总和(即,基于硫化铟钠和杂质)来描述该物质的物质量的分数。

根据本发明,在用于生产缓冲层的上述步骤b)中,基于至少一种硫铟酸钠(sodiumthioindate)化合物生产缓冲层。至少一种硫铟酸钠化合物被用作用于生产缓冲层的起始材料(源)。在这里以及下文中,术语“硫铟酸钠化合物”是指由元素钠(na),铟(in)和硫(s)组成的三元化合物。在不同的氧化态的每种情况下,各元素可以存在于硫铟酸钠化合物中。

与未公开的国际专利申请pct/ep2014/063747中提出的方法相比,重要的是在不沉积硫化铟的情况下进行缓冲层的生产。特别地,为了生产缓冲层,不会发生单独的硫化铟沉积。因此,硫化铟、铟和硫都不用作用于沉积硫化铟的起始材料(源)。在这里和在下文中,术语“硫化铟”是指由元素铟(in)和硫(s)构成的二元化合物,例如ins,in2s3和in6s7。在各种情况下,这些元素可以以不同的氧化态存在于硫化铟中。

例如但不是强制性地,缓冲层仅基于至少一种硫铟酸钠化合物生产缓冲层,即,没有与至少一种硫铟酸钠化合物不同的物质用于生产缓冲层。

优选地,基于选自nain3s5,nain5s8和nains2的一种或多种硫铟酸钠化合物来生产缓冲层。可以设想到,也可以使用其他硫铟酸钠化合物,诸如nain5s7或na6in2s6。

根据缓冲层是“基于至少一种硫铟酸钠化合物”生产的提法包括下述两种情况,即,缓冲层的关于组分钠、铟和硫的化学计量对应于这些组分在用作起始材料的至少一种硫铟酸钠化合物中的化学计量,以及,缓冲层的关于组分钠、铟和硫的化学计量不对应于这些组分在用作起始材料的至少一种硫铟酸钠化合物中的化学计量。

与其他方法相比,使用至少一种三元硫铟酸钠化合物来生产缓冲层带来了可观的工艺技术优点。一个重要的优点是与沉积硫化铟的生产方法相比,三元硫铟酸钠化合物关于吸湿性、毒性和可燃性的简单处理质量。此外,可以利用相对少数量的起始材料生产缓冲层(在最简单的情况下,仅利用单一的硫铟酸钠化合物),这意味着生产工艺的复杂性以及因此生产层系统的成本可以显著降低。

根据根据本发明的方法的有利实施例,通过沉积单一硫铟酸钠化合物或通过将多个彼此不同的硫铟酸钠化合物沉积到吸收层上来生产缓冲层。在这种情况下,缓冲层关于组分钠、铟和硫的化学计量对应于这些组分在用作起始材料的至少一种硫铟酸钠化合物中的化学计量。

原则上,所有化学物理沉积方法都适用于生产缓冲层。有利地,根据本发明的缓冲层通过湿化学浴沉积,原子层沉积(ald),离子层气体沉积(ilgar),喷雾热解,化学气相沉积(cvd)或物理蒸气沉积(pvd)施加到吸收层上。根据本发明的缓冲层优选地特别是从用于至少一种或多种硫铟酸钠化合物的单独源通过溅射(阴极溅射)、热蒸发或电子束蒸发来沉积。

有利地利用真空方法沉积根据本发明的缓冲层。真空方法具有特别的优点,即,在真空中,防止了氧或氢氧化物的引入。认为缓冲层中的氢氧化物组成是在热和光的作用下效率的瞬变的原因。此外,真空方法的优点是该方法没有湿化学过程,并且可以使用标准的真空镀膜设备。

根据本发明的方法的另一有利实施例,在步骤b)中,缓冲层被离开气相而沉积到吸收层上,其中,待沉积材料的至少一种组分的浓度在其气相中(并且因此,在其沉积到吸收层上之前)与该组分在起始材料(硫铟酸钠化合物)中的浓度相比较而言降低。因此,例如,与组分硫在起始材料(硫铟酸钠化合物)中的浓度相比,组分硫的浓度可以在其气相中降低。在这种情况下,缓冲层的关于组分钠、铟和硫的化学计量不再对应于在用作起始材料的至少一种硫铟酸钠化合物中这些组分的化学计量。组分的浓度可以例如通过引入到用于沉积缓冲层的沉积室中的元素(通常被称为“吸气剂元素”)而在气相中降低,组分物理地和/或化学地键合在该元素上。用于在其气相中降低组分浓度的各种措施对于本领域技术人员是公知的,例如从国际专利申请wo2011/104235中已知,使得这里不需要对此详细讨论。通过这种方式,有利地可以选择性地影响缓冲层中组分钠、铟和硫的化学计量,特别是进一步提高太阳能电池的效率。

在根据本发明的方法的有利实施例中,吸收层以直列(in-line)方法或旋转法被传送经过硫铟酸钠化合物的蒸汽束或者经过彼此不同的硫铟酸钠化合物的多个蒸汽束,该多个蒸汽束具有完全地、部分地或者不重叠的蒸汽束。在本发明的上下文中,“蒸汽束”是指在源的出口前方的区域,其在技术上适于依据沉积速率和均匀性将蒸发的材料沉积在衬底上。源是例如热蒸发器、电阻加热器、电子束蒸发器或线性蒸发器的泻流室、船或坩埚。

在根据本发明的方法的另一个有利的实施例中,生产缓冲层,使得缓冲层中的根据分子式naxiny-x/3s(其中,0.063≤x≤0.625并且0.681≤y≤1.50)的硫化铟钠的百分比分数(原子%)(即,硫化铟钠的元素的相应的百分比分数(原子%)的总和)为至少75%,优选至少80%,更优选至少85%,甚至更优选至少90%,甚至更优选至少95%,最优选至少99%。因此,缓冲层由至少75%的硫化铟钠和最大25%的不同于硫化铟钠的组分组成,优选由至少80%的硫化铟钠和最大20%的不同于硫化铟钠的组分组成,更优选由至少85%的硫化铟钠和最大15%的不同于硫化铟钠的组分组成,甚至更优选由至少90%的硫化铟钠和最大10%的不同于硫化铟钠的组分组成,甚至更优选由至少95%的硫化铟钠和最大5%的不同于硫化铟钠的组分组成,并且最优选至少99%的硫化铟钠和最大1%的不同于硫化铟钠的组分组成(所有数据以原子%计)。

由于缓冲层的元素在各种情况下都可以以不同的氧化状态存在,所以除非另有明确说明,否则所有氧化状态在下文中均以元素名称统称。例如,术语“钠”是指元素钠和钠离子以及化合物中的钠。

由于与钠合金化,根据本发明的层系统的硫化铟钠缓冲层有利地具有非结晶或细晶体结构。平均粒径由缓冲层的厚度限制,并且有利地在8nm至100nm的范围内,并且更优选在20nm至60nm的范围内,例如30nm。

正如研究所示,铜(cu)从吸收层向缓冲层的向内扩散可以被缓冲层的非结晶或细晶体结构抑制。这可以通过以下事实来解释:钠和铜在硫化铟晶格中占据相同的位置,并且这些位置被钠占据。然而,大量铜的向内扩散是不利的,因为缓冲层的带隙被铜减小。这导致缓冲层中光的吸收增加,因此降低效率。通过缓冲层中铜的摩尔分数小于7原子%,特别是小于5原子%,可以确保太阳能电池的特别高的效率。

在根据本发明的方法的有利实施例中,生产缓冲层,使得根据分子式naxiny-x/3s(其中,0.063≤x≤0.499和0.681≤y≤1.01)的硫化铟钠包含在缓冲层中。可以对这些值测量特别高的效率。对于缓冲层,至今为止的最佳效率被测量,在缓冲层中包含根据分子式naxiny-x/3s(其中,0.13≤x≤0.32并且0.681≤y≤0.78)的硫化铟钠。

在根据本发明的方法的另一个有利的实施例中,生产缓冲层,使得缓冲层的钠的摩尔分数大于5原子%,特别地大于7原子%,特别地大于7.2原子%。可以对这样高的钠分数测量特别高的效率。对于其中钠和铟的摩尔分数的比率大于0.2的缓冲层也是如此。

在根据本发明的方法的另一个有利的实施例中,生产缓冲层,使得缓冲层包含小于7原子%,特别是小于5原子%的卤素,特别是氯的摩尔分数,优选缓冲层完全无卤素。因此,可以获得特别高的太阳能电池效率。如已经提到的那样,有利的是,缓冲层的铜的摩尔分数小于7原子%,特别是小于5原子%,优选缓冲层完全不含铜。

在根据本发明的方法的另一有利实施例中,生产缓冲层,使得根据本发明的缓冲层包含最大10原子%的氧的摩尔分数。例如,可以经由残留的水蒸气将氧引出涂覆设备。通过在缓冲层中的氧的摩尔分数≤10原子%,可以确保太阳能电池的特别高的效率。

在根据本发明的方法的另一个有利的实施例中,生产缓冲层,使得其不具有除钠、铟和硫、cl和o以外的相当大分数的元素。这意味着缓冲层未提供有其它元素,例如诸如碳,并且至多包含从生产技术的角度来看是不可避免的最大为1原子%的摩尔分数的其它元素。这使得可以确保高效率。

在根据本发明的方法的另一个特别有利的实施例中,生产缓冲层,使得缓冲层中的所有杂质(即,与根据分子式naxiny-x/3s(其中,0.063≤x≤0.625,并且0.681≤y≤1.50)的硫化铟钠不同的所有物质)的摩尔分数的总和最大为25原子%,优选最大为20原子%,更优选为最大为15原子%,甚至更优选最大10原子%,甚至更优选最大为5原子%,并且最优选最大为1原子%。

在典型的实施例中,生产缓冲层,使得其由邻接吸收层的第一层区域和邻接第一层区域的第二层区域组成,其中,第一层区域的层厚度小于第二层区域的层厚度或者等于第二层区域的层厚度,并且其中,钠的摩尔分数在第一层区域中具有最大值,并且减小到吸收层和第二层区域二者。

在根据本发明的方法的另一个有利的实施例中,生产缓冲层,使得该缓冲层具有10nm至100nm,并且优选20nm至60nm的层厚度。

本发明还扩展到用于生产薄膜太阳能电池的方法,该方法包括:

-制备衬底,

-在衬底上布置后电极,

-根据上述的用于层系统的生产的生产方法来生产层系统,其中,层系统被布置在后电极上,以及

-在层系统上布置前电极。

衬底优选为金属、玻璃、塑料或陶瓷衬底,优选玻璃衬底。然而,也可以使用其他透明载体材料,特别是塑料。后电极有利地包括钼(mo)或其他金属。在后电极的有利实施例中,该后电极具有邻接吸收层的钼子层和邻接钼子层的氮化硅子层(sin)。这种后电极系统例如从ep1356528a1中已知。前电极优选包括透明导电氧化物(tco),特别优选为铝-、镓-或硼-掺杂的氧化锌和/或氧化铟锡(ito)。

附图说明

参考附图,使用示例性实施例详细说明本发明。附图描绘了:

图1是根据本发明的方法生产的具有根据本发明的方法生产的层系统的薄膜太阳能电池的示意性横截面图;

图2a是用于表示图1的薄膜太阳能电池的硫化铟钠缓冲层的组成的三元示图;

图2b是图2a的三元示图的放大细节,其具有根据本发明的要求保护的区域;

图3a是图1的薄膜太阳能电池的效率的测量结果,该测量结果作为缓冲层的钠铟比率的函数;

图3b是图1的薄膜太阳能电池的效率的测量结果,该测量结果作为缓冲层的绝对钠含量的函数;

图4是图1的层系统的缓冲层的带隙的测量结果,该测量结果作为缓冲层的绝对钠含量的函数;

图5是图1的层系统的具有不同高的钠分数的缓冲层中的钠分布的深度剖面的测量结果;

图6是使用流程图的根据本发明的工艺步骤的示例性实施例;

图7是根据本发明的用于生产缓冲层的直列方法的示意表示;

图8是根据本发明的用于生产缓冲层的替代的直列方法的示意表示;

图9是根据本发明的用于生产缓冲层的旋转方法的示意表示。

具体实施方式

图1纯粹示意性地在横截面图中描绘了根据本发明的方法生产的薄膜太阳能电池100的优选示例性实施例,其具有根据本发明的方法生产的层系统1。薄膜太阳能电池100包括衬底2和后电极3。层系统1布置在在后电极3上。层系统1包括吸收层4和缓冲层5。第二缓冲层6和前电极7布置在层系统1上。

这里,衬底2例如由无机玻璃制成,同样可以使用相对于在薄膜太阳能电池100的生产期间实行的工艺步骤具有足够的稳定性以及惰性行为的其他绝缘材料,例如塑料,特别是聚合物或金属,特别是金属合金。根据层厚度和具体的材料性质,衬底2可以被实现为刚性板或柔性膜。在本示例性实施例中,衬底2的层厚度例如为1mm至5mm。

后电极3布置在衬底2的入光侧表面上。后电极3例如由不透明金属制成。例如,后电极3可以通过气相沉积或磁场辅助阴极溅射而沉积在衬底2上。后电极3例如由钼(mo)、铝(al)、铜(cu)、钛(ti)、锌(zn)制成或者由具有这样的金属(例如钼(mo))的多层系统制成。在这种情况下,后电极3的层厚度小于1μm,优选在300nm至600nm的范围内,并且例如为500nm。后电极3用作薄膜太阳能电池100的后侧触头。可以在衬底2和后电极3之间布置例如由si3n4,sion或sicn制成的碱性阻挡层。这在图1中未详细示出。

层系统1布置在后电极3上。层系统1包括例如由cu(in,ga)(s,se)2制成的吸收层4,该吸收层直接施加在后电极3上。吸收层4例如利用引言中描述的rtp工艺来沉积。吸收层4的厚度例如为1.5μm。

缓冲层5布置在吸收层4上。缓冲层5包含naxiny-x/3s,其中,0.063≤x≤0.625,0.681≤y≤1.50,优选为0.063≤x≤0.49,0.681≤y≤1.01的,以及甚至更优选为0.13≤x≤0.32,0.681≤y≤0.78。缓冲层5的层厚度在20nm至60nm的范围内,并且例如为30nm。

第二缓冲层6可以可选地布置在缓冲层5的上方。缓冲层6包含例如非掺杂氧化锌(i-zno)。用作前侧触头并且对可见光谱范围(“窗口层”)中的辐射透明的前电极7布置在第二缓冲层6的上方。通常,掺杂金属氧化物(tco=透明导电氧化物),例如,n-导电的铝(al)掺杂的氧化锌(zno),硼(b)掺杂的氧化锌(zno)或镓(ga)掺杂的氧化锌(zno)用于前电极7。前电极7的层厚例如为大致300nm至1500nm。为了防止环境影响,可以向前电极7施加例如由聚乙烯醇缩丁醛(pvb),乙烯醋酸乙烯酯(eva)或硅酮制成的塑料层(封装膜)。

此外,可以提供对太阳光透明的盖板,该盖板例如由具有低铁含量的超白玻璃(前玻璃)制成并且具有例如1mm至4mm的厚度。

所描述的薄膜太阳能电池或薄膜太阳能组件的结构是本领域技术人员公知的,例如,来自可从商业上获得的薄膜太阳能电池或薄膜太阳能组件,并且也已经在专利文献(例如de19956735b4)中的许多印刷文献中进行了详细描述。

在图1所描绘的衬底结构中,后电极3与衬底2邻接。应当理解,层系统1还可以具有覆盖结构,其中,衬底2是透明的并且前电极7布置在衬底2的背向入光侧的表面上。

层系统1可用于生产集成的串联连接的薄膜太阳能电池,其中,层系统1、后电极3和前电极7通过各种图案线以本身已知的方式图案化(“p1”用于后电极,“p2”用于接触前电极/后电极,并且“p3”用于分离前电极)。

图2a描绘了用于表示图1的薄膜太阳能电池100的缓冲层5的组成naxiny-x/3s的三元示图。在三元示图中指示了缓冲层5的组分硫(s),铟(in)和钠(na)的相对分数。根据本发明要求保护的由0.063≤x≤0.625且0.811≤y≤1.50定义的组成区域由实线所画出轮廓的区域定义。画出轮廓的组成区域内部的数据点指示缓冲层5的示例性组成。图2b描绘了具有根据本发明要求保护的组成区域的三元示图的放大细节。

用“ba”标识的直线指示在引言中引用的barreau等人的公开中所描述的用于硫化铟钠缓冲层的组成,该直线不是本发明所要求保护的组成区域的部分。这可以通过分子式naxin21.33-x/s32(其中,1≤x≤4)来描述。因此,通过起始点in2s3和终点nain5s8来标记该直线。这里的特征在于,薄膜的最大钠分数为5原子%(na/in=0.12),并且单晶具有7原子%的钠分数(na/in=0.2)。已经报告了这些层的高结晶度。

如引言中已经陈述的那样,这些缓冲层具有大于6原子%的钠含量、具有2.95ev的带隙,这导致了吸收体或前电极的不令人满意的带适应性,并且因此导致电性能的退化,使得这些缓冲层不适合用于在薄膜太阳能电池中使用。根据barreau等人,根据本发明所要求保护的组成范围是不可能的。

根据本发明避免了这个缺点,这是因为钠分数达到明显高于na/in=0.12或0.2的值。如本发明人令人惊奇地能够证明的,只有通过缓冲层5中相对较小的硫分数,才可能实现较高的钠分数,其中,保留了太阳能电池中用于带适应性的令人满意的层性质。例如,利用国际专利申请wo2011/104235中描述的用于降低缓冲层中的硫分数的能力,可以在富铟区域中选择性地控制组成。因此,由于存在于缓冲层中的硫化铟钠相具有不同的结晶结构,因此有可能以非结晶地或以纳米晶体结构(而不是结晶的)沉积硫化铟钠缓冲层。以这种方式,可以抑制铜从吸收层向缓冲层的向内扩散,这改善了太阳能电池、特别是黄铜矿太阳能电池的电性能。由于与钠合金化,可以调节缓冲层5的带隙和载流子浓度,借此可以优化从吸收层4经由缓冲层5到前电极7的电子跃迁。在下面更详细地解释这一点。

图3a描绘了其中图1的薄膜太阳能电池100的效率eta(百分比)相对于缓冲层5中的钠铟分数绘图的示图。这是从图2a的相应投影。图3b描绘了其中图1的薄膜太阳能电池100的效率eta(百分比)被相对于缓冲层5中的绝对钠分数(原子%)绘图的示图。

例如,用于此的薄膜太阳能电池100包含由玻璃制成的衬底2以及由si3n4阻挡层和钼层制成的后电极3。根据上述rtp工艺沉积的由cu(in,ga)(s,se)2制成的吸收层4被布置在后电极3上。naxiny-x/3s缓冲层5(其中0.063≤x≤0.625,并且0.681≤y≤1.50)被布置在吸收体层4上。缓冲层5的层厚度为50nm。包含非掺杂氧化锌的100nm厚的第二缓冲层6被布置在缓冲层5上。包含n导电氧化锌的1200nm厚的前电极7布置在第二缓冲层6上。薄膜太阳能电池100的面积例如为1.4cm2

在图3a和3b中,可以识别出,通过增加钠铟分数(na/in>0.2)或通过增加缓冲层5的绝对钠含量(na>7原子%),与传统的薄膜太阳能电池相比,薄膜太阳能电池100的效率可以显着增加。如已经陈述的那样,只有通过相对低的硫分数,才能在缓冲层5中获得这样高的钠分数。利用根据本发明的结构,可以获得高达13.5%的高效率。

图4描绘了对于上述层系统1,作为缓冲层5的钠分数的函数的缓冲层5的带隙的测量结果。因此,在钠分数大于7原子%的情况下,可以观察到带隙从1.8ev到2.5ev的增大。借助于根据本发明的缓冲层5,可以获得薄膜太阳能电池100的效率的显著提高,而没有电层性质的退化(由于不过大的带隙的吸收体或前电极的良好带适应性)。

图5描绘了由tof-sims测量生成的图1的层系统1的缓冲层5中的钠分布的深度剖面。将归一化深度绘制为横坐标,将归一化信号强度绘制为纵坐标。横坐标的从0至1的区域标记缓冲层5,并且具有大于1的值的区域标记吸收层4。钠与硫族的硫(s)的化合物,(优选na2s)用作用于硫化铟层的钠合金形成的起始材料。也将同样地可设想到使用钠与硫和铟的化合物,例如nain3s5。在每种情况下在cigsse吸收层4上施加的缓冲层5中含有不同高的钠分数(量1,量2)。不与钠合金化的硫化铟缓冲层被用作参考。

由于钠合金,尽管通过扩散机制使合金在吸收区-缓冲区界面上均匀沉积,但缓冲层5中的钠分数略微富集(“掺杂峰”)发展,因此在层堆叠中可辨别地出现钠分数的增加。至少在理论上,缓冲层5可以分成两个区域,即,邻接吸收层的第一层区域和与第一层区域邻接的第二层区域,其中,例如第一层区域的层厚度等于第二层区域的层厚度。因此,钠的摩尔分数在第一层区域中具有最大值,并且朝向吸收层4以及也朝向第二层区域减小。在缓冲层5中在整个层厚度上保留特定的钠浓度。据信,钠在吸收区-缓冲区界面处的累积被认为可归因于该位置处的高缺陷密度。

除了钠之外,氧(o)或锌(zn)也可以例如通过扩散出前电极7的tco而在缓冲层5中累积。由于起始材料的吸湿性质,也可设想到来自环境空气的水的累积。

特别有利的是,根据本发明的缓冲层中的卤素分数小,其中,卤素(例如,氯)的摩尔分数小于5原子%,特别是小于1原子%。特别有利的是,缓冲层5是无卤素的。

图6描绘了根据本发明的方法的流程图。在第一步骤中,制备例如由cu(in,ga)(s,se)2半导体材料制成的吸收层4。在第二步骤中,沉积由硫化铟钠制成的缓冲层5。例如通过控制蒸发速度(例如通过筛网或者温度控制)来调节缓冲层5中的各组成的比率。在进一步的工艺步骤中,第二缓冲层6和前电极7可以被沉积在缓冲层5上。此外,可以发生层结构1至薄膜太阳能电池100或太阳能组件的布线和接触。

图7描绘了根据本发明的用于生产由硫化铟钠制成的缓冲层5的直列方法的示意表示。具有后电极3和吸收层4的衬底2被以直列方法传送经过第一硫铟酸钠源8(例如nain5s8)以及第二硫铟酸钠源9(例如nains2)的蒸汽束11,12。输送方向由具有附图标记10的箭头指示。蒸汽束11,12不重叠。以这种方式,吸收层4被首先用nain5s8的薄层涂覆,然后被用nains2的薄层涂覆,上述薄层混合。硫铟酸钠源8,9两者都是例如泻流室,硫铟酸钠被从该泻流室热蒸发。通过不重叠的源实现特别简单的工艺控制。也将可设想到两个源8,9包含相同的硫铟酸钠化合物,例如仅包含nain3s5或仅包含nain5s8,或可以设想到仅使用一种单一的硫铟酸钠源,例如,硫铟酸钠源8。替代性地,生成蒸汽束11,12的任何其他形式适用于沉积缓冲层5。替代性的源是例如线性蒸发器的船或电子束蒸发器的坩埚。

图8描绘了用于实行根据本发明的方法的替代装置,其中,仅说明了相对于图7的装置的差异,在其他方面参考上述陈述。因此,衬底2以直列方法被传送经过两个硫铟酸钠源8,9的蒸汽束11,12,其中,在这种情况下,蒸汽束11,12部分地重叠。也将可设想到,蒸汽束完全重叠。

图9描绘了使用旋转方法的示例的根据本发明的方法的另一替代实施例。具有后电极3和吸收层4的衬底2布置在可旋转的样本载体13上,例如在样本转盘(carousel)上。交替布置的硫铟酸钠源8,9(例如具有nain5s8的第一源8和具有nains2的第二源9)位于样本载体13的下方。

在沉积缓冲层5期间,样本载体13被旋转。因此,衬底2被移动到蒸汽束11,12中并被涂覆。

从上述认定,已经变得清楚的是,通过本发明,在薄膜太阳能电池中可以克服先前使用的cds缓冲层的缺点,其中以本发明生产的太阳能电池的效率和稳定性也非常好或更好。同时,生产方法是通过使用至少一种硫铟酸钠化合物,这在技术上相对简单、经济、有效并且环保。已经证明,利用根据本发明的层系统,可以获得随着常规cds缓冲层存在的相当好的太阳能电池特性。

附图标记列表

1层系统

2衬底

3后电极

4吸收层

5缓冲层

6第二缓冲层

7前电极

8第一硫铟酸钠源

9第二硫铟酸钠源

10运输方向

11第一蒸汽束

12第二蒸汽束

13样本载体

100薄膜太阳能电池

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1