有机电致发光显示装置的制作方法

文档序号:12827563阅读:238来源:国知局
有机电致发光显示装置的制作方法

本发明涉及显示技术领域,特别是涉及一种有机电致发光显示装置。



背景技术:

oled(organiclightemittingdisplay,有机发光显示)显示技术与传统的lcd显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且oled显示屏幕可以做的更轻更薄,可视角度更大,并且能够显著节省电能,因此被业界公认为最具发展潜力的显示装置。

oled器件根据发光方式可以分为顶发射型、底发射型和穿透型。其中,顶发射型oled器件的光从顶电极一侧发射,其光辐射可以分为三个模式:即传输到空气中的外部模式,限制在有机物中的波导模式以及限制在金属和电介质界面的表面等离子体模式。现有的顶发光oled器件存在波导模式、等离子体模式的光比例过高,外部模式的光比例过低,造成光取出率过低的问题。



技术实现要素:

本发明的目的在于提供一种有机电致发光显示装置,可以提高出光率。

本发明实施例提供一种有机电致发光显示装置,其包括:基板、有机电致发光结构以及显示屏;

所述有机电致发光结构设置在所述基板和所述显示屏之间,用于向所述显示屏发射光;

所述显示屏包括有机光阻层,所述有机光阻层掺杂纳米粒子,所述纳米粒子具有将所述有机电致发光结构发射的光折射到外界的作用。

在本发明所述的有机电致发光显示装置中,所述有机光阻层中所述纳米粒子的质量分数为5%。

在本发明所述的有机电致发光显示装置中,所述纳米粒子以甲苯作为溶剂溶入所述有机光阻层中。

在本发明所述的有机电致发光显示装置中,所述纳米粒子直径为200-400纳米。

在本发明所述的有机电致发光显示装置中,所述纳米粒子包括二氧化钛。

在本发明所述的有机电致发光显示装置中,所述有机电致发光显示装置还包括薄膜封装层,所述薄膜封装层设置在所述有机电致发光结构与所述显示屏之间。

在本发明所述的有机电致发光显示装置中,所述显示屏还包括电容层,所述电容层设置在所述薄膜封装层和所述有机光阻层之间。

在本发明所述的有机电致发光显示装置中,所述有机电致发光显示装置还包括低温多晶硅薄膜晶体管,所述低温多晶硅薄膜晶体管设置在所述基板和所述有机电致发光结构之间。

在本发明所述的有机电致发光显示装置中,所述有机电致发光显示装置还包括聚酰亚胺层,所述聚酰亚胺层设置在所述基板和所述低温多晶硅薄膜晶体管之间。

在本发明所述的有机电致发光显示装置中,所述有机电致发光结构为顶发光的有机电致发光结构。

相较于现有的有机电致发光显示装置,本发明的有机电致发光显示装置通过在显示屏的有机光阻层中添加纳米粒子,提高了有机电致发光结构的出光率。

为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:

附图说明

图1为本发明实施例提供的有机电致发光显示装置的结构示意图;

图2为本发明实施例提供的另一有机电致发光显示装置的结构示意图;

图3为本发明实施例提供的又一有机电致发光显示装置的结构示意图;

图4为本发明实施例提供的再一有机电致发光显示装置的结构示意图。

具体实施方式

以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。

在图中,结构相似的单元是以相同标号表示。

在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。

综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

请参照图1,图1为本发明实施例提供的有机电致发光装置的结构示意图。所述有机电致发光显示装置1000包括基板100、有机电致发光结构200以及显示屏300。

其中,所述有机电致发光结构200设置在所述基板100和所述显示屏300之间。其中所述基板100为玻璃基板。

所述有机电致发光结构200为夹层式结构,包括阳极、阴极和夹在阳极、阴极之间的发光层。具体采用氧化铟锡材料制成的透明电极作为阳极,然后在阳极上采用蒸镀法或者旋涂法制备单层或者多层有机薄膜即形成发光层,最后在发光层上制作功函数低的金属作为阴极,比如镁、钙等金属。

在一些实施例中,所述有机电致发光结构200为顶发光的有机电致发光结构,即所述发光层发出的光向所述显示屏300一侧发射。在一些实施例中,所述有机电致发光结构200为主动矩阵有机发光二极体(activematrixorganiclightemittingdiode,amoled)。

所述显示屏300包括有机光阻层30,所述有机光阻层30掺杂纳米粒子,所述纳米粒子具有将所述有机电致发光结构向显示屏300一侧发射的光折射到外界的作用。

在一些实施例中,所述纳米粒子直径为200-400纳米,以甲苯作为溶剂溶入所述有机光阻层30中,在有机光阻层30中的质量分数为5%。所述纳米粒子包括二氧化钛等具有高折射率的纳米粒子。

具体的,以甲苯作为溶剂在有机光阻里掺杂纳米粒子,使纳米粒子的质量分数达到5%为止。然后进行充分的搅拌,使纳米粒子均匀的分散在有机光阻中,形成折射率较高的散射膜。最后再将其涂布在有机电致发光结构200上。

如图1所示,当有机电致发光结构200向显示屏300发射光时,光经过所述有机光阻层30时,其内的纳米粒子将光折射到外界,从而使更多的光被散射出来,提高了有机电致发光结构40-60%的出光率。

请参照图2,图2为本发明实施例提供的有机电致发光装置的又一结构示意图。由于有机电致发光结构200中的金属阴极一般是铝、镁、钙等活泼金属,非常容易与外界渗透进来的水汽发生反应,影响电荷的注入。同时,渗透进来的水和氧气还会与有机材料发生化学反应,导致器件性能下降。因此如图2所示,采用薄膜封装技术在所述有机电致发光显示装1000中设置薄膜封装层400,所述薄膜封装层400设置在所述有机电致发光结构200与所述显示屏300之间,用于保护所述有机电致发光结构200不受外部水分、氧气的侵蚀,起到封装的作用。

在一些实施例,还可以采用metalcan封装技术、glass封装技术、及hybrid封装技术等技术对有机电致发光结构200进行封装。

当有机电致发光结构200向显示屏300发射光时,光依次经过所述薄膜封装层400、所述有机光阻层30,先被薄膜封装层400折射至有机光阻层30,再被有机光阻层30内的纳米粒子折射到外界,从而使更多的光被散射出来,提高了有机电致发光结构40-60%的出光率。

在一些实施例中,该显示屏300为触摸屏。请参照图3,所述显示屏300还包括电容层31,所述电容层31设置在所述薄膜封装层400和所述有机光阻层30之间,用于检测触摸电容。其中电容层31由多个电容器组成,电容器包括第一金属层311、第二金属层312和位于所述第一金属层311、第二金属层312之间的绝缘层313。所述第一金属层311和所述第二金属层312为钛/铝/钛材质,所述绝缘层313为氮化硅材质。

当有机电致发光结构200向显示屏300发射光时,光依次经过所述薄膜封装层400、所述电容层31、所述有机光阻层30,先被所述薄膜封装层400、所述电容层31折射至有机光阻层30,再被有机光阻层30内的纳米粒子折射到外界,从而使更多的光被散射出来,提高了有机电致发光结构40-60%的出光率。

在一些实施例中,所述有机电致发光显示装置1000中还包括薄膜晶体管。请参照图4,所述有机电致发光显示装置1000还包括低温多晶硅薄膜晶体管500,所述低温多晶硅薄膜晶体管500设置在所述基板100和所述有机电致发光结构200之间。

在一些实施例中,请参照图4,所述有机电致发光显示装1000还包括聚酰亚胺(polyimide,pi)层600,所述pi层设置在所述基板100和所述低温多晶硅薄膜晶体管500之间。具体的先对基板100进行清洗,然后在基板100上涂覆pi液,最后加热成膜形成pi层。

在一些实施例中,所述pi层还可以用聚酰亚胺、聚丙烯酸树脂、聚乙烯酸材料的涂层代替。

本发明的有机电致发光显示装置通过在显示屏的有机光阻层中添加纳米粒子,提高了有机电致发光结构的出光率。

综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1