半导体器件的制造方法与流程

文档序号:11835999阅读:212来源:国知局
半导体器件的制造方法与流程

包括说明书、附图和摘要的、于2015年5月14日提交的日本专利申请No.2015-099065的全部公开内容以引用方式并入本文中。

技术领域

本发明涉及半导体器件的制造方法,特别地讲,涉及当被应用于使用液体浸没曝光的半导体器件的制造方法时有效的技术。



背景技术:

液体浸没曝光是在透镜和半导体晶片之间的微小间隙中利用水的表面张力来形成水膜(弯液面)的曝光系统,由此致使透镜和待照射表面(半导体晶片)之间的微小间隙具有高折射率,从而可以将透镜的有效数值孔径(NA)增大至比正常干曝光高的水平。因为可通过增大透镜的NA来分辨更细小的图案,所以液体浸没曝光正被投入工业实际运用。

日本未审专利申请公开No.2006-108564(专利文献1)描述了以下技术:为了使抗蚀剂膜的表面层亲水,通过在将硅衬底暴露于活性氧气氛的同时用真空紫外光照射抗蚀剂膜,在抗蚀剂膜的表面层上方形成氧化物层。

日本未审专利申请公开No.2008-235542(专利文献2)描述了以下技术:在液体浸没光刻中,甚至当晶片外周附近的区域被曝光时,也可在防止液体流到晶片外部的同时执行曝光处理。具体地讲,在晶片的外周端表面和端表面的周缘部分上方设置抗液剂层。

日本未审专利申请公开No.2009-117873(专利文献3)描述了以下技术:通过在液体浸没曝光之前供应预润湿液体将衬底润湿,使得浸没液体被供应到被润湿的衬底和投影系统之间。

日本未审专利申请公开(PCT申请的翻译)No.2006-528835(专利文献4)描述了一种关于浸没式扫描器的技术,该扫描器设置有用于防止在浸没液体中出现气泡并且用于去除气泡的装置。

日本未审专利申请公开No.2009-88552(专利文献5)描述了一种关于光刻设备的技术,在该技术中,会影响浸没光刻的成像质量的浸没液体中的气泡影响减小。

现有技术文献

专利文献

[专利文献1]日本未审专利申请公开No.2006-108564

[专利文献2]日本未审专利申请公开No.2008-235542

[专利文献3]日本未审专利申请公开No.2009-117873

[专利文献4]日本未审专利申请公开(PCT申请的翻译)No.2006-528835

[专利文献5]日本未审专利申请公开No.2009-88552



技术实现要素:

根据本发明人的研究,已经已知以下的事实。

在液体浸没曝光中,使用具有高抗水性质的无顶部涂层(top-coatless)抗蚀剂来减少一个半导体晶片的处理时间;然而,已经发现,因为高抗水性质,在半导体晶片的周缘部分中造成图案缺陷,从而降低形成在半导体晶片上方的半导体器件的可靠性。因此,在使用液体浸没曝光进行的半导体器件的制造方法中,需要提高半导体器件的可靠性的技术。

根据本说明书的描述和附图,其它问题和新特征将变得清楚。

根据一个实施例,在圆形半导体衬底上方形成待处理膜,使得表面抗水的抗蚀剂层形成在待处理膜上方。随后,通过对圆形半导体衬底的外周区域选择性执行第一晶片边缘曝光,降低半导体衬底的外周区域中的抗蚀剂层的抗水性质,然后对抗蚀剂层执行液体浸没曝光。随后,对圆形半导体衬底的外周区域执行第二晶片边缘曝光,然后,将对已经被执行第一晶片边缘曝光、液体浸没曝光和第二晶片边缘曝光的抗蚀剂层显影,使得通过使用显影的抗蚀剂层来蚀刻待处理膜。

根据一个实施例,可提高半导体器件的可靠性。

附图说明

图1是用于说明液体浸没曝光的视图;

图2是用于说明液体浸没曝光中的气泡的吞没的视图;

图3是示出半导体器件的处理流程的部分的处理流程图;

图4是示出半导体器件的制造步骤的基本部分剖视图;

图5是示出图4之后的半导体器件的制造步骤的基本部分剖视图;

图6是示出图5之后的半导体器件的制造步骤的基本部分剖视图;

图7是示出图6之后的半导体器件的制造步骤的基本部分剖视图;

图8是示出图7之后的半导体器件的制造步骤的基本部分剖视图;

图9是示出图8之后的半导体器件的制造步骤的基本部分剖视图;

图10是示出图9之后的半导体器件的制造步骤的基本部分剖视图;

图11是示出图10之后的半导体器件的制造步骤的基本部分剖视图;

图12是示出图11之后的半导体器件的制造步骤的基本部分剖视图;

图13是示出图12之后的半导体器件的制造步骤的基本部分剖视 图;

图14是示出图13之后的半导体器件的制造步骤的基本部分剖视图;以及

图15是示出曝光区的半导体晶片的平面图。

具体实施方式

有必要时,为了方便起见,在下面的实施例中,通过将实施例划分成多个部分或实施例来给出描述;然而,除非另外指明,否则它们不是相互独立的,而是一个与另一个部分或整体相关,作为修改形式、细节、补充描述等。另外,在下面的实施例中,当是指元件的数量等(包括单元的数量、数值、数量、范围等)时,除非明确声明或者除了当数量在原理上明显限于特定数量时,数量不限于特定数量,而是可大于或小于特定数量。另外,在下面的实施例中,无须说,组件(也包括构成步骤等)不一定是必要的,除非明确声明或者除了当它们在原理上是必要的时。类似地,当在下面的实施例中引用构成部分等的形状和位置关系等时,也应该还包括与这些形状等基本上相同或类似的形状,除非另外指明或者除了当认为在原理上明显另有所指时。这对于以上提到的数值和范围,同样适用。

下文中,将基于附图详细描述本发明的优选实施例。在用于说明实施例的各视图中,将用相同的参考标号指代具有相同功能的组件,并且将省略对其的重复描述。在下面的实施例中,在原理上将不再重复描述相同或类似的部件,除非特别有必要。

在实施例中使用的视图中,即使是在剖视图中,也可省略阴影,以便更容易看到视图。可供选择地,即使在平面图中,也可添加阴影,以便更容易看到视图。

首先,将描述本发明人进行的研究如何实现了本发明。

图1是用于说明液体浸没曝光的视图。

在液体浸没曝光中使用具有例如图1中所示的结构的设备。在图1的浸没式扫描器中,将光源LTS和光掩模(光罩)MK1布置在透镜(投影透镜)LS上方,并且将半导体晶片SW布置在透镜LS下方,从而被布置(真空吸附)和保持在晶片台ST上方。然后,去离子水进入喷嘴NZ的入口端口NZa并且从吸入端口NZb排出,使得透镜LS和半导体晶片SW的待照射表面(待曝光表面)之间的间隙被填充去离子水。用去离子水,在透镜LS和半导体晶片SW的待照射表面之间的微小间隙中形成弯液面(水膜)。弯液面用作浸没液体MS,但据称,半导体晶片SW的待照射表面因为形成了弯液面,所以应该是抗水的。用于微制造的抗蚀剂层(抗蚀剂膜、光致抗蚀剂层、或光敏抗蚀剂层)PR被形成为半导体晶片SW的待照射表面上方的单层抗蚀剂膜或多层抗蚀剂膜。半导体晶片SW具有半导体衬底SUB和抗蚀剂层PR。光源LTS是例如波长为193nm的ArF准分子激光。光掩模MK1是用于将所需图案印刷到抗蚀剂层PR上方的掩模,并且由玻璃或石英形成。

经由光掩模MK1、透镜LS和浸没液体MS,用所述光源LTS发射的到达半导体晶片SW的光,在抗蚀剂层PR上方印刷与光掩模MK1具有的图案几乎相同的微缩投影图案。

在液体浸没曝光(液体浸没光刻)中,执行扫描曝光,在扫描曝光中,通过相对于透镜LS扫描半导体晶片SW,用曝光用光(exposure light)(ArF准分子激光)照射半导体晶片SW(换句话讲,抗蚀剂层PR)。在这种情况下,为了使浸没液体可以以高速平稳地移动而不留下水滴,需要抗蚀剂层PR具有高抗水性质。如果抗蚀剂层PR的抗水性质低,则担心当扫描半导体晶片SW时会留下浸没液体MS(浸没水)的水滴。如果留下水滴,则在它被干燥时消除了来自半导体晶片SW的汽化热,因此半导体晶片SW收缩,从而造成光掩模MK1和半导体晶片SW之间的重叠不对准。

使用无顶部涂层抗蚀剂作为具有高抗水性质的抗蚀剂层PR。当一旦无顶部涂层抗蚀剂被涂覆时,可实现高抗水性质,因为具有低表面自由能的痕量聚合物(含氟聚合物)被作为抗水剂混合到抗蚀剂液体中并且当通过使用抗水剂的表面偏析效果来形成涂覆膜时,抗水剂只聚集在表面中。

然而,在这种情况下,从本发明人的研究中已经发现存在以下问题。

图2是用于说明液体浸没曝光中的气泡的吞没的视图。

在浸没式扫描器中,晶片台引导件WSG围绕半导体晶片SW布置,从而包围半导体晶片SW的整个圆周。晶片台引导件WSG的高度与上方已经形成抗蚀剂层PR的半导体晶片SW的主表面的高度几乎相等,并且在半导体晶片SW和晶片台引导件WSG之间存在间隙GP,间隙GP的宽度是大致几毫米。另外,采用以下机制:当扫描半导体晶片SW时,晶片台引导件WSG与晶片台ST一体地移动。

为了防止浸没液体MS溢出并且从半导体晶片SW的表面落下,设置晶片台引导件WSG,并且例如用基于氟的树脂等涂覆其表面,以提供抗水性质。因为形成在半导体晶片SW的表面上方的抗蚀剂层PR和晶片台引导件WSG中的每个具有高抗水性质,所以即使当浸没液体MS跨越半导体晶片SW的表面、间隙GP和晶片台引导件WSG时,浸没液体MS也决不溢出和落到间隙GP中。换句话讲,为了将浸没液体MS保持在半导体晶片SW的表面上方,也需要抗蚀剂层PR是抗水的。

然而,根据本发明人的研究,已经知道,由于液体浸没曝光中的高速处理,导致当使用具有高抗水性质的无顶部涂层抗蚀剂作为抗蚀 剂层PR时,造成缺陷。当半导体晶片SW从浸没液体MS跨越半导体晶片SW的表面、间隙GP和晶片台引导件WSG的状态开始移动而移至相对于透镜LS的半导体晶片SW的外部方向时,间隙GP中存在的空气被吞没在浸没液体MS中,从而在浸没液体MS中造成气泡VD,如图2中所示。在半导体晶片SW的主表面的外周中和其中已经造成气泡VD的区域中,造成直径是大致几毫米的气泡VD,图案没有被分辨,从而造成图案缺陷。已经发现,也就是说,因为当曝光用光的光路受气泡VD干扰时图案散焦,所以造成图案缺陷。还已经知道,因为抗蚀剂层PR的抗水性质较高,所以更有可能造成气泡VD。

已经知道,当因此使用无顶部涂层抗蚀剂通过液体浸没曝光来制造半导体器件时,存在半导体器件的可靠性会降低,半导体器件的制造良率会减小等问题。在下面的实施例中,进行克服这些问题的创新,这些创新的特征在于以下事实:在液体浸没曝光之前,在半导体晶片的外周区域中控制抗蚀剂膜的抗水性质。

(实施例)

根据本实施例的半导体器件具有多个MISFET(金属绝缘体半导体场效应晶体管)。在矩形形状的芯片区域中形成半导体器件,并且多个芯片区域在半导体晶片中布置成矩阵图案。在一个半导体晶片上方形成多个半导体器件。

图3是示出半导体器件的处理流程的部分的处理流程图,图4至图14是均示出半导体器件的制造步骤的基本部分剖视图。图15是示出曝光区的半导体晶片的平面图。

如图4中所示,首先,提供包括例如硅的半导体衬底SUB(图3中的步骤S1)。半导体衬底SUB是其平面形状是圆形(大致圆形)的半导体晶片SW。图4示出半导体晶片SW的周缘部分PC和中心部分CP中的每个的一部分。周缘部分PC包括至少随后描述的第一晶片边 缘曝光区WEE1和第二晶片边缘曝光区WEE2。中心部分CP意指半导体晶片SW的中心部分(内部部分),中心部分位于周缘部分PC的内部。半导体晶片SW的外周的截面形状被简单图示为矩形形状,但实际上半导体晶片SW的主表面侧和背表面侧的拐角在厚度方向上被形成倒角,如图2中所示。

随后,经由包括例如氧化硅膜的绝缘膜1,在半导体衬底SUB上方形成待处理膜(待处理层)2(图3中的步骤S2)。待处理膜2包括例如氮化硅膜。随后,在待处理膜2上方形成抗反射膜。使用无机膜的BARL(底部抗反射层)或使用有机膜的BARC(底部抗反射涂层)作为抗反射膜。通过使用涂层和热固化来形成BARC。当使用具有大入射角的光对光进行成像时,可采用三层抗蚀剂工艺,在三层抗蚀剂工艺中,使用下层3和中间层4作为抗反射膜。在三层抗蚀剂工艺中,就处理而言,中间层4用作处理下层3的掩膜,而下层3用作处理待处理膜2的掩膜。下文中,描述针对抗反射膜采用三层抗蚀剂工艺的示例。如下地形成下层3:例如,通过旋涂方法,涂覆(JSR公司制造的)化学溶液HM8005,使其具有200nm的厚度;然后,通过热处理将聚合物交联。

随后,在下层3上方,形成包含碳(C)和硅(Si)作为主要成分的中间层(中间层膜)4。通过使用(Shin-Etsu Chemical有限公司制造的)SHB-A759作为基础材料(基础树脂),形成中间层4。在通过旋涂方法涂覆材料使其具有80nm的厚度之后,通过在180℃下热处理90秒将基础聚合物交联,从而允许形成中间层4。

随后,通过旋涂无顶部涂层抗蚀剂,形成抗蚀剂层(光敏抗蚀剂层、无顶部涂层抗蚀剂层、抗蚀剂膜)PR(图3中的步骤S3)。在涂覆之后进行热固化。通过使用化学增幅正抗蚀剂来形成抗蚀剂层PR。使用与2-甲基金刚烷基团结合的甲基丙烯酸酯作为抗蚀剂层PR的基础聚合物(添加量:基于总量的7.0质量%),2-甲基金刚烷基团在与酸 感应(sympathizing)时被分离;使用全氟丁基磺酸三苯基锍盐作为PAG(添加量:基于基础聚合物总量的5.0质量%)。使用三乙醇胺作为猝灭剂(添加量:基于基础聚合物总量的5.0质量%);使用碱性显影剂中不可溶的氟化合物作为抗水添加剂(添加量:基于基础聚合物总量的4.0质量%)。通过将这些材料(以上提到的基础聚合物、PAG、猝灭剂和抗水添加剂)溶解在用作溶剂的PGMEA(丙二醇甲醚醋酸酯)中,得到抗蚀剂层PR的材料。通过旋涂方法涂覆抗蚀剂层PR,使其具有100nm的厚度,之后在100℃下热处理60秒。在旋涂期间,对添加于抗蚀剂层PR的抗水添加剂进行表面偏析,结果,抗蚀剂层PR表现出抗蚀剂层PR的后退接触角是75.0的高抗水性质。

随后,为了减弱抗蚀剂层PR的抗水性质,在半导体晶片SW的外周WF附近的区域(外周区域)中执行第一晶片边缘曝光,如图5中所示(图3中的步骤S4)。在第一晶片边缘曝光中,通过使用光掩模MK2,用曝光用光选择性照射从半导体晶片SW的外周WF起具有第一宽度(例如,1mm)的区域,如图5和图15中所示。用曝光用光照射的区域是第一晶片边缘曝光区WEE1。如图15中所示,第一晶片边缘曝光区WEE1是外周WF和第一晶片边缘曝光区内周W1之间的区域。在第一晶片边缘曝光中,为了减少处理时间和成本,优选地采用使用DUV(深紫外)光进行的干曝光,DUV光的波长比液体浸没曝光中使用的光的波长长。

在第一晶片边缘曝光中,当用从汞氙灯发射的波长200nm的曝光用光例如以100mJ/cm2的曝光量照射抗蚀剂层PR时,由化学增幅正抗蚀剂中的光致酸生成剂生成酸,并且生成的酸造成抗蚀剂的基础树脂的脱保护反应部分发展,使得在基础树脂中出现极性基。结果,第一晶片边缘曝光区WEE1中的抗蚀剂层PR的表面的后退接触角减小至72.0。也就是说,通过第一晶片边缘曝光,减弱第一晶片边缘曝光区WEE1中的抗蚀剂层PR的抗水性质。

随后,执行液体浸没曝光,如图6和图15中所示(图3中的步骤S5)。如参照图1和图2描述的,对半导体晶片SW的主表面上方形成的抗蚀剂层PR执行液体浸没曝光。在液体浸没曝光中,通过微缩投影曝光在抗蚀剂层PR上方对光掩模(光罩)MK1中形成的图案进行成像,波长193nm的曝光用光的曝光量被设置成20mJ/cm2。液体浸没曝光是通过相对于透镜LS扫描半导体晶片SW在半导体晶片SE的主表面上方顺序地形成芯片区CH的扫描曝光。芯片区CH布置在半导体晶片SW的主表面上方并且布置成垂直方向和水平方向上的矩阵图案,并且它们还可跨半导体晶片SW的外周WF的整个圆周形成。也就是说,半导体晶片SW的外周WF位于布置成矩阵图案的芯片区CH内(换句话讲,液体浸没曝光区IL内)。因为对半导体晶片SW的外周WF执行液体浸没曝光,所以造成以上提到的关于气泡VD的问题。顺带一提,芯片区CH也跨半导体晶片SW的外周WF形成的原因在于,通过针对位于半导体晶片SW的中心部分CP中的芯片区和位于周缘部分PC中的芯片区CH二者匹配处理(诸如,曝光、蚀刻等)的环境来提高处理精确度和良率。另外,这是因为半导体晶片SW上方的芯片区CH的数量增加。

图6示出在液体浸没曝光中只用曝光用光照射半导体晶片SW的中心部分CP的局部部分的示例。

随后,在半导体晶片SW的外周中执行第二晶片边缘曝光,如图7中所示(图3中的步骤S6)。在第二晶片边缘曝光中,通过使用光掩模MK3用曝光用光选择性照射从半导体晶片SW的外周WF起具有第二宽度(例如,1.5mm)的区域,如图7和图15中所示。用曝光用光照射的区域是第二晶片边缘曝光区WEE2。如图15中所示,第二晶片边缘曝光区WEE2是外周WF和第二晶片边缘曝光区内周W2之间的区域。在第二晶片边缘曝光中,为了减少处理时间和成本,优选地采用使用DUV光进行的干曝光,DUV光的波长比液体浸没曝光中使用的光的波长长。

为了在随后描述的显影步骤中去除半导体晶片SW的外周WF附近的区域中的抗蚀剂层PR,执行第二晶片边缘曝光。半导体晶片SW的外周WF附近的区域中的抗蚀剂层PR的厚度更有可能相比于中心部分CP有所不同。这是因为,半导体晶片SW的圆周在厚度方向上被形成倒角,或者因为通过旋涂方法涂覆抗蚀剂层PR等。膜厚度的变化造成半导体晶片SW的外周WF附近的区域中的待处理膜2有图案缺陷。为了去除将要造成抗蚀剂层PR的厚度变化的区域中的抗蚀剂层PR,执行第二晶片边缘曝光。

重要的是,相比于第一晶片边缘曝光区内周W1,第二晶片边缘曝光区内周W2的位置更靠半导体晶片SW的主表面的内部(位置更靠近中心)。也就是说,可通过将(靠近中心形成的)第二晶片边缘曝光区内周W2与第一晶片边缘曝光区内周W1分开,防止(减小)会对形成在第二晶片边缘曝光区内周W2内的芯片区CH产生影响的第一晶片边缘曝光中的曝光用光的影响。第二晶片边缘曝光区内周W2可被设置成与外周WF相距2mm的距离。在第二晶片边缘曝光中,用从汞氙灯发射的曝光用光例如以60mJ/cm2的曝光量照射抗蚀剂层PR。

随后,在例如100℃的条件下对抗蚀剂层PR执行PEB(曝光后烘烤)60秒。因为以上提到的第一晶片边缘曝光、液体浸没曝光和第二晶片边缘曝光,由用曝光用光(紫外光)照射的区域中的抗蚀剂层PR中包含的生成酸试剂生成酸。另外,通过执行PEB,致使在被照射区域中的抗蚀剂层PR中开展脱保护反应。也就是说,在被照射区域中生成的酸作用于基础树脂的碱溶解抑制基团(碱溶解抑制基团是酸可离解的),使得基础树脂被分解,从而改变抗蚀剂层PR,使其具有能溶解在碱显影剂中的分子结构。

随后,对半导体晶片SW执行显影,如图8中所示(图3中的步骤S7)。使用四甲基氢氧化铵液体(下文中,被称为TMAH液体)等作 为显影剂,并且执行显影30秒。通过显影来溶解用曝光用光照射的区域中的抗蚀剂层PR,使得完成抗蚀剂图案Pra并且从作为抗蚀剂层PR的被溶解区域的开口暴露中间层4。在液体浸没曝光中,去除用ArF准分子激光曝光用光照射的区域和第二晶片边缘曝光区WEE2中的每个中的抗蚀剂层PR。

检查完成显影时得到的抗蚀剂图案PRa的结果是,已经发现相比于执行第一晶片边缘曝光之前的状态,图案缺陷减少。也就是说,通过在液体浸没曝光之前在半导体晶片SW的抗蚀剂层PR上执行第一晶片边缘曝光,第一晶片边缘曝光区WEE1中的抗蚀剂层PR的抗水性质可降低并且可在液体浸没曝光期间防止气泡的吞没,从而允许防止抗蚀剂图案PRa的图案缺陷。

随后,蚀刻中间层4和下层3,如图9中所示(图3中的步骤S8)。通过在使用抗蚀剂图案PRa作为掩膜的情况下使用CHF3、CF4和O2的混合气体干蚀刻中间层4,从而允许抗蚀剂图案PRa的图案被转移到中间层4。另外,通过在使用通过抗蚀剂图案PRa和中间层4形成的图案作为掩膜的情况下使用O2、N2和HBr的混合气体干蚀刻下层3,从而允许完成已经被转移抗蚀剂图案PRa的图案的下层图案3a。在蚀刻下层3期间,抗蚀剂图案PRa和中间层4被去除,并且消失。

随后,使用下层图案3a作为掩膜蚀刻待处理膜2,形成沟槽GV,如图10中所示(图3中的步骤S9)。在这个步骤中,通过使用Cl、HBr、SF6和O2的混合气体顺序地干蚀刻作为待处理膜2的氮化硅膜、绝缘膜1和半导体衬底(硅衬底)SUB。因为抗蚀剂层PR的抗蚀剂图案PRa被转移到待处理膜2并且通过使用待处理膜2作为掩膜在半导体衬底SUB中形成沟槽GV,所以在对应于抗蚀剂图案PRa的开口的位置处形成沟槽GV。

随后,通过CVD(化学气相沉积)方法,在半导体衬底SUB上方 沉积包括例如氧化硅膜的元件隔离绝缘膜5,使得沟槽GV被元件隔离绝缘膜5填充,如图11中所示。

随后,通过对元件隔离绝缘膜5执行CMP(化学机械抛光)处理,元件隔离绝缘膜5只被选择性地留在沟槽GV中,从而允许形成元件隔离区STI,如图12中所示(图3中的步骤S10)。

随后,去除待处理膜2和绝缘膜1,然后,在半导体衬底SUB的主表面上方形成栅极绝缘膜GI和栅极电极GE,如图13中所示。

当在形成元件隔离区STI之后去除待处理膜2和绝缘膜1时,在半导体衬底SUB的主表面上方形成从平面图看被元件隔离区STI环绕的有源区。随后,在半导体衬底SUB的主表面上方,形成将变成栅极绝缘膜GI的绝缘膜和将变成栅极电极GE的导体膜。然后,通过蚀刻导体膜和绝缘膜,形成栅极电极GE和栅极绝缘膜GI。可通过在使用导体膜作为以上提到的待处理膜的情况下执行图3中的步骤S3至步骤S9,形成栅极电极GE。可通过氧化硅膜、氮氧化硅膜等来形成栅极绝缘膜GI。另一方面,可通过多晶硅膜、金属膜等来形成栅极电极GE。

可供选择地,可致使导体膜对应于半导体衬底SUB。在该情况下,在半导体衬底SUB中形成沟槽GV的蚀刻步骤对应于为了形成栅极电极GE而蚀刻导体膜的步骤。

随后,顺序地形成低浓度半导体区NM、侧壁绝缘膜SP和高浓度半导体区NH,如图14中所示。首先,在栅极电极GE两端的半导体衬底SUB的表面上方形成低浓度半导体区NM。低浓度半导体区NM是例如n型半导体区,并且以与栅极电极GE的自对准方式通过离子注入杂质(诸如,磷(P)、砷(As)等)来形成。

随后,通过沉积绝缘膜,在栅极电极GE的侧壁上方选择性形成侧 壁绝缘膜SP,以通过在绝缘膜上执行各向异性干蚀刻来覆盖栅极电极GE的上表面和侧表面。侧壁绝缘膜SP可包括氧化硅膜、氮化硅膜、或这两者的层叠结构。

随后,在栅极电极GE的两端的半导体衬底SUB的表面上方,形成高浓度半导体区NH。高浓度半导体区NH是例如n型半导体区,并且以相对于栅极电极GE和侧壁绝缘膜SP的自对准方式通过离子注入杂质(诸如,磷(P)、砷(As)等)来形成。

通过栅极电极GE、栅极绝缘膜GI、低浓度半导体区NM和高浓度半导体区NH来形成MISFET。通过低浓度半导体区NM和高浓度半导体区NH来形成MISFET的源极和漏极。

根据本实施例,通过在液体浸没曝光之前在抗蚀剂层PR上执行第一晶片边缘曝光(抗蚀剂层PR存在于位于半导体晶片SW的周缘中的第一晶片边缘曝光区WEE1中),降低将在液体浸没曝光中使用的抗蚀剂层PR的抗水性质,从而允许在液体浸没曝光中防止气泡VD的吞没并且防止抗蚀剂图案PRa的图案缺陷。

另外,可防止作为已经被转移有抗蚀剂图案PRa的图案的待处理膜2的氮化硅膜和元件隔离区STI中的每个的图案缺陷,从而允许提供具有高可靠性的半导体器件。此外,半导体器件的制造良率可提高。

如果可察觉到气泡VD的吞没,则第一晶片边缘曝光中的曝光量增大。由此,第一晶片边缘曝光区WEE1的亲水性质可增大至更高水平,使得可抑制气泡VD的吞没。如果通过执行第一晶片边缘曝光在间隙GP中造成漏水,则第一晶片边缘曝光中的曝光量减小。由此,会因执行第一晶片边缘曝光而造成的抗蚀剂表面的过度亲水性质可改善。如上所述,可通过在不同步骤中执行第一晶片边缘曝光和第二晶片边缘曝光,容易地改变第一晶片边缘曝光中的曝光量,从而允许防止会在 液体浸没曝光期间造成的气泡VD的吞没。

通过使第二晶片边缘曝光区WEE2的宽度大于第一晶片边缘曝光区WEE1的宽度,用于照射第一晶片边缘曝光区WEE1的曝光用光决不不利地影响第二晶片边缘曝光区WEE2内形成(第二晶片边缘曝光区内周W2内(靠近其中心)形成)的芯片区CH,即使当第一晶片边缘曝光中的曝光量变化时。因此,第一晶片边缘曝光中的曝光量可充分增大,因此抗蚀剂层PR的抗水性质可充分降低。

通过使第一晶片边缘曝光中的曝光用光的波长比液体浸没曝光中的曝光用光的波长长,可针对第一晶片边缘曝光采用使用例如DUV光的曝光设备,因此第一晶片边缘曝光的处理时间和制造成本二者可减少。因为还可针对第二晶片边缘曝光采用使用DUV光的曝光设备,所以可得到类似效果。

另外,可防止已经应用类似制造方法的栅极电极GE中的图案缺陷。

<第一变形>

在第一变形中,在图3中的步骤S4的第一晶片边缘曝光之后,半导体晶片SW(抗蚀剂层PR)的表面立即经受去离子水的清洗处理。

在第一晶片边缘曝光区WEE1中的抗蚀剂层PR中,在第一晶片边缘曝光之后,形成抗蚀剂层PR的基础树脂的脱保护反应立即部分进行,使得极性基出现。因为极性基与水具有高亲和性,所以当向抗蚀剂层PR的表面供应水时,其取向在朝向抗蚀剂层PR表面的方向上改变,从而允许抗蚀剂层PR的亲水性质提高。

尤其当在第一晶片边缘曝光中抗蚀剂层PR的抗水性质不可充分降低等时,以上提到的清洗处理是有效的。

<第二变形>

在第二变形中,在图3中的步骤S4的第一晶片边缘曝光之后,立即对半导体晶片SW执行热处理。优选地,在70℃的条件下执行热处理大致10秒,温度被设置成比PEB的条件低,时间被设置成比PEB的条件短。

通过在第一晶片边缘曝光之后立即执行热处理,可致使第一晶片边缘曝光区WEE1中的抗蚀剂层PR的脱保护反应进展到更高级别,使得抗水性质大大降低。类似于第一变形的情况,尤其当在第一晶片边缘曝光中抗蚀剂层PR的抗水性质不可充分降低等时,热处理是有效的。

<第三变形>

在第三变形中,在图3中的处理流程中,在液体浸没曝光之前执行第二晶片边缘曝光。可首先执行第一晶片边缘曝光或第二晶片边缘曝光,只要它们是在液体浸没曝光之前执行的,但重要的是执行这二者。曝光条件与以上提到的实施例中的曝光条件相同,并且分别在不同区域中在不同条件下执行第一晶片边缘曝光和第二晶片边缘曝光。也就是说,重要的是使第二晶片边缘曝光区WEE2的宽度大于第一晶片边缘曝光区WEE1的宽度以控制抗水性质。通过保持这种关系,第二晶片边缘曝光区WEE2内形成(第二晶片边缘曝光区内周W2内(靠近其中心)形成)的芯片区CH不会受第一晶片边缘曝光中的曝光用光的不利影响。例如,当第二晶片边缘曝光中的曝光用光的曝光量增大时,可省略第一晶片边缘曝光;然而,图15中的第二晶片边缘曝光区内周W2内的芯片区受影响,因此优选地一起执行第一晶片边缘曝光和第二晶片边缘曝光。

在第三变形中,可在单个曝光设备单元中执行第一晶片边缘曝光和第二晶片边缘曝光,因此曝光步骤的处理时间可减少。在以上提到 的实施例中,通常在互不相同的曝光设备单元中执行第一晶片边缘曝光、液体浸没曝光和第二晶片边缘曝光。在第三变形中,可在单个曝光设备单元中执行第一晶片边缘曝光和第二晶片边缘曝光,因此在单元之间进行转移的时间和吞吐量二者可减少。

因此,可制造根据本实施例的半导体器件。

以上已经基于本发明人做出的本发明的优选实施例具体描述了本发明,但无须说,本发明不应该限于实施例并且可在不脱离其主旨的范围内以各种方式进行修改。

已经通过使用以下示例来描述本发明:例如,经由下层3和中间层4在待处理膜2上方形成抗蚀剂层PR,但可省略中间层4、下层3、或这二者。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1