肖特基二极管、肖特基二极管阵列及肖特基二极管的制备方法与流程

文档序号:15024532发布日期:2018-07-27 11:10阅读:189来源:国知局

本发明涉及一种肖特基二极管、一肖特基二极管阵列及肖特基二极管的制备方法。



背景技术:

肖特基二极管是利用金属与半导体接触形成的金属-半导体结原理制作的一种二极管。肖特基二极管比pn结二极管具有更低的功耗、更大的电流以及超高速的优点,因此,在电子学器件中受到青睐。

对于低维纳米电子材料,和传统的硅材料不同,难以通过掺杂的办法制备二极管。目前的纳米半导体材料二极管主要通过化学掺杂或异质结的方法制备,其制备工艺复杂,一定程度上限定了二极管的应用。



技术实现要素:

有鉴于此,确有必要提供一种肖特基二极管,该肖特基二极管可以克服以上缺点。

一种肖特基二极管,其包括:一第一电极,该第一电极包括一第一金属层及一第二金属层,第一金属层和第二金属层层叠设置,第一金属层的侧面和第二金属层的上表面形成一台阶状结构;一第二电极,该第二电极包括一第三金属层及一第四金属层,第三金属层和第四金属层层叠设置,第三金属层的下表面与第四金属层的侧面形成一反向台阶状结构;一半导体结构设置在第一电极和第二电极之间,该半导体结构包括一第一端及与第一端相对的第二端以及第一端和第二端之间的中间部,所述半导体结构的第一端被第一金属层和第二金属层夹持,所述半导体结构的第二端被第三金属层和第四金属层夹持,所述台阶状结构和反向台阶状结构位于半导体结构的第一端和第二端之间,所述半导体结构的中间部从所述台阶状结构延伸至所述反向台阶状结构,所述半导体结构为一纳米级半导体结构。

一种肖特基二极管阵列,其包括:一绝缘基底及多个肖特基二极管单元,该多个肖特基二极管单元以阵列的形式排列设置在绝缘基底的表面,每个肖特基二极管单元之间相互间隔设置,所述肖特基二极管单元包括:一第一电极,该第一电极包括一第一金属层及一第二金属层,第一金属层和第二金属层层叠设置,第一金属层的侧面和第二金属层的上表面形成一台阶状结构;一第二电极,该第二电极包括一第三金属层及一第四金属层,第三金属层和第四金属层层叠设置,第三金属层的下表面与第四金属层的侧面形成一反向台阶状结构;一半导体结构设置在第一电极和第二电极之间,该半导体结构包括一第一端及与第一端相对的第二端以及第一端和第二端之间的中间部,所述半导体结构的第一端被第一金属层和第二金属层夹持,所述半导体结构的第二端被第三金属层和第四金属层夹持,所述台阶状结构和反向台阶状结构位于半导体结构的第一端和第二端之间,所述半导体结构的中间部从所述台阶状结构延伸至所述反向台阶状结构,所述半导体结构为一纳米级半导体结构。

一种肖特基二极管的制备方法,其包括以下步骤:提供一绝缘基底,在绝缘基底上形成第二金属层和一第四金属层,第二金属层和第四金属层间隔设置;在第二金属层、第四金属层和绝缘基底上形成一半导体结构,半导体结构包括一第一端及与第一端相对的第二端,将半导体结构的第一端设置在第二金属层的上表面,将第二端设置在第四金属层的上表面,半导体结构的第一端和第二端之间的中间部设置在绝缘基底的表面;在半导体结构的第一端的上表面形成一第一金属层,半导体结构的第一端被第一金属层和第二金属层夹持,第一金属层的侧面和第二金属层的上表面形成一台阶状结构;在半导体结构的第二端的上表面形成一第三金属层,半导体结构的第二端被第三金属层和第四金属层夹持,第四金属层的侧面和第三金属层的下表面形成一反向台阶状结构,所述台阶状结构和反向台阶状结构位于半导体结构的第一端和第二端之间,所述半导体结构的中间部从所述台阶状结构延伸至所述反向台阶状结构。

与现有技术相比较,本发明提供了一种采用一维或者维的纳米材料作为半导体结构的新型肖特基二极管,无需通过掺杂等复杂工艺获得半导体材料,该肖特基二极管的结构简单,半导体材料易于制备且成本较低。

附图说明

图1为本发明第一实施例提供的肖特基二极管的侧视结构示意图。

图2为本发明实施例提供的肖特基二极管的侧视结构剖面示意图。

图3为本发明实施例提供的另一种情况下的肖特基二极管的侧视结构剖面示意图。

图4为本发明实施例提供的肖特基二极管阵列的侧视结构示意图。

图5为本发明实施例提供的肖特基二极管采用一维纳米结构作为半导体结构的肖特基二极管的俯视示意图。

图6为本发明实施例提供的肖特基二极管采用二维纳米结构作为半导体结构的肖特基二极管的俯视示意图。

图7为本发明实施例提供的碳纳米管水平阵列膜的扫面电镜照片。

图8为图7中提供的碳纳米管膜的结构示意图。

图9为碳纳米管无序网络膜的扫描电镜照片。

图10为本发明实施例提供的肖特基二极管的电流-电压曲线图。

图11为本发明第二实施例提供的肖特基二极管的侧视结构剖面示意图。

图12为本发明第二实施例提供的肖特基二极管的侧视结构剖面示意图。

图13为本发明第二实施例提供的肖特基二极管的侧视结构剖面示意图。

图14为本发明实施例提供的包括绝缘基底的肖特基二极管的侧视结构剖面示意图。

图15为本发明实施例提供的肖特基二极管阵列的侧视结构剖面示意图。

图16为本发明第三实施例提供的薄膜晶体管的侧视结构示意图。

图17为本发明实施例提供的薄膜晶体管的转移特性曲线图。

图18为本发明第四实施例提供的薄膜晶体管的侧视结构示意图。

主要元件符号说明

肖特基二极管100,200

绝缘基底102,202

第一电极104;204

第一金属层204a

第二金属层204b

第二电极106;206

第三金属层206a

第四金属层206b

半导体结构108;208

第一端1082;2082

第二端1084;2084

肖特基二极管单元110;210

肖特基二极管阵列10;20

台阶状结构212

反向台阶状结构214

绝缘介质层304;404

栅极302;402

如下具体实施方式将结合上述附图进一步说明本发明。

具体实施方式

以下将结合附图及具体实施例对本发明提供的肖特基二极管作进一步的详细说明。

请参见图1及图2,本发明第一实施例提供一种肖特基二极管100,该肖特基二极管100包括一绝缘基底102及一肖特基二极管单元(图未标)。所述肖特基二极管单元设置在绝缘基底102的表面,被绝缘基底102支撑。所述肖特基二极管单元包括一第一电极104,一半导体结构108及一第二电极106。所述第一电极104设置在绝缘基底102的表面,所述半导体结构108包括一第一端1082及与第一端1082相对的第二端1084,所述半导体结构108的第一端1082铺设在第一电极104上,使第一电极104位于半导体结构108的第一端1082和绝缘基底102之间,第二端1084设置在绝缘基底102的表面,所述第二电极106设置在半导体结构108的第二端1084,并使半导体结构108的第二端1084位于第二电极106和绝缘基底102之间。

请参见图3,在某个实施例中,所述肖特基二极管100的结构也可以如图3所示。第一电极104嵌在绝缘基底102中,第一电极104的上表面与绝缘基底102的表面平齐。半导体结构108水平设置在绝缘基底102的表面,第一端1082位于第一电极104的上表面。第二电极106设置在半导体结构108的表面,覆盖半导体结构108的第二端1084。第一电极104位于半导体结构108的第一端1082和绝缘基底102之间。半导体结构108的第二端1084位于第二电极106和绝缘基底102之间。

请参见图4,本发明实施例进一步提供一种肖特基二极管阵列10,该肖特基二极管阵列10包括所述绝缘基底102及设置在绝缘基底102表面的多个所述肖特基二极管单元110,该多个肖特基二极管单元110以阵列的形式排列设置在绝缘基底102的表面。每个肖特基二极管单元110之间相互间隔设置。所述肖特基二极管单元110与第一实施例中所述的肖特基二极管单元相同。

所述肖特基二极管100可以通过以下方法获得:先在绝缘基底102上形成第一电极104;然后在第一电极104和绝缘基底102上形成半导体结构108,即,半导体结构108的第一端1082设置在第一电极104的上表面,第二端1084设置在绝缘基底102的表面;接着,在半导体结构108的第二端1084的上表面形成第二电极106。本实施例中,第一电极104和第二电极106均通过光刻的方法形成。

所述肖特基二极管阵列通过以下方法获得:先在绝缘基底102上形成多个第一电极104;然后在第一电极104和绝缘基底102上形成多个半导体结构108,半导体结构108和第一电极104一一对应设置,即,每个半导体结构108的第一端1082设置在一个第一电极104的上表面,第二端1084设置在绝缘基底102的表面;接着,在每个半导体结构108的第二端1084的上方形成第二电极106,半导体结构108与第二电极106一一对应设置,及每个第二电极106设置在一个半导体结构108的第二端1084的上方。所述多个第一电极104和多个第二电极106通过光刻的方法形成。

所述绝缘基底102起支撑作用,其材料可选择为玻璃、石英、陶瓷、金刚石、硅片等硬性材料或塑料、树脂等柔性材料。本实施例中,所述绝缘基底102的材料为带二氧化硅层的硅晶元片。所述绝缘基底102用于对肖特基二极管100提供支撑。所述绝缘基底102也可选用大规模集成电路中的基板,且多个肖特基二极管100可按照预定规律或图形集成于同一绝缘基底102上,形成薄膜晶体管或其它半导体器件。

所述第一电极104和第二电极的材料可以为铝、铜、钨、钼、金、钛、钕、钯、铯或它们的合金。本实施例中,所述第一电极104和第二电极106的材料为金属钯膜,厚度为50纳米。

在一些实施例中,所述半导体结构108为纳米级半导体结构,该纳米级半导体结构可以为一维纳米结构,即为线性结构,其直径小于200纳米,如图5所示;在另一些实施例中,所述纳米级半导体结构也可以为二维纳米结构,及为薄膜状结构,其厚度小于200纳米,如图6所示。所述半导体结构108的材料可以为n型半导体,也可以为p型半导体。所述半导体结构108的材料不限,可以为无机化合物半导体、元素半导体或有机半导体材料,如:砷化镓、碳化硅、多晶硅、单晶硅或萘等。一维纳米结构可以为纳米线、纳米管、纳米棒等半导体材料,如碳纳米管,硅纳米线等。当半导体结构108为一维纳米结构时,半导体结构108从第一电极104延伸至第二电极106。二维纳米结构可以为纳米膜,如碳纳米管膜、二硫化钼膜等。在一些实施例中,半导体结构108的材料为过渡金属硫化物材料。本实施例中,半导体结构108的材料为硫化钼(mos2),为n型半导体材料,其厚度为1~2纳米。

所述半导体结构108可以为一碳纳米管结构。所述碳纳米管结构可以为单根的半导体型碳纳米管,也可以为一碳纳米管膜,该碳纳米管膜的厚度小于等于200纳米。

在某个实施例中,所述半导体结构108为单根的半导体型的碳纳米管,如图5所示。所述碳纳米管的直径可以为1纳米~10纳米。优选地,该碳纳米管为单壁碳纳米管,其直径为1纳米~5纳米,长度为100纳米至1毫米。碳纳米管从第一电极104延伸至第二电极106,碳纳米管的一端设置在第一电极104上,另一端设置在第二电极106下方。

在另一些实施例中,所述半导体结构108为一碳纳米管膜,其包括多根碳纳米管。所述多根碳纳米管中,半导体型碳纳米管的质量百分含量大于等于80%小于等于100%。半导体结构108可以由该多根碳纳米管组成。所述碳纳米管膜可以为一碳纳米管有序膜或一碳纳米管无序膜。所述碳纳米管有序膜是指碳纳米管膜中的碳纳米管按照一定规律排列。所述碳纳米管无序膜是指碳纳米管膜中的碳纳米管无序随机排列。

请参见图7及图8,在某个实施例中,所述碳纳米管有序膜112为一碳纳米管水平阵列膜,其由多根相互平行且水平排列的碳纳米管1122组成,所述碳纳米管1122平行于绝缘基底102的表面,并从第一电极104延伸至第二电极106。该碳纳米管有序膜112中的多根碳纳米管通过cvd直接生长生成或从一碳纳米管阵列转移至目标基底上,形成多通道的碳纳米管导电沟道。所述碳纳米管有序膜112的厚度方向上仅包括一根碳纳米管1122,即,碳纳米管有序膜112的厚度由碳纳米管1122的直径决定。所述碳纳米管1122的直径可以为1纳米~10纳米。所述碳纳米管有序膜112的厚度为1纳米~10纳米。优选地,该碳纳米管1122为单壁碳纳米管,其直径为1纳米~5纳米,长度为100纳米至1毫米。

请参见图9,在某些事实例中,碳纳米管无序膜为一碳纳米管无序网络膜。该碳纳米管无序膜包括多个无序排列的碳纳米管,碳纳米管随机排列,碳纳米管之间可以相互交叉或平行。所述碳纳米管为半导体型的碳纳米管,其直径为1~50纳米。该碳纳米管无序膜的厚度为1~100纳米。在某个实施例中,该碳纳米管无序膜可以通过溶液浸泡沉积碳纳米管获得。所述溶液沉积浸泡碳纳米管是指将预先分离的碳纳米管粉末分散在分散剂中,其中,半导体粉末中半导体型碳纳米管的质量百分含量大于等于80%小于等于100%,所述分散剂为nmp、甲苯等有机溶剂;然后将目标基底浸泡入该分散液中,在所述目标基底的表面沉积形成一碳纳米管无序网络,即碳纳米管无序网络膜。本实施例中,目标基底为形成有第一电极104的绝缘基底102,碳纳米管沉积在第一电极104的表面和绝缘基底102的表面形成所述碳纳米管膜。然后在碳纳米管膜的远离第一电极104的另一端形成第二电极106,即可得到图1中所述的结构,该碳纳米管膜即为半导体结构108。在另一个实施例中,碳纳米管膜可以通过喷墨打印形成。所述喷墨打碳纳米管是指将上述分散在分散剂的碳纳米管粉末制备成打印墨水,直接定位打印碳纳米管无序网络沟道,即得到碳纳米管膜。本实施例中,在形成有第一电极104的绝缘基底102上直接打印形成碳纳米管膜。在另一个实施例中,所述碳纳米管膜为通过cvd方法生长获得的无序网络,该cvd方法采用金属催化剂。所述催化剂金属包括铁、钴、镍及其相应的合金、盐等,碳源包括甲烷、乙炔、一氧化碳、乙醇、异丙醇等气体或液体。

所述碳纳米管有序膜还可以为一碳纳米管拉膜,碳纳米管拉膜是由若干碳纳米管组成的自支撑结构,其中半导体型的碳纳米管的质量百分含量大于等于80%小于等于100%。所述若干碳纳米管为沿同一方向择优取向延伸。所述择优取向是指在碳纳米管拉膜中大多数碳纳米管的整体延伸方向基本朝同一方向。而且,所述大多数碳纳米管的整体延伸方向基本平行于碳纳米管拉膜的表面。进一步地,所述碳纳米管拉膜中多数碳纳米管是通过范德华力首尾相连,并朝同一方向延伸。具体地,所述碳纳米管拉膜包括多个碳纳米管朝同一方向延伸,每一碳纳米管与在延伸方向上相邻的碳纳米管通过范德华力首尾相连。当然,所述碳纳米管拉膜中存在少数随机排列的碳纳米管,这些碳纳米管不会对碳纳米管拉膜中大多数碳纳米管的整体取向排列构成明显影响。所述自支撑为碳纳米管拉膜不需要大面积的载体支撑,而只要相对两边提供支撑力即能整体上悬空而保持自身膜状状态,即将该碳纳米管拉膜置于(或固定于)间隔特定距离设置的两个支撑体上时,位于两个支撑体之间的碳纳米管拉膜能够悬空保持自身膜状状态。所述自支撑主要通过碳纳米管拉膜中存在连续的通过范德华力首尾相连延伸排列的碳纳米管而实现。

所述碳纳米管有序膜还可以为一碳纳米管碾压膜。所述碳纳米管碾压膜包括均匀分布的碳纳米管,其中半导体型的碳纳米管的质量百分含量大于等于80%小于等于100%。碳纳米管沿同一方向择优取向排列,碳纳米管也可沿不同方向择优取向排列。优选地,所述碳纳米管碾压膜中的碳纳米管平行于碳纳米管碾压膜的表面。所述碳纳米管碾压膜中的碳纳米管相互交叠,且通过范德华力相互吸引,紧密结合,使得该碳纳米管碾压膜具有很好的柔韧性,可以弯曲折叠成任意形状而不破裂。且由于碳纳米管碾压膜中的碳纳米管之间通过范德华力相互吸引,紧密结合,使碳纳米管碾压膜为一自支撑的结构,可无需基底支撑。所述碳纳米管碾压膜可通过碾压一生长与基底上的碳纳米管阵列获得。所述碳纳米管碾压膜中的碳纳米管与形成碳纳米管阵列的基底的表面形成一夹角β,其中,β大于等于0度且小于等于15度(0≤β≤15°),该夹角β与施加在碳纳米管阵列上的压力有关,压力越大,该夹角越小。所述碳纳米管碾压膜的长度和宽度不限。所述碾压膜还可以包括多个微孔结构,该微孔结构均匀且规则分布于碳纳米管碾压膜中,其中微孔直径为1纳米~0.5微米。

本发明所提供的肖特基二极管100的结构为特殊的不对称结构,即,第一电极104位于半导体结构108的上方,第二电极106位于半导体结构108的下方。无论半导体结构108采用的材料是p型半导体还是n型半导体,半导体结构108在电极上方的肖特基势垒都大于半导体结构在电极下方的肖特基势垒高度。因此,本发明所提供的不对称结构的肖特基二极管,由于其特殊的不对称结构,采用简单的半导体材料既可以得到性能良好的肖特基二极管,无需复杂的化学掺杂,或使用多种材料的异质结方法。本发明中,对于半导体结构108采用p型半导体的肖特基二极管,即p型肖特基二极管,方向为从位于半导体结构108上方的第一电极104流向位于半导体结构108的下方的第二电极106的电流大于方向为从位于半导体结构108的下方的第二电极106流向的位于半导体结构108上方的第一电极104的电流,因此,电流方向为从第一电极104到第二电极106时为肖特基二极管的开的状态,电流方向为从第二电极106到第一电极104时为肖特基二极管的关的状态;对于半导体结构108采用n型半导体的肖特基二极管,即,n型肖特基二极管,方向为从位于半导体结构108的下方的第二电极106流向的位于半导体结构108上方的第一电极104的电流大于方向为从位于半导体结构108上方的第一电极104流向位于半导体结构108的下方的第二电极106的电流,因此,电流方向为从第二电极106到第一电极104时为肖特基二极管的开的状态,电流方向为从第一电极104到第二电极106时为肖特基二极管的关的状态。上述现象是由于电子和空穴流动造成电流方向不同所导致的。本质而言,电子在p型半导体中和n型半导体中的运动规律与大小随方向的规律是类似的,但是我们定义的电流方向是和空穴流动方向相同、和电子流动方向相反,因此就导致了在宏观上二者的电流大小规律不尽相同。

图10为本发明实施例提供的肖特基二极管的偏置电压与电流的曲线图,在本实施例中,采用二硫化钼的纳米膜作为半导体结构。由图10可以看出,肖特基二极管具有较好的方向性,其正反向电压的比可以达到104

本发明提供的肖特基二极管具有以下优点:其一、通过设置特殊的不对称结构,采用简单的半导体材料便可以得到整流效果较好的肖特基二极管,正反向电压的比可以达到104;其二、由于半导体结构的材料简单,制备方法易操做,降低了肖特基二极管的成本,可以大规模制备。

请参见图11、图12或图13,本发明第二实施例提供一种肖特基二极管200。所述肖特基二极管200包括一第一电极204、一第二电极206及一半导体结构208。半导体结构208包括一第一端2082及与第一端2082相对的第二端2084,所述半导体结构208的第一端2082与第一电极204相互接触,第二端2084与第二电极206相互接触。使所述第一电极204包括一第一金属层204a及一第二金属层204b,第一金属层204a覆盖第二金属层204b上,第二金属层204b的一端从第一金属层204a露出,使第一金属层204a的侧面与第二金属层204b的上表面行成一台阶状结构212。所述第二电极206包括一第三金属层206a及一第四金属层206b,第三金属层206a覆盖第四金属层206b上,第三金属层206a的一端从第四金属层206b凸出,第三金属层206a的下表面和第四金属层206b的侧面行成一反向台阶状结构214。所述半导体结构208的第一端2082为半导体结构208被第一金属层204a和第二金属层204b夹持的部分。所述半导体结构208的第二端2084为半导体结构208被第三金属层206a和第四金属层206b夹持的部分。第一端2082和第二端2084之间的半导体结构108的部分定义为中间部(未标号)。所述台阶状结构212和反向台阶状结构214均位于半导体结构208的第一端2082和第二端2084之间,靠近半导体结构208的中间部。从图11、图12或图13中可以看出,半导体结构208的中间部从第一电极204的台阶状结构212延伸至第二电极206的反向台阶状结构214。

所述第一电极204、第二电极206的材料与第一实施例中的第一电极104和第二电极106的材料相同。

所述半导体结构208和第一实施例中的半导体结构108的结构和材料相同。

所述肖特基二极管200还可以包括一绝缘基底,该绝缘基底用于支撑第一电极204、第二电极206和半导体结构208。所述绝缘基底的结构不限,可以为具有平面的板状结构,肖特基二极管200设置在该绝缘基底的表面。请参见图14,所述绝缘基底202可以为具有凹槽的结构的基底,肖特基二极管200的第一电极204的第二金属层204b和第二电极206的第四金属层206b嵌在绝缘基底202的内部,使第二金属层204b、第四金属层206b及绝缘基底202的表面位于同一平面。半导体结构208设置在该平面上。

所述肖特基二极管200的其他结构和特征与第一实施例中的肖特基二极管100的结构和特征相同。

本发明实施例进一步提供一种上述肖特基二极管200的制备方法,包括以下步骤:

提供一绝缘基底202,在绝缘基底202上形成一第二金属层204b和一第四金属层206b,第二金属层204b和第四金属层206b间隔设置;

在第二金属层204b、第四金属层206b和绝缘基底202上形成一半导体结构208,半导体结构208包括一第一端2082及与第一端2082相对的第二端2084,将半导体结构208的第一端2082设置在第二金属层204b的上表面,将第二端2084设置在第四金属层206b的上表面,半导体结构208的第一端2082和第二端2084之间的中间部设置在绝缘基底202的表面;

在半导体结构208的第一端2082的上表面形成一第一金属层204a,半导体结构208的第一端2082被第一金属层204a和第二金属层204b夹持,第一金属层204a的侧面和第二金属层204b的上表面形成一台阶状结构212;

在半导体结构208的第二端2084的上表面形成一第三金属层206a,半导体结构208的第二端2084被第三金属层206a和第四金属层206b夹持,第四金属层206b的侧面和第三金属层206a的下表面形成一反向台阶状结构214,所述台阶状结构212和反向台阶状结构214位于半导体结构208的第一端2082和第二端2084之间,所述半导体结构208的中间部从所述台阶状结构212延伸至所述反向台阶状结构214。

第一金属层204a、第二金属层204b、第三金属层206a及第四金属层206b均可以通过光刻的方法形成。

请参见图15,本发明实施例进一步提供一种肖特基二极管阵列20,该肖特基二极管阵列20包括一绝缘基底202及多个肖特基二极管单元210。所述肖特基二极管单元210均匀分布在绝缘基底202的表面。所述肖特基二极管单元210与本发明第二实施例提供的肖特基二极管200相同。

请参见图16,本发明第三实施例提供一种薄膜晶体管300,该薄膜晶体管300包括一栅极302、一绝缘介质层304及至少一个肖特基二极管单元110。所述薄膜晶体管300可以包括一个或多个肖特基二极管单元110。

所述栅极302为一导电薄膜。该导电薄膜的厚度为0.5纳米~100微米。该导电薄膜的材料可以为金属、合金、重掺杂半导体(如硅),铟锡氧化物(ito)、锑锡氧化物(ato)、导电银胶、导电聚合物或导电性碳纳米管等。该金属或合金材料可以为铝、铜、钨、钼、金、钛、钕、钯、铯或其任意组合的合金。本实施例中,所述栅极302的材料为金属钯膜,厚度为50纳米。

所述绝缘介质层304起支撑作用和绝缘作用,其材料可选择为玻璃、石英、陶瓷、金刚石、氧化物等硬性绝缘材料或塑料、树脂等柔性绝缘材料。本实施例中,所述绝缘介质层304的材料为ald生长的氧化铝薄膜,厚度20纳米。当薄膜晶体管300包括多个肖特基二极管单元110时,所述绝缘介质层304也可选用大规模集成电路中的基板,且多个肖特基二极管单元110可按照预定规律或图形集成于同一绝缘介质层304上,形成薄膜晶体管面板或其它薄膜晶体管半导体器件。所述绝缘介质层的形状不限,可以为具有平面的板状结构,肖特基二极管单元110设置在该绝缘基底的表面;所述绝缘介质层304也可以为具有凹槽的结构的基底,肖特基二极管单元110的第一电极和第二电极嵌在绝缘介质层304的内部,使第一电极104、第二电极106及绝缘介质层304的表面位于同一平面。

所述肖特基二极管单元110与第一实施例中的肖特基二极管100相同,在此不在重复描述。

在某个实施例中,采用p型的碳纳米管材料作为半导体结构108,当在第一电极104上施加-1伏的偏执电压,采用不同的电压扫描栅极302时,得到的电流和电压的曲线图如图17中的i1所示;当在第二电极106上施加-1伏的偏执电压,采用不同的电压扫描栅极302时,得到的电流和电压的曲线图如图17中的i2所示。从图17中可以看出,在薄膜晶体管300处于开态时,电流方向从位于半导体结构108上方的第一电极104流向位于半导体结构108的下方的第二电极106的电流大于方向为从位于半导体结构108的下方的第二电极106流向的位于半导体结构108上方的第一电极104的电流,即i1大于i2。

在别的实施例中,当薄膜晶体管300包括多个肖特基二极管单元110时,该多个肖特基二极管单元110间隔分布在绝缘介质层304的表面。

请参见图18,本发明第四实施例提供提供一种薄膜晶体管400,该薄膜晶体管400包括一栅极402、一绝缘介质层404及至少一个肖特基二极管单元210。所述薄膜晶体管400可以包括一个或多个肖特基二极管单元410。所述栅极402与第三实施例中的栅极302相同。所述绝缘介质层404与第三实施例中的绝缘介质层304相同。所述肖特基二极管单元210与第二实施例中的肖特基二极管单元210相同。

该绝缘介质层404可以为具有平面的板状结构,肖特基二极管单元210设置在该绝缘基底的表面。所述绝缘介质层404也可以为具有凹槽的结构的基底,肖特基二极管单元210的第一电极204的第二金属层204b和第二电极206的第四金属层206b嵌在绝缘介质层404的内部,使第二金属层204b、第四金属层206b及绝缘介质层404的表面位于同一平面。

在某个实施例中,采用p型的碳纳米管材料作为半导体结构108,在薄膜晶体管300处于开态时,电流方向从位于半导体结构108上方的第一电极104流向位于半导体结构108的下方的第二电极106的电流大于方向为从位于半导体结构108的下方的第二电极106流向的位于半导体结构108上方的第一电极104的电流。

另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1