用于光收发器件抗干扰的半导体器件的制作方法

文档序号:12262411阅读:313来源:国知局
用于光收发器件抗干扰的半导体器件的制作方法与工艺

本实用新型涉及光通信领域,具体涉及一种用于光收发器件抗干扰的半导体器件。



背景技术:

在光学通信网络中,使用光学收发器在光纤上发射及接收光学信号。光学收发器产生表示数据的经振幅及/或相位及/或偏振调制的光学信号,接着在耦合到所述收发器的光纤上发射所述光学信号。每一收发器包含发射器侧及接收器侧。在所述发射器侧上,激光光源产生激光且光学耦合系统接收所述激光并将所述光光学耦合或成像到光纤的一端上。所述激光光源通常由产生特定波长或波长范围的光的一个或一个以上激光二极管制成。光学耦合系统通常包含一个或一个以上反射元件、一个或一个以上折射元件及/或一个或一个以上衍射元件。在所述接收器侧上,光电二极管检测在光纤上发射的光学数据信号并将所述光学数据信号转换成电信号,所述电信号接着由接收器侧的电路放大及处理以恢复数据。

尽管各种收发器及光纤链路设计使得能够增加光纤链路的总体带宽或数据速率,但存在对当前可用技术可用于改进光纤链路的带宽的程度的限制。已展示,基于接收器的电子色散补偿(EDC)技术与特定调制格式的组合可用于增加光纤链路的带宽。还已知,多个光学链路可经组合以实现具有比形成所述组合的个别光学链路中的每一者的数据速率高的数据速率的光学链路。然而,为了实现此链路,需要多组的并行光学器件及对应数目的光纤,此显著增加与此类链路相关联的成本。因此,存在与按比例缩放此类链路以实现越来越高的带宽相关联的困难。

硅通孔技术是通过在芯片和芯片之间、晶圆和晶圆之间制作垂直导通,实现芯片之间互连的最新技术。与以往的IC封装键合和使用凸点的叠加技术不同,硅通孔技术能够使芯片在三维方向堆叠的密度最大,外形尺寸最小,并且大大改善芯片速度和低功耗的性能。

现有技术中,通常是将光收发模块中的各个元器件做成不同的芯片,这样不利于提高芯片速度,因此需要一种能够以相对高的数据速率操作同时实现相对低的回程损耗的用于光收发器件抗干扰的半导体器件。



技术实现要素:

本实用新型的目的一方面在于提供一种用于光收发器件抗干扰的半导体器件,所述半导体器件包括:自下而上设置的背侧金属化层、p++承载晶圆层、P型外延层、隔离层以及金属层;背侧金属化层作为衬底,其上形成p++承载晶圆层,p++承载晶圆层上形成P型外延层,在P型外延层和隔离层上形成深硅通孔和N型重掺杂槽、P型重掺杂槽,金属层形成于隔离层之上;所述半导体器件包括至少两条N型重掺杂槽、两条P型重掺杂槽和数个深硅通孔,其中数个深硅通孔分成至少两排分布,N型重掺杂槽和P型重掺杂槽相间排列在深硅通孔的两侧。

优选地,所述深硅通孔从P型外延层的底部延伸到隔离层的顶部。

优选地,所述N型重掺杂槽和P型重掺杂槽形成于P型外延层的顶部,并延伸到隔离层的顶部。

优选地,所述深硅通孔为两端开口为正方形的“V”形通孔,其深度范围为8μm-12μm。

优选地,所述深硅通孔的深度为10μm。

优选地,所述深硅通孔之间的距离为2μm-3μm。

优选地,所述N型重掺杂槽和P型重掺杂槽相间排列,间距距离为2μm-3μm。

优选地,所述隔离层形成后,其上覆盖一层金属,这层金属顺着N型重掺杂槽、P型重掺杂槽和深硅通孔将这三种V型槽填满,并在隔离层的上方形成一定厚度。

优选地,所述金属选自铝或铜。

本实用新型的目的另一方面在于提供一种包含如前述半导体器件的抗干扰光收发模块,还包括:激光驱动器、跨导放大器、时钟数据恢复器;所述激光驱动器、跨导放大器和时钟数据恢复器之间分别通过所述抗干扰半导体器件相隔,其中时钟数据恢复器与激光驱动器、跨导放大器通过一组抗干扰半导体器件相隔,激光驱动器与跨导放大器之间通过两组抗干扰半导体器件相隔。

应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本实用新型所要求保护内容的限制。

附图说明

参考随附的附图,本实用新型更多的目的、功能和优点将通过本实用新型实施方式的如下描述得以阐明,其中:

图1为根据本实用新型的用于光收发器件抗干扰的半导体器件的横截面放大图。

图2示意性示出根据本实用新型的用于光收发器件抗干扰的半导体器件的俯视图。

图3为应用本实用新型的用于光收发器件抗干扰的半导体器件的第一实施例的俯视图。

图4为应用本实用新型的用于光收发器件抗干扰的半导体器件的第二实施例的俯视图。

具体实施方式

通过参考示范性实施例,本实用新型的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本实用新型并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本实用新型的具体细节。

在下文中,将参考附图描述本实用新型的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。

图1为根据本实用新型的第一实施例的用于光收发器件抗干扰的半导体器件的横截面放大图。如图1所示,所述抗干扰的半导体器件100包括自下而上设置的背侧金属化层101、p++(重掺杂)承载晶圆层102、P型外延层103、隔离层104以及金属层105。背侧金属化层101作为衬底,其上形成p++承载晶圆层102,p++承载晶圆层102上形成P型外延层103,在P型外延层103和隔离层104上形成深硅通孔106和N型重掺杂槽(N+)107、P型重掺杂槽(P+)108,深硅通孔106从并P型外延层103的底部延伸到隔离层104的顶部。其中数个深硅通孔106分成至少两排分布(图2),N+107和P+108相间排列在深硅通孔的两侧。N+107和P+108形成于P型外延层103的顶部延伸到隔离层104的顶部。在隔离层104形成后,其上覆盖一层金属,这层金属顺着N型重掺杂槽、P型重掺杂槽和深硅通孔106将这三种V型槽填满,并在隔离层104的上方形成一定厚度,即为金属层105。优选地,金属可以选自金属铝或铜。

深硅通孔106为两端开口为正方形的“V”形通孔,其深度范围为8-12μm,优选10μm。深硅通孔106成对设置在金属层105和p++承载晶圆层102之间,穿过P型外延层103。在抗干扰半导体器件100的俯视面上,深硅通孔106为两排截面为正方形的小孔(图2)。每两排深硅通孔之间的距离为2μm-3μm。

N型重掺杂槽107和P型重掺杂槽108相间布置在两排深硅通孔106的两侧。N型重掺杂槽和P型重掺杂槽为横截面为V型的条状槽。其俯视面如图2所示。每两排深硅通孔106的两侧,都分布有两个N型重掺杂槽和P型重掺杂槽。N型重掺杂槽和P型重掺杂槽相间排列,间距距离为2μm-3μm。图1实际上包括两组抗干扰半导体器件(虚线框a和b所示),这两组抗干扰半导体器件a和b之间的区域109即为被保护区域。

图2示意性示出了根据本实用新型的用于光收发器件抗干扰的半导体器件的俯视图(一组抗干扰半导体器件)。由图2可知,抗干扰半导体器件包括两列N型重掺杂槽(N+)201和201’、P型重掺杂槽(P+)202和202’、深硅通孔203和203’。如图2所示,沿A—A方向所获得的截面定义为横截面,则N+和P+为横截面为V型的沟槽,深硅通孔为横截面深V型(图1),俯视面为正方形的通孔。

图3为应用本实用新型的用于光收发器件抗干扰的半导体器件的第一实施例示意图。如图3可知,所述抗干扰光收发模块300包括激光驱动器301、跨导放大器302、时钟数据恢复器303以及抗干扰半导体器件304。如图3所示,本实用新型的第一实施例的俯视面为长方形。激光驱动器301和跨导放大器302分别位于长方形一条长边的两个角上,时钟数据恢复器303位于长方形另一条长边上。抗干扰半导体器件304包括c部分和d部分,其中时钟数据恢复器303与激光驱动器301、跨导放大器302通过抗干扰半导体器件304的c部分隔开。其中激光驱动器301和跨导放大器302之间布置有两条抗干扰半导体器件也就是抗干扰半导体器件304的d部分。抗干扰半导体器件304的d部分中间的区域属于被保护区域305。

图4为应用本实用新型的用于光收发器件抗干扰的半导体器件的第二实施例示意图。如图4可知,第二实施例的抗干扰光收发模块400包括跨导放大器401、激光驱动器402、时钟数据恢复器403以及抗干扰半导体器件404。如图4所示,本实用新型的第二实施例的抗干扰光收发模块的俯视面为长方形。跨导放大器401和激光驱动器402分别位于长方形一条长边的两个角上(与实施例一中的跨导放大器和激光驱动器的位置对调),时钟数据恢复器403位于长方形另一条长边上。抗干扰半导体器件404包括e部分和f部分,其中时钟数据恢复器403与跨导放大器401、激光驱动器402通过抗干扰半导体器件404的e部分隔开。其中跨导放大器401和激光驱动器402之间布置有两条抗干扰半导体器件也就是抗干扰半导体器件404的f部分。抗干扰半导体器件404的f部分中间的区域属于被保护区域405。

通过本实用新型的用于光收发器件抗干扰的半导体器件,将激光驱动器、跨导放大器、时钟数据恢复器集成在一张芯片上,不仅能够节约成本,还能够大大改善芯片速度及功耗性能,实现相对高的数据速率操作和相对低的回程损耗。将硅通孔技术运用其中,能够隔离同一芯片上的各个器件,对各个器件起到抗干扰的保护作用。

结合这里披露的本实用新型的说明和实践,本实用新型的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本实用新型的真正范围和主旨均由权利要求所限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1