加热接合用片材及带有切割带的加热接合用片材的制作方法

文档序号:14718368发布日期:2018-06-16 02:09阅读:295来源:国知局
加热接合用片材及带有切割带的加热接合用片材的制作方法

本发明涉及加热接合用片材和带有切割带的加热接合用片材。



背景技术:

在半导体装置的制造中将半导体元件粘接在金属引线框等被粘物上的方法(所谓芯片接合法)由以往的金-硅共晶转变为利用焊料、树脂糊剂的方法。目前,有时使用导电性的树脂糊剂。

近些年,进行电力的控制、供给的功率半导体装置的普及变得显著。功率半导体装置中时常流动电流,因此发热量大。因此,可用于功率半导体装置的导电性的粘接剂理想的是具有高的散热性和低的电阻率。

功率半导体装置要求以低损耗来高速动作。以往,功率半导体装置使用IGBT(绝缘栅双极晶体管:Insulated Gate Bipolar Transistor)、MOSFET(金属氧化物半导体场效应晶体管:Metal-Oxide-Semiconductor Field-Effect Transistor)等使用了Si的半导体。近年来,开发了使用了SiC、GaN等半导体的装置,预想今后会得以扩大使用。

使用了SiC、GaN的半导体具有带隙大、介质击穿场高等特征,使低损耗、高速动作、高温动作成为可能。高温动作对于热环境严酷的汽车、小型电力转换设备等是优点。热环境严酷的用途的半导体装置假定在250℃左右的高温动作,现有的作为接合/粘接材料的焊料、导电性粘接剂的情况会出现热特性、可靠性问题。因此,目前提出了含烧结金属颗粒的糊剂材料(例如,参照专利文献1)。含烧结金属颗粒的糊剂材料中包含纳米·微米大小的金属颗粒,这些金属颗粒由于纳米大小的效果而在比一般的熔点低的温度下熔融,进行颗粒之间的烧结。

现有技术文献

专利文献

专利文献1:日本特开2014-111800号公报



技术实现要素:

发明要解决的问题

然而,含烧结金属颗粒的糊剂材料为糊剂状态,因此在半导体芯片的芯片贴装时有时会发生渗出、附着在芯片表面的情况。因此,有时会产生倾斜,引起半导体装置制造的成品率降低、性能的差异。特别是,在施加高的电压时,若芯片倾斜则接合的距离变得不均匀而造成器件的特性变差。

另外,对包含金属颗粒和有机成分的材料进行加热而得到的烧结层呈含有大量气孔的多孔结构,本发明人等发现,若在烧结层内不存在适当的气孔,则存在因长期使用而引起剥离等无法获得高的可靠性这样的问题。

本发明是鉴于前述问题点而作出的,其目的在于,提供可抑制粘贴时的渗出、向粘贴对象物表面上的附着、并且烧结后可得到坚固的烧结层的加热接合用片材、及具有该加热接合用片材的带有切割带的加热接合用片材。

用于解决问题的方案

本申请发明人等为了解决前述以往的问题点,对加热接合用片材及具有该加热接合用片材的带有切割带的加热接合用片材进行了研究。结果发现,通过采用下述构成,可抑制粘贴时的渗出、向粘贴对象物表面上的附着,并且烧结后可得到坚固的烧结层,从而完成了本发明。

即,本发明的加热接合用片材的特征在于,

其具有通过加热而成为烧结层的层,

前述层的通过下述加热条件A进行了加热后的截面的气孔部分的平均面积在0.005μm2~0.5μm2的范围内。

<加热条件A>

将前述层在10MPa的加压下、以升温速度1.5℃/秒从80℃升温至300℃后,在300℃下保持2.5分钟。

根据前述构成,由于是片状,而不是糊剂,因此能够抑制粘贴时的渗出、向粘贴对象物表面上的附着。

另外,具有通过加热而成为烧结层的层,前述层的通过上述加热条件A进行了加热后的截面的气孔部分的平均面积在0.005μm2~0.5μm2的范围内。上述加热条件A为假定前述层通过加热而成烧结层的条件而规定的加热条件。由于前述平均面积为0.5μm2以下,因此对前述层进行加热而得到的烧结层是坚固的。

前述构成中,优选前述层的通过前述加热条件A进行了加热后的截面的气孔部分的比率在0.1%~20%的范围内。

前述比率为20%以下时,则对前述层进行加热而得到的烧结层变得更坚固。

前述构成中,优选前述层的通过前述加热条件A进行了加热后的截面的气孔部分的面积的分布宽度σ为2以下。

前述分布宽度σ为2以下时,可以说对前述层进行加热而得到的烧结层中的各气孔的大小的偏差小。因此,能够避免因存在大的气孔而该部分变脆。

前述构成中,优选前述层的通过前述加热条件A进行了加热后的截面的气孔部分的最大面积在0.005μm2~100μm2的范围内。

前述最大面积为100μm2以下时,在对前述层进行加热而得到的烧结层中不存在大的气孔。因此,能够减少烧结层中不流通电流的部分。

前述构成中,优选前述层包含在23℃下为固态的热解性粘结剂。

前述层若含有在23℃下为固态的热解性粘结剂,则加热接合工序前容易维持片材形状。另外,在加热接合工序时容易发生热解。

前述构成中,优选前述层包含金属微粒,且前述金属微粒为选自由银、铜、银的氧化物、铜的氧化物组成的组中的至少1种。

包含金属微粒,且前述金属微粒为选自由银、铜、银的氧化物、铜的氧化物组成的组中的至少1种时,能够更适合地进行加热接合。

另外,本发明的带有切割带的加热接合用片材的特征在于,其具有:

切割带、和

层叠在前述切割带上的前述加热接合用片材。

根据前述带有切割带的加热接合用片材,由于与切割带为一体式,因此能够省略与切割带贴合的工序。另外,由于具备前述加热接合用片材,因此可抑制粘贴时的渗出、向粘贴对象物表面上的附着。另外,由于具有含有前述层的加热接合用片材,因此,对前述层进行加热而得到的烧结层是坚固的。

附图说明

图1是示出本发明的一实施方式的带有切割带的加热接合用片材的截面示意图。

图2是示出本发明的另一实施方式的带有切割带的加热接合用片材的截面示意图。

图3是示出两面带有隔离膜的加热接合用片材的截面示意图。

图4是用于说明本实施方式的半导体装置的一制造方法的截面示意图。

图5是实施例1的烧结层的截面SEM图像(2值化前)。

图6是实施例1的烧结层的截面SEM图像(2值化后)。

具体实施方式

(带有切割带的加热接合用片材)

以下针对本发明的一实施方式的加热接合用片材和带有切割带的加热接合用片材进行说明。关于本实施方式的加热接合用片材,可以列举出在以下说明的带有切割带的加热接合用片材中未贴合切割带的状态的加热接合用片材。因此,以下,对带有切割带的加热接合用片材进行说明,对于加热接合用片材,在其中进行说明。图1是示出本发明的一实施方式的带有切割带的加热接合用片材的截面示意图。图2是示出本发明的另一实施方式的另一带有切割带的加热接合用片材的截面示意图。

如图1所示,带有切割带的加热接合用片材10具有在切割带11上层叠有加热接合用片材3的构成。切割带11以在基材1上层叠粘合剂层2的方式构成,在粘合剂层2上设置有加热接合用片材3。另外如图2所示的带有切割带的加热接合用片材12那样,本发明的带有切割带的加热接合用片材也可为仅在工件粘贴部分形成加热接合用片材3’的构成。

(加热接合用片材)

加热接合用片材3、3’为片状。由于是片材,而不是糊剂,因此能够抑制粘贴时的渗出、向粘贴对象物表面上的附着。

本实施方式的加热接合用片材3、3’包含通过加热而成为烧结层的层31。本实施方式中,对加热接合用片材的通过加热而成为烧结层的层为1层的情况进行说明,但本发明不限定于该例。本发明中的通过加热而成为烧结层的层可以为将多个通过加热而成为烧结层的层层叠而成的构成。

另外,本实施方式中,对加热接合用片材包含通过加热而成为烧结层的层的情况进行说明,但本发明不限定于该例。本发明的加热接合用片材可以为2层以上。例如,可以为通过加热而成为烧结层的层和其它层(通过加热不会成为烧结层的层)层叠而成的构成。

即,本发明中的加热接合用片材只要具有通过加热而成为烧结层的层即可,对其构成没有特别限定。

(通过加热而成为烧结层的层)

对于通过加热而成为烧结层的层31(以下,也称为“层31”),通过下述加热条件A进行了加热后的截面的气孔部分的平均面积在0.005μm2~0.5μm2的范围内。前述平均面积优选在0.007μm2~0.4μm2的范围内、更优选在0.01μm2~0.3μm2的范围内。下述加热条件A是假定前述层通过加热而成烧结层的条件而规定的加热条件。对于前述平均面积的求法的详细情况,利用实施例中记载的方法。

<加热条件A>

将层31在10MPa的加压下、以升温速度1.5℃/秒从80℃升温至300℃后,在300℃下保持2.5分钟。

由于前述平均面积为0.5μm2以下,因此对层31进行加热而得到的烧结层是坚固的。

前述平均面积可以通过金属微粒的种类、含量、平均粒径、热解性粘结剂的种类、含量、低沸点粘结剂的种类、含量、通过加热形成烧结层时的加热条件(例如,温度、时间、升温速度等)、形成烧结层时的气氛(大气气氛、氮气气氛、或还原气体气氛等)来控制。

层31的通过前述加热条件A进行了加热后的截面的气孔部分的比率优选在0.1%~20%的范围内。前述比率更优选在0.2%~19%的范围内、进一步优选在0.3%~18%的范围内。对于前述比率的求法的详细情况,利用实施例中记载的方法。

前述比率为20%以下时,对前述层进行加热而得到的烧结层变得更坚固。

前述比率可以通过金属微粒的种类、含量、平均粒径、热解性粘结剂的种类、含量、低沸点粘结剂的种类、含量、通过加热形成烧结层时的加热条件(例如,温度、时间、升温速度等)、形成烧结层时的气氛(大气气氛、氮气气氛、或还原气体气氛等)来控制。

层31的通过前述加热条件A进行了加热后的截面的气孔部分的面积的分布宽度σ优选为2以下。前述分布宽度σ更优选为1.5以下、进一步优选为1以下。另外,前述分布宽度σ越小越优选,例如为0.001以上。对于前述分布宽度σ的求法的详细情况,利用实施例中记载的方法。

前述分布宽度σ为2以下时,可以说对层31进行加热而得到的烧结层中的各气孔的大小的偏差小。因此,能够避免因存在大的气孔而该部分变脆。

前述分布宽度σ可以通过金属微粒的种类、含量、平均粒径、热解性粘结剂的种类、含量、低沸点粘结剂的种类、含量、通过加热形成烧结层时的加热条件(例如,温度、时间、升温速度等)、形成烧结层时的气氛(大气气氛、氮气气氛、或还原气体气氛等)来控制。

层31的通过前述加热条件A进行了加热后的截面的气孔部分的最大面积优选在0.005μm2~100μm2的范围内。前述最大面积更优选在0.01μm2~80μm2的范围内、进一步优选在0.05μm2~70μm2的范围内。对于前述最大面积的求法的详细情况,利用实施例中记载的方法。

前述最大面积为100μm2以下时,则在对层31进行加热而得到的烧结层中不存在大的气孔。因此,能够减少烧结层中不流通电流的部分。

前述最大面积可以通过金属微粒的种类、含量、平均粒径、热解性粘结剂的种类、含量、低沸点粘结剂的种类、含量、通过加热形成烧结层时的加热条件(例如,温度、时间、升温速度等)、形成烧结层时的气氛(大气气氛、氮气气氛、或还原气体气氛等)来控制。

层31的通过下述拉伸试验方法得到的拉伸模量优选为10MPa~3000MPa、更优选为12MPa~2900MPa、进一步优选为15MPa~2500MPa。

拉伸试验方法:

(1)作为试验试样,准备厚度200μm、宽度10mm、长度40mm的加热接合用片材(拉伸试验用加热接合用片材),

(2)在卡盘间距10mm、拉伸速度50mm/分钟、23℃的条件下进行拉伸试验,

(3)将得到的应力-应变图的直线部分的斜率作为拉伸模量。

层31的前述拉伸模量为10MPa以上时,能够进一步抑制在芯片贴装时加热接合用片材的构成材料发生渗出、在芯片表面的附着。另外,前述拉伸模量为3000MPa以下时,例如,在切割时能够固定半导体晶圆。

层31的在大气气氛下、升温速度10℃/分钟的条件下进行从23℃至400℃的升温后的通过能量色散型X射线分析得到的碳浓度优选为15重量%以下、更优选为12重量%以下、进一步优选为10重量%以下。前述碳浓度为15重量%以下时,层31升温至400℃后,基本不存在有机物。结果,加热接合工序后耐热性优异,即使在高温环境下也可得到高的可靠性、热特性。

层31在大气气氛下、升温速度10℃/分钟的条件下、从23℃至500℃进行了差热分析时的峰优选存在于150~350℃之间、更优选存在于170~320℃之间、进一步优选存在于180~310℃之间。前述峰存在于150~350℃之间时,可以说有机物(例如,构成层31的树脂成分)在该温度区域发生了热分解。其结果,加热接合工序后的耐热性更优异。

层31优选相对于层31整体在60~98重量%的范围内包含金属微粒。前述金属微粒的含量更优选在65~97重量%的范围内、进一步优选在70~95重量%的范围内。在60~98重量%的范围内包含前述金属微粒时,能够使金属微粒烧结或熔融来接合2个物品(例如,半导体芯片和引线框)。

作为前述金属微粒,可以列举出烧结性金属颗粒。

作为前述烧结性金属颗粒,可适当使用金属微粒、金属微粒的聚集体。作为金属微粒,可以列举出由金属构成的微粒等。作为前述金属,可以列举出金、银、铜、银的氧化物、铜的氧化物等。其中,优选为选自由银、铜、银的氧化物、铜的氧化物组成的组中的至少1种。前述金属微粒为选自由银、铜、银的氧化物、铜的氧化物组成的组中的至少1种时,能够更合适地进行加热接合。

前述烧结性金属颗粒的平均粒径优选为0.0005μm以上、更优选为0.001μm以上。作为平均粒径的下限,也可例示出0.01μm、0.05μm、0.1μm。另一方面,烧结性金属颗粒的平均粒径优选为30μm以下,更优选为25μm以下。作为平均粒径的上限,也可例示出20μm、15μm、10μm、5μm。

前述烧结性金属颗粒的微晶的平均直径优选0.01nm以上且60nm以下、更优选0.1nm以上且50nm以下、进一步优选0.5nm以上且45nm以下。通过使微晶的平均直径为上述范围,从而能够抑制烧结性金属颗粒的烧结温度的过度上升。

前述烧结性金属颗粒的平均粒径利用以下的方法进行测定。即,通过SEM(扫描型电子显微镜)对前述烧结性金属颗粒进行观察,测量平均粒径。需要说明的是,SEM观察优选:例如在烧结性金属颗粒为微米大小时,用5000倍进行观察,为亚微米大小时,用50000倍观察进行观察,为纳米大小时,用300000倍进行观察。

前述烧结性金属颗粒的形状没有特别限定,例如为球状、棒状、鳞片状、无定形状。

层31优选含有低沸点粘结剂。前述低沸点粘结剂是为了使前述金属微粒的处理容易而使用的。另外,前述低沸点粘结剂也用于调整任意的机械物性。具体而言,可以以前述低沸点粘结剂中分散有前述金属微粒的含金属微粒的糊剂的形式使用。

前述低沸点粘结剂在23℃为液态。本说明书中,“液态”包括半液态。具体是指通过利用动态粘弹性测定装置(流变仪)的粘度测定得到的在23℃下的粘度为100000Pa·s以下。

粘度测定的条件如下述。

流变仪:Thermo SCIENTFIC公司制MERIII

夹具:平行板间隙100μm、剪切速度1/秒)

作为前述低沸点粘结剂的具体例,例如可以列举出戊醇、己醇、庚醇、辛醇、1-癸醇、乙二醇、二乙二醇、丙二醇、丁二醇、α-松油醇、1,6-己二醇、异冰片基环己醇(MTPH)等一元醇及多元醇类、乙二醇丁基醚、乙二醇苯基醚、二乙二醇甲基醚、二乙二醇乙基醚、二乙二醇丁基醚、二乙二醇异丁基醚、二乙二醇己基醚、三乙二醇甲基醚、二乙二醇二甲基醚、二乙二醇二乙基醚、二乙二醇二丁基醚、二乙二醇丁基甲基醚、二乙二醇异丙基甲基醚、三乙二醇二甲基醚、三乙二醇丁基甲基醚、丙二醇丙基醚、二丙二醇甲基醚、二丙二醇乙基醚、二丙二醇丙基醚、二丙二醇丁基醚、二丙二醇二甲基醚、三丙二醇甲基醚、三丙二醇二甲基醚等醚类、乙二醇乙基醚乙酸酯、乙二醇丁基醚乙酸酯、二乙二醇乙基醚乙酸酯、二乙二醇丁基醚乙酸酯、二丙二醇甲基醚乙酸酯(DPMA)等。这些可以组合使用2种以上。其中,优选组合使用沸点不同的2种粘结剂。使用沸点不同的2种粘结剂时,在维持片材形状的方面是优异的。

层31优选含有在23℃下为固态的热解性粘结剂。若含有前述热解性粘结剂,则在加热接合工序前容易维持片材形状。另外,在加热接合工序时容易发生热解。

本说明书中,“固态”具体是指通过利用前述流变仪的粘度测定得到的在23℃下的粘度大于100000Pa·s。

本说明书中,“热解性粘结剂”是指在加热接合工序中能发生热解的粘结剂。前述热解性粘结剂优选在加热接合工序后在烧结层(加热后的层31)中基本不残留。作为前述热解性粘结剂,例如可以列举出即使在层31中含有,在大气气氛下、升温速度10℃/分钟的条件下进行从23℃至400℃的升温后的通过能量色散型X射线分析得到的碳浓度为15重量%以下的材料。例如,采用更容易热解的材料作为热解性粘结剂时,即使含量较多,也能够使得在加热接合工序后在烧结层(加热后的层31)中基本不残留。

作为前述热解性粘结剂,可以列举出聚碳酸酯、丙烯酸类树脂、乙基纤维素、聚乙烯醇等。这些材料可以单独使用,或混合2种以上来使用。其中,从热解性高的观点出发,优选聚碳酸酯。

作为前述聚碳酸酯,只要能够在加热接合工序中热解就没有特别限定,可以列举出:在主链的碳酸酯基(-O-CO-O-)间不含芳香族化合物(例如,苯环等)、由脂肪族链形成的脂肪族聚碳酸酯;在主链的碳酸酯基(-O-CO-O-)间包含芳香族化合物的芳香族聚碳酸酯。其中,优选脂肪族聚碳酸酯。

作为前述脂肪族聚碳酸酯,可以列举出聚碳酸亚乙酯、聚碳酸亚丙酯等。其中从用于片材形成的清漆制作中在有机溶剂中的溶解性的观点出发,优选聚碳酸亚丙酯。

作为前述芳香族聚碳酸酯,可以列举出在主链包含双酚A结构的芳香族聚碳酸酯等。

前述聚碳酸酯的重均分子量优选为10000~1000000的范围内。需要说明的是,重均分子量为通过GPC(凝胶渗透色谱法)进行测定、通过聚苯乙烯换算算出的值。

作为前述丙烯酸类树脂,在能够在加热接合工序中热解的范围内,可以列举出:将具有碳数30以下,特别是碳数4~18的直链或支链的烷基的丙烯酸或甲基丙烯酸的酯的1种或2种以上作为成分的聚合物(丙烯酸类共聚物)等。作为前述烷基,例如可以列举出甲基、乙基、丙基、异丙基、正丁基、叔丁基、异丁基、戊基、异戊基、己基、庚基、环己基、2-乙基己基、辛基、异辛基、壬基、异壬基、癸基、异癸基、十一烷基、月桂基、十三烷基、十四烷基、硬脂基、十八烷基、或十二烷基等。

另外,作为形成聚合物(丙烯酸类共聚物)的其他单体,没有特别限定,例如可以列举出丙烯酸、甲基丙烯酸、丙烯酸羧基乙酯、丙烯酸羧基戊酯、衣康酸、马来酸、富马酸或巴豆酸等含羧基单体、马来酸酐或衣康酸酐等酸酐单体、(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸2-羟基丙酯、(甲基)丙烯酸4-羟基丁酯、(甲基)丙烯酸6-羟基己酯、(甲基)丙烯酸8-羟基辛酯、(甲基)丙烯酸10-羟基癸酯、(甲基)丙烯酸12-羟基月桂酯或丙烯酸(4-羟基甲基环己基)-甲酯等含羟基单体、苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙磺酸、(甲基)丙烯酰胺丙磺酸、(甲基)丙烯酸磺基丙酯或(甲基)丙烯酰氧基萘磺酸等含磺酸基单体、或2-羟基乙基丙烯酰基磷酸酯等含磷酸基单体。

在丙烯酸类树脂中,更优选重均分子量为1万~100万、进一步优选为3万~70万。这是因为,为上述数值范围内时,加热接合工序前的粘接性和加热接合工序时的热解性优异。需要说明的是,重均分子量是利用GPC(凝胶渗透色谱法)进行测定并进行聚苯乙烯换算计算出的值。

另外,在丙烯酸类树脂中,优选在200℃~400℃下热解的丙烯酸类树脂。

需要说明的是,层31中除了前述成分以外,还可以适宜含有例如增塑剂等。

加热接合用片材3、3’可利用通常的方法制造。例如,制作用于形成层31的含有前述各成分的清漆,以成为规定厚度的方式将清漆涂布在基材隔离膜上而形成涂布膜,然后使该涂布膜干燥,由此能够制造加热接合用片材3、3’。

作为用于清漆的溶剂,没有特别限定,优选能够将前述各成分均匀地溶解、混炼或分散的有机溶剂、醇溶剂。作为前述有机溶剂,例如可以列举出:二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、丙酮、甲乙酮、环己酮等酮系溶剂、甲苯、二甲苯等。另外,作为前述醇溶剂,可以列举出乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2-丁烯-1,4-二醇、1,2,6-己三醇、丙三醇、辛二醇、2-甲基-2,4-戊二醇、松油醇。

涂布方法没有特别限定。作为溶剂涂覆的方法,例如可以列举出:模涂机、凹版涂布机、辊涂机、逆转式涂布机、逗点涂布机、管刀涂布机(Pipe doctor coater)、丝网印刷等。其中,从涂布厚度的均匀性高这样的观点出发,优选模涂机。另外,涂布膜的干燥条件没有特别限定,例如可以在干燥温度70~160℃、干燥时间1~5分钟下进行。需要说明的是,即使在使涂布膜干燥后,由于溶剂的种类不同,也存在溶剂未全部气化而残留在涂膜中的情况。

层31含有前述低沸点粘结剂的情况下,根据前述干燥条件,有时前述低沸点粘结剂的一部分会挥发。因此,根据前述干燥条件,构成层31的各成分的比率会变化。例如,即使是由同一清漆形成的层31,干燥温度越高、另外干燥时间越长,金属微粒在层31整体中所占的含量、热解性粘结剂的含量变得越多。因此,优选以使层31中的金属微粒、热解性粘结剂的含量成为期望的量的方式来设定前述干燥条件。

作为基材隔离膜,可以使用聚对苯二甲酸乙二醇酯(PET)、聚乙烯、聚丙烯、利用氟系剥离剂、长链烷基丙烯酸酯系剥离剂等剥离剂进行了表面涂布的塑料薄膜、纸等。

作为加热接合用片材3、3’的制造方法,例如,利用混合机混合前述各成分并对得到的混合物进行压制成形而制造加热接合用片材3、3’的方法等也是适合的。作为混合机,可以列举出行星混合机等。

加热接合用片材3、3’优选加热前的23℃下的厚度为5~100μm、更优选为10~80μm。在23℃下的厚度为5μm以上时,能够进一步抑制渗出。另一方面,厚度为100μm以下时,能够进一步抑制加热接合时的倾斜产生。

(切割带)

切割带11以在基材1上层叠粘合剂层2的方式构成。

基材1为带有切割带的加热接合用片材10、12的强度基体,优选具有紫外线透过性。作为基材1,例如可以列举出:低密度聚乙烯、直链状聚乙烯、中密度聚乙烯、高密度聚乙烯、超低密度聚乙烯、无规共聚聚丙烯、嵌段共聚聚丙烯、均聚聚丙烯、聚丁烯、聚甲基戊烯等聚烯烃;乙烯-醋酸乙烯酯共聚物、离聚物树脂、乙烯-(甲基)丙烯酸共聚物、乙烯-(甲基)丙烯酸酯(无规、交替)共聚物、乙烯-丁烯共聚物、乙烯-己烯共聚物、聚氨酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等聚酯;聚碳酸酯、聚酰亚胺、聚醚醚酮、聚醚酰亚胺、聚酰胺、全芳香族聚酰胺、聚苯硫醚、芳纶(纸)、玻璃、玻璃布、氟树脂、聚氯乙烯、聚偏二氯乙烯、纤维素系树脂、有机硅树脂、金属(箔)、纸等。

另外,作为基材1的材料,可以列举出前述树脂的交联体等聚合物。前述塑料薄膜可以无拉伸地使用,也可以根据需要使用实施了单轴或双轴的拉伸处理的塑料薄膜。利用通过拉伸处理等而赋予了热收缩性的树脂片,通过在切割后使该基材1热收缩而降低粘合剂层2和加热接合用片材3、3’的粘接面积,能够实现半导体芯片的回收的容易化。

为了提高与相邻的层的密合性、保持性等,基材1的表面可以实施惯用的表面处理例如铬酸处理、臭氧暴露、火焰暴露、高压电击暴露、离子化辐射线处理等化学处理或物理处理;利用底涂剂(例如后述的粘合物质)的涂布处理。

对基材1的厚度没有特别限定,可以适当决定,通常为5~200μm左右。

作为用于形成粘合剂层2的粘合剂,没有特别限定,例如可以使用丙烯酸类粘合剂、橡胶类粘合剂等通常的压敏性粘接剂。作为前述压敏性粘接剂,从半导体晶圆、玻璃等怕污染的电子部件的利用超纯水、醇等有机溶剂的清洁清洗性等方面出发,优选以丙烯酸类聚合物为基础聚合物的丙烯酸类粘合剂。

作为前述丙烯酸类聚合物,例如可以列举出将(甲基)丙烯酸烷基酯(例如甲酯、乙酯、丙酯、异丙酯、丁酯、异丁酯、仲丁酯、叔丁酯、戊酯、异戊酯、己酯、庚酯、辛酯、2-乙基己酯、异辛酯、壬酯、癸酯、异癸酯、十一烷基酯、十二烷基酯、十三烷基酯、十四烷基酯、十六烷基酯、十八烷基酯、二十烷基酯等烷基的碳数1~30、尤其是碳数4~18的直链状或支链状的烷基酯等)以及(甲基)丙烯酸环烷基酯(例如环戊酯、环己酯等)中的1种或2种以上用作单体成分的丙烯酸类聚合物等。需要说明的是,(甲基)丙烯酸酯是指丙烯酸酯和/或甲基丙烯酸酯,本发明的(甲基)全部为相同的意义。

出于内聚力、耐热性等改性的目的,前述丙烯酸类聚合物可以根据需要包含对应于能够与前述(甲基)丙烯酸烷基酯或环烷基酯共聚的其它单体成分的单元。作为这样的单体成分,例如可以列举出丙烯酸、甲基丙烯酸、(甲基)丙烯酸羧基乙酯、(甲基)丙烯酸羧基戊酯、衣康酸、马来酸、富马酸、巴豆酸等含羧基的单体;马来酸酐、衣康酸酐等酸酐单体;(甲基)丙烯酸-2-羟基乙酯、(甲基)丙烯酸-2-羟基丙酯、(甲基)丙烯酸-4-羟基丁酯、(甲基)丙烯酸-6-羟基己酯、(甲基)丙烯酸-8-羟基辛酯、(甲基)丙烯酸-10-羟基癸酯、(甲基)丙烯酸-12-羟基月桂酯、(甲基)丙烯酸(4-羟基甲基环己基)甲酯等含羟基的单体;苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙磺酸、(甲基)丙烯酰胺丙磺酸、(甲基)丙烯酸磺基丙酯、(甲基)丙烯酰氧基萘磺酸等含磺酸基的单体;2-羟基乙基丙烯酰基磷酸酯等含磷酸基的单体;丙烯酰胺、丙烯腈等。这些能够共聚的单体成分可以使用1种或2种以上。这些能够共聚的单体的用量优选为全部单体成分的40重量%以下。

进而,前述丙烯酸类聚合物为了进行交联,也可以根据需要而包含多官能性单体等作为共聚用单体成分。作为这样的多官能性单体,例如可以列举出己二醇二(甲基)丙烯酸酯、(聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、环氧(甲基)丙烯酸酯、聚酯(甲基)丙烯酸酯、氨基甲酸酯(甲基)丙烯酸酯等。这些多官能性单体也可以使用1种或2种以上。从粘合特性等方面出发,多官能性单体的用量优选为全部单体成分的30重量%以下。

前述丙烯酸类聚合物可以通过使单一单体或2种以上的单体混合物聚合而得到。聚合也可以以溶液聚合、乳液聚合、本体聚合、悬浮聚合等任意方式来进行。从防止对清洁的被粘物的污染等的方面出发,优选低分子量物质的含量少。从这一点出发,丙烯酸类聚合物的数均分子量优选为10万以上、进一步优选为20万~300万左右、特别优选为30万~100万左右。

另外,在前述粘合剂中,为了提高作为基础聚合物的丙烯酸类聚合物等的数均分子量,也可以适当采用外部交联剂。作为外部交联方法的具体手段,可以列举出:添加多异氰酸酯化合物、环氧化合物、氮丙啶化合物、三聚氰胺系交联剂等所谓的交联剂并使其反应的方法。使用外部交联剂时,其用量根据其与要交联的基础聚合物的平衡、进而根据作为粘合剂的使用用途来适当决定。通常优选的是,相对于前述基础聚合物100重量份,配混5重量份左右以下,进而0.1~5重量份。进而,在粘合剂中,根据需要,除了前述成分之外,也可以使用以往公知的各种赋粘剂、防老剂等添加剂。

粘合剂层2可以利用辐射线固化型粘合剂来形成。辐射线固化型粘合剂可以通过照射紫外线等辐射线而使交联度增加、容易地使其粘合力降低,通过仅对图2所示的粘合剂层2的与工件贴附部分相对应的部分2a照射辐射线,能够设置与其它部分2b的粘合力之差。

另外,通过对应图2所示的加热接合用片材3’来使辐射线固化型的粘合剂层2进行固化,能够容易地形成粘合力显著降低的前述部分2a。由于加热接合用片材3’贴附在固化并且粘合力降低的前述部分2a处,因此粘合剂层2的前述部分2a与加热接合用片材3’的界面具备在拾取时容易剥离的性质。另一方面,未照射辐射线的部分具有充分的粘合力,形成前述部分2b。需要说明的是,对粘合剂层照射辐射线可以在切割之后且拾取之前进行。

如前所述,在图1所示的带有切割带的加热接合用片材10的粘合剂层2中,由未固化的辐射线固化型粘合剂形成的前述部分2b与加热接合用片材3粘合,可以确保切割时的保持力。这样,辐射线固化型粘合剂能够粘接/剥离的平衡良好地支撑用于将芯片状工件(半导体芯片等)固定在基板等被粘物上的加热接合用片材3。在图2所示的带有切割带的加热接合用片材11的粘合剂层2中,前述部分2b可以固定晶圆环。

辐射线固化型粘合剂只要具有碳-碳双键等辐射线固化性的官能团且显示粘合性,就可以没有特别限制地使用。作为辐射线固化型粘合剂,例如可示例出在前述丙烯酸类粘合剂、橡胶类粘合剂等通常的压敏性粘合剂中配混辐射线固化性的单体成分、低聚物成分而成的添加型辐射线固化型粘合剂。

作为所配混的辐射线固化性的单体成分,例如可以列举出氨基甲酸酯低聚物、氨基甲酸酯(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、四羟甲基甲烷四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇单羟基五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯等。另外,辐射线固化性的低聚物成分可以列举出氨基甲酸酯系、聚醚系、聚酯系、聚碳酸酯系、聚丁二烯系等各种低聚物,其分子量在100~30000左右的范围内是适当的。辐射线固化性的单体成分、低聚物成分的配混量可以根据前述粘合剂层的种类来适当决定能够降低粘合剂层的粘合力的量。通常,相对于构成粘合剂的丙烯酸类聚合物等基础聚合物100重量份,例如为5~500重量份、优选为40~150重量份左右。

另外,作为辐射线固化型粘合剂,除了前述说明的添加型辐射线固化型粘合剂之外,还可以列举出:使用了在聚合物侧链或主链中或者在主链末端具有碳-碳双键的聚合物作为基础聚合物的内在型辐射线固化型粘合剂。内在型辐射线固化型粘合剂不需要含有或不大量含有属于低分子成分的低聚物成分等,因此,低聚物成分等不会经时地在粘合剂中移动,能够形成层结构稳定的粘合剂层,故而优选。

前述具有碳-碳双键的基础聚合物可以没有特别限制地使用具有碳-碳双键且具有粘合性的聚合物。作为这样的基础聚合物,优选以丙烯酸类聚合物作为基本骨架。作为丙烯酸类聚合物的基本骨架,可以列举出前述示例出的丙烯酸类聚合物。

对向前述丙烯酸类聚合物中导入碳-碳双键的方法没有特别限定,可以采用各种方法,从分子设计的方面来看,将碳-碳双键导入聚合物侧链是容易的。例如可以列举出如下方法:预先使丙烯酸类聚合物与具有官能团的单体进行共聚,然后使具有能够与该官能团反应的官能团和碳-碳双键的化合物在维持碳-碳双键的辐射线固化性的状态下进行缩聚或加成反应的方法。

作为这些官能团的组合的例子,可以列举出羧酸基与环氧基、羧酸基与氮丙啶基、羟基与异氰酸酯基等。这些官能团的组合之中,从追踪反应的容易程度出发,羟基与异氰酸酯基的组合是适宜的。另外,只要是通过这些官能团的组合来生成具有前述碳-碳双键的丙烯酸类聚合物这样的组合,则官能团可以在丙烯酸类聚合物和前述化合物中的任一侧,在前述优选的组合中,丙烯酸类聚合物具有羟基且前述化合物具有异氰酸酯基的情况是适合的。此时,作为具有碳-碳双键的异氰酸酯化合物,例如可以列举出甲基丙烯酰基异氰酸酯、2-甲基丙烯酰氧基乙基异氰酸酯、间异丙烯基-α,α-二甲基苄基异氰酸酯等。另外,作为丙烯酸类聚合物,可以使用将前述示例的含羟基的单体、2-羟基乙基乙烯基醚、4-羟基丁基乙烯基醚、二乙二醇单乙烯基醚的醚系化合物等共聚而成的聚合物。

前述内在型辐射线固化型粘合剂可以单独使用前述具有碳-碳双键的基础聚合物(尤其是丙烯酸类聚合物),也可以在不会使特性恶化的程度下配混前述辐射线固化性的单体成分、低聚物成分。辐射线固化性的低聚物成分等通常相对于基础聚合物100重量份为30重量份的范围内,优选为0~10重量份的范围内。

前述辐射线固化型粘合剂在利用紫外线等进行固化时含有光聚合引发剂。作为光聚合引发剂,例如可以列举出4-(2-羟基乙氧基)苯基(2-羟基-2-丙基)酮、α-羟基-α,α’-二甲基苯乙酮、2-甲基-2-羟基苯丙酮、1-羟基环己基苯基酮等α-酮醇系化合物;甲氧基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基苯乙酮、2-甲基-1-[4-(甲硫基)-苯基]-2-吗啉代丙烷-1-酮等苯乙酮系化合物;苯偶姻乙基醚、苯偶姻异丙基醚、茴香偶姻甲基醚等苯偶姻醚系化合物;苯偶酰二甲基缩酮等缩酮系化合物;2-萘磺酰氯等芳香族磺酰氯系化合物;1-苯酮-1,1-丙二酮-2-(O-乙氧基羰基)肟等光活性肟系化合物;二苯甲酮、苯甲酰基苯甲酸、3,3’-二甲基-4-甲氧基二苯甲酮等二苯甲酮系化合物;噻吨酮、2-氯代噻吨酮、2-甲基噻吨酮、2,4-二甲基噻吨酮、异丙基噻吨酮、2,4-二氯代噻吨酮、2,4-二乙基噻吨酮、2,4-二异丙基噻吨酮等噻吨酮系化合物;樟脑醌;卤代酮;酰基氧化膦;酰基膦酸酯等。光聚合引发剂的配混量相对于构成粘合剂的丙烯酸类聚合物等基础聚合物100重量份,例如为0.05~20重量份左右。

另外,作为辐射线固化型粘合剂,例如可以列举出:日本特开昭60-196956号公报中公开的含有具有2个以上不饱和键的加成聚合性化合物、具有环氧基的烷氧基硅烷等光聚合性化合物与羰基化合物、有机硫化合物、过氧化物、胺、鎓盐系化合物等光聚合引发剂的橡胶类粘合剂、丙烯酸类粘合剂等。

前述辐射线固化型的粘合剂层2中,根据需要,也可以含有通过辐射线照射而着色的化合物。通过在粘合剂层2中包含通过辐射线照射而着色的化合物,能够仅将进行了辐射线照射的部分着色。即,能够使图1所示的与工件贴附部分3a相对应的部分2a着色。因此,能够通过目视直接判断是否对粘合剂层2进行了辐射线照射,容易识别工件贴附部分3a,容易贴合工件。另外,利用光传感器等检测半导体芯片时,其检测精度提高,在半导体芯片的拾取时不会产生误操作。通过辐射线照射而着色的化合物是在照射辐射线前呈无色或浅色、但通过辐射线照射而变成有色的化合物,例如,可以列举出隐色染料等。通过辐射线照射来进行着色的化合物的使用比例可以适当设定。

对粘合剂层2的厚度没有特别限定,从防止芯片切断面的缺损、固定保持加热接合用片材3、3’的兼顾性等方面来看,优选为1~50μm左右。优选为2~30μm、进一步优选为5~25μm。

本实施方式的切割带11例如可如下操作来制作。

首先,基材1可以利用以往公知的制膜方法来制膜。作为该制膜方法,例如可示例出压延制膜法、在有机溶剂中的流延法、在密闭体系中的吹胀挤出法、T模具挤出法、共挤出法、干式层压法等。

接着,在基材1上涂布粘合剂组合物溶液而形成涂布膜后,使该涂布膜在规定条件下干燥(根据需要而使其加热交联),形成粘合剂层2。作为涂布方法没有特别限定,例如可以列举出辊涂覆、丝网涂覆、凹版涂覆等。另外,作为干燥条件,例如在干燥温度80~150℃、干燥时间0.5~5分钟的范围内进行。另外,也可以在隔离膜上涂布粘合剂组合物而形成涂布膜后,以前述干燥条件使涂布膜干燥,形成粘合剂层2。其后,将粘合剂层2与隔离膜一起贴合在基材1上。由此来制作切割带11。

带有切割带的加热接合用片材10、12可以利用通常的方法制造。例如通过贴合切割带11的粘合剂层2和加热接合用片材3,来制造带有切割带的加热接合用片材10。

带有切割带的加热接合用片材10中,优选加热接合用片材3被隔离膜覆盖。例如可以列举出如下方法:将切割带11和加热接合用片材3贴合后,将层叠于加热接合用片材3的前述基材隔离膜剥离,在剥离了前述基材隔离膜后的带有切割带的加热接合用片材10的加热接合用片材3的露出面粘贴隔离膜的方法。即,优选采用依次层叠有切割带11、加热接合用片材3及前述隔离膜的形态。

上述的实施方式中,对层叠有切割带和加热接合用片材的带有切割带的加热接合用片材进行了说明。但是,本发明的加热接合用片材也可以以不与切割带贴合的状态来提供。

加热接合用片材采用不贴合切割带的形态的情况下,优选形成夹持于2张隔离膜的两面带有隔离膜的加热接合用片材。即,优选采用依次层叠有第1隔离膜、加热接合用片材及第2隔离膜的两面带有隔离膜的加热接合用片材。

图3为示出两面带有隔离膜的加热接合用片材的一实施方式的截面示意图。

图3所示的两面带有隔离膜的加热接合用片材30具有第1隔离膜32、加热接合用片材3、及第2隔离膜34依次层叠而成的构成。作为第1隔离膜32及第2隔离膜34,可以使用与前述基材隔离膜相同的隔离膜。

需要说明的是,加热接合用片材采用不贴合切割带的形态的情况下,可以是仅在加热接合用片材的一个面层叠有隔离膜的形态。

(半导体装置的制造方法)

本实施方式的半导体装置的制造方法包括如下工序:准备前述加热接合用片材的工序、和

借助前述加热接合用片材,将半导体芯片加热接合在被粘物上的加热接合工序(以下也称为第1实施方式)。

另外,本实施方式的半导体装置的制造方法也可以包括如下工序:准备前述记载的带有切割带的加热接合用片材的工序、

将前述带有切割带的加热接合用片材的加热接合用片材和半导体晶圆的背面贴合的贴合工序、

将前述半导体晶圆与前述加热接合用片材一起切割,形成芯片状的半导体芯片的切割工序、

将前述半导体芯片与前述加热接合用片材一起从前述带有切割带的加热接合用片材拾取的拾取工序、和

借助前述加热接合用片材,将前述半导体芯片加热接合在被粘物上的加热接合工序(以下也称为第2实施方式)。

关于第1实施方式的半导体装置的制造方法,相对于第2实施方式的半导体装置的制造方法使用了带有切割带的加热接合用片材,第1实施方式的半导体装置的制造方法单独使用了加热接合用片材,在这点上两者存在不同,但其它方面是共通的。第1实施方式的半导体装置的制造方法中,如果准备加热接合用片材后进行将其与切割带贴合的工序,则其后可以与第2实施方式的半导体装置的制造方法相同。因此,以下针对第2实施方式的半导体装置的制造方法进行说明。

在本实施方式的半导体装置的制造方法中,首先,准备带有切割带的加热接合用片材10、12(准备工序)。带有切割带的加热接合用片材10、12可以适宜地剥离任选设置在加热接合用片材3、3’上的隔离膜,并如下使用。以下,边参照图3边以使用了带有切割带的加热接合用片材10的情况为例进行说明。

首先,在带有切割带的加热接合用片材10中的加热接合用片材3的半导体晶圆贴附部分3a上压接半导体晶圆4,使其粘接保持并固定(贴合工序)。本工序边利用压接辊等按压手段来按压边进行。对固定时的贴附温度没有特别限定,例如优选为23~90℃的范围内。

作为半导体晶圆4,优选在一个面形成电极焊接点(pad)、在另一面(以下,也称为背面)的最表面形成有银薄膜。作为前述银薄膜的厚度,例如,可以列举出10nm~1000nm。另外,可以在半导体晶圆4与前述银薄膜之间进而形成钛薄膜。作为前述钛薄膜的厚度,例如可以列举出10nm~1000nm。若形成有前述银薄膜,则在后述的加热接合工序中,能够将半导体芯片5和加热接合用片材3牢固地加热接合。另外,若形成有前述钛薄膜,则电极的可靠性提高。前述银薄膜及前述钛薄膜例如可以通过蒸镀而形成。

接着,进行半导体晶圆4的切割(切割工序)。由此,将半导体晶圆4切断成规定的尺寸而单片化,制造半导体芯片5。对切割的方法没有特别限定,例如可以从半导体晶圆4的电路面侧按照常规方法来进行。另外,在本工序中,例如可以采用进行切入直到带有切割带的加热接合用片材10为止的、被称为全切(full cut)的切断方式等。作为本工序中使用的切割装置,没有特别限定,可以使用以往公知的装置。另外,半导体晶圆4被带有切割带的加热接合用片材10所粘接固定,因此能够抑制芯片缺损、芯片飞散,并且能够抑制半导体晶圆4的破损。

接着,为了将粘接固定于带有切割带的加热接合用片材10的半导体芯片5剥离而进行半导体芯片5的拾取(拾取工序)。作为拾取的方法,没有特别限定,可以采用以往公知的各种方法。例如可以列举出:用针形件从带有切割带的加热接合用片材10侧将各个半导体芯片5顶起,并用拾取装置拾取被顶起的半导体芯片5的方法等。

作为拾取条件,从防止破片的观点出发,针形件的顶起速度优选为5~100mm/秒、更优选为5~10mm/秒。

此处,在粘合剂层2为紫外线固化型的情况下,拾取在对该粘合剂层2照射紫外线后进行。由此,粘合剂层2对加热接合用片材3的粘合力降低,半导体芯片5的剥离变得容易。其结果,能够进行拾取而不会损伤半导体芯片5。对紫外线照射时的照射强度、照射时间等条件没有特别限定,适当根据需要进行设定即可。另外,作为用于紫外线照射的光源,可以使用公知的光源。需要说明的是,在预先对粘合剂层照射紫外线而使其固化、再将该固化了的粘合剂层与加热接合用片材贴合的情况下,此处的紫外线照射是不需要的。

接着,将所拾取的半导体芯片5夹着加热接合用片材3芯片贴装(加热接合)于被粘物6(加热接合工序)。作为被粘物6,可以列举出引线框、TAB薄膜、基板或另行制作的半导体芯片等。被粘物6例如可以是容易变形的变形型被粘物,也可以是难以变形的非变形型被粘物(半导体晶圆等)。

作为前述引线框,可以列举出Cu引线框、42合金引线框等金属引线框。另外,作为前述基板,可以使用现有公知的基板。例如可以列举出玻璃环氧树脂、BT(双马来酰亚胺-三嗪)、聚酰亚胺等制成的有机基板。其中,若使用金属引线框,则能够通过加热接合而与金属微粒一体化。另外,作为前述基板,可以列举出在陶瓷板等绝缘基板上层叠有铜电路基板的绝缘电路基板。若使用绝缘电路基板,则能够制造例如进行电力的控制、供给的功率半导体装置。

前述加热接合工序中,通过加热将金属微粒烧结的同时根据需要使热解性粘结剂热解。另外,使通过干燥工序挥发不彻底的残留低沸点粘结剂挥发。可以在加热温度优选为180~400℃、更优选为190~370℃、进一步优选为200~350℃下进行。另外,可以在加热时间优选为0.3~300分钟、更优选为0.5~240分钟、进一步优选为1~180分钟下进行。另外,加热接合可以在加压条件下进行。作为加压条件,优选在1~500kg/cm2的范围内、更优选在5~400kg/cm2的范围内。加压下的加热接合例如可以在倒装焊接机那样的可同时进行加热和加压的装置中实施。另外,也可以进行平行平板压制。

接着,根据需要,如图4所示,将被粘物6的端子部(内部引线)的前端与半导体芯片5上的电极极板(未图示)用接合引线7进行电连接(引线接合工序)。作为前述接合引线7,例如可以使用金线、铝线或铜线等。关于进行引线接合时的温度,可以在23~300℃、优选为23~250℃的范围内进行。另外,在其加热时间为数秒~数分钟下进行。接线可以在加热为前述温度范围内的状态下通过将基于超声波的振动能量和基于施加加压的压接能量组合使用来进行。

接着,根据需要,如图4所示,利用封装树脂8来封装半导体芯片5(封装工序)。本工序是为了保护搭载于被粘物6的半导体芯片5、接合引线7而进行的。本工序可以通过利用模具将封装用树脂成型来进行。作为封装树脂8,例如使用环氧系的树脂。树脂封装时的加热温度通常在175℃下进行60~90秒钟,但本发明不限定于此,例如可以在165~185℃下固化数分钟。由此,使封装树脂8固化。需要说明的是,在本封装工序中,也可以采用向片状的封装用片中包埋半导体芯片5的方法(例如,参照日本特开2013-7028号公报)。另外,除了利用模具的封装树脂的成型以外,也可以是在盒型容器中流入有机硅凝胶的凝胶封装型。

接着,根据需要进行加热,使前述封装工序中未充分固化的封装树脂8完全地固化(后固化工序)。本工序中的加热温度因封装树脂的种类而异,例如为165~185℃的范围内,加热时间为0.5~8小时左右。

需要说明的是,本发明的加热接合用片材和带有切割带的加热接合用片材也可以适宜地用于层叠多个半导体芯片来进行三维安装的情况。此时,也可以在半导体芯片之间层叠加热接合用片材和间隔物,也可以在半导体芯片之间仅层叠加热接合用片材而不层叠间隔物,可以根据制造条件、用途等进行适当变更。

另外,本发明的加热接合用片材和带有切割带的加热接合用片材不限定于上述示例的用途,可以用于将2个物体加热接合。

[实施例]

以下,关于本发明,使用实施例进行详细说明,但只要不超出本发明的主旨,本发明就不限定于以下的实施例。

对实施例中使用的成分进行说明。

铜微粒A:三井金属矿业制平均粒径200nm、微晶的平均直径31nm的铜微粒

含金属微粒的糊剂A:适宜调整应用纳米颗粒研究所制的ANP-1(纳米大小的银微粒分散于低沸点粘结剂中而成的糊剂)中所含的低沸点粘结剂的量而得到者。

热解性粘结剂A(聚碳酸亚丙酯树脂):Empower公司制的QPAC40、在23℃下为固态

热解性粘结剂B(丙烯酸类树脂):藤仓化成株式会社制的MM-2002-1、在23℃下为固态

低沸点粘结剂A(异冰片基环己醇):Nippon Terpene Chemicals,Inc.制Terusolve MTPH、在23℃下为液态

有机溶剂A:甲乙酮(MEK)

[加热接合用片材的制作]

按照表1所述配混比,将表1所述各成分和溶剂放入复合混合机(hybrid mixer)(KEYENCE制HM-500)的搅拌釜中,以搅拌模式搅拌/混合3分钟。

将得到的清漆涂布在脱模处理薄膜(Mitsubishi Plastics,Inc.,制的MRA50)上并进行干燥。干燥条件如表1所记载。由此,得到实施例及比较例的厚度40μm的加热接合用片材。

[截面SEM图像的拍摄]

准备在背面依次形成有Ti层(厚度50nm)和Ag层(厚度100nm)的硅芯片(硅芯片的厚度350μm、长5mm、宽5mm)。在准备的硅芯片的Ag层面分别贴合实施例及比较例的加热接合用片材。

贴合条件为温度70℃、压力0.3MPa、速度10mm/秒。

准备整体被Ag层(厚度5μm)覆盖的铜板(铜板的厚度3mm)。在下述条件下使带有硅芯片的加热接合用片材接合在准备的铜板上。由此,得到评价用样品。接合使用烧结装置(Hakuto Co.,Ltd.制、HTM-3000)。

<接合条件>

在10MPa的加压(平板压制)下、以升温速度1.5℃/秒从80℃升温至300℃后,在300℃下保持2.5分钟。其后,空气冷却至变为170℃,其后,水冷至变为80℃。需要说明的是,水冷利用附设于加压板内的水冷式冷却板进行。需要说明的是,实施例4在氮环境下接合。

其后,将样品包埋于环氧树脂(SCANDIA公司的固化树脂(二组分型、SCANDIPLEXA、SCANDIPLEXB))中。

<包埋条件>

SCANDIPLEXA:SCANDIPLEXB=9:4(体积比)

在45℃下放置1~2小时

包埋后,通过机械研磨法使硅芯片的对角线上的截面露出。对于机械研磨,进行粗研磨后进行精密研磨。粗研磨的研磨装置使用Struers制、RotoPol-31。另外,精密研磨的研磨装置使用ALLIED制精密研磨装置MultiPrep。粗研磨条件及精密研磨条件如下述。

<粗研磨条件>

耐水研磨纸:Struers公司、SiCFoil#220

圆盘转速:150rpm

<精密研磨条件>

耐水研磨纸:Struers公司、SiCFoil#220,#1000

圆盘转速:100rpm

载荷:200~500g

其后,对露出面的中央附近进行离子抛光。装置使用JEOL公司制的截面抛光仪SM-09010,离子抛光的条件如下述。

<离子抛光条件>

加速电压5~6kV

加工时间8~10小时

自遮蔽板的飞出量25~50μm

使用场发射扫描电子显微镜(Hitachi High-Technologies Corporation制的SU8020),拍摄离子抛光后的截面的SEM图像(通过扫描电子显微镜得到的图像)。拍摄条件采用:加速电压5kV、倍率2000倍。

[截面SEM图像的2值化]

将得到的截面SEM图像2值化为金属部分和气孔部分。2值化使用图像解析软件(ImageJ)。图5为2值化前的实施例1的烧结层的截面SEM图像,图6为2值化后的实施例1的烧结层的截面SEM图像。在图5所示的2值化前的图像中,烧结层中的黑色部分为气孔部分,灰色部分为金属部分。在图6所示的2值化后的图像中,黑色部分为气孔部分,白色部分为金属部分。需要说明的是,1个黑点对应于1个气孔。

[气孔部分的平均面积]

对于气孔部分的平均面积,使用2值化后的图像,用气孔部分的总面积(图6的黑色部分的总面积)除以气孔部分的个数(黑色部分的个数)来求出。将气孔部分的平均面积为0.005μm2~1μm2的情况评价为○,将小于0.005μm2或大于0.5μm2的情况评价为×。将结果示于表1。

[气孔部分的比率]

对于气孔部分的比率,使用2值化后的图像,用气孔部分的总面积除以烧结层部分整体的面积来求出。将气孔部分的比率为0.1%~20%的情况评价为○,将小于0.1%或大于20%的情况评价为×。将结果示于表1。

[气孔部分的面积的分布宽度σ]

对于气孔部分的面积的分布宽度σ,使用2值化后的图像,以各气孔部分的面积的标准偏差的值的形式来求出。将气孔部分的面积的分布宽度σ为2以下的情况评价为○,将大于2的情况评价为×。将结果示于表1。

[可靠性试验后的残接合面积率]

通过与截面SEM图像的拍摄中的方法同样的方法,制成实施例及比较例的评价用样品。

接着,将评价用样品投入至冷热冲击试验机(ESPEC Corp.制的TSE-103ES)中,施加100个循环的-40℃~200℃的冷热冲击。需要说明的是,此时,在-40℃和200℃下各自保持15分钟。

100个循环后,使用超声波断层扫描摄影装置[SAT](Hitachi Kenki FineTech Co.,Ltd.制的FineSAT II),为了确认硅芯片与铜板通过烧结层接合的部分,进行拍摄。使用的变换器(transducer)(探针)为PQ-50-13:WD[频率50MHz]。

在得到的图像中,求出接合残留的部分的面积(残留面积)并算出残留面积相对于整体的面积的比率(残接合面积率)。另外,将残接合面积率为50%以上的情况评价为○、将低于50%的情况评价为×。将结果示于表1。需要说明的是,通过超声波断层扫描摄影装置得到的图像中,硅芯片与基板发生了剥离的部分可看到为白色,接合残留的部分可看到为灰色。

[表1]

比较例1中,作为热解性粘结剂,使用热解性比聚碳酸酯低的丙烯酸类树脂。另外,热解性粘结剂的含量比实施例多。进而,片材形成时的干燥条件为比实施例2、实施例3缓和的条件。因此,与实施例2、实施例3相比,低沸点粘结剂较多地残留。由于以上的理由,认为比较例1与实施例相比,在烧结后,热解性粘结剂、低沸点粘结剂也较多地残留在片材内。其结果,认为比较例1的烧结层变脆。

附图标记说明

1 基材

2 粘合剂层

3、3’ 加热接合用片材

4 半导体晶圆

5 半导体芯片

6 被粘物

7 接合引线

8 封装树脂

10、12 带有切割带的加热接合用片材

11 切割带

30 两面带有隔离膜的加热接合用片材

31 通过加热而成为烧结层的层

32 第1隔离膜

34 第2隔离膜

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1