接合基板的方法与流程

文档序号:13664580阅读:266来源:国知局
接合基板的方法与流程

本申请为2013年8月22日递交的申请号为201380048727.0并且发明名称为“接合基板的方法”的发明专利申请的分案申请。

本发明的实施方式大体涉及接合基板的方法和通过此方法使用分段接合设计制造的适用于半导体处理腔室中的部件。



背景技术:

在基板处理应用中,使用接合在一起的两个或更多个零件或基板来制造多个腔室零件和部件。这些部件的实例包括:接合至温度控制支撑件的静电圆盘(electrostaticpuck)、接合至气体分配板的喷头和接合至腔室盖的加热器等。

图1为包括接合在一起的基板的传统腔室零件的实例,该传统腔室零件图示为静电夹盘组件100。静电夹盘组件100包括通过粘结层104耦接至温度控制基底106的静电圆盘102。静电圆盘102包括基板支撑表面120,晶片(未示出)在真空处理期间静电固持在所述基板支撑表面120上。基板支撑表面120大体包括提供背侧气体(诸如氦)的多个背侧气体输送孔(未示出),以改良基板与静电圆盘102之间的热传递。

粘结层104为覆盖静电圆盘102与温度控制基底106的整个配合表面的大体连续的整体层(monolithiclayer)。粘结层104可包括形成为穿过粘结层104例如用于容纳升降销、射频功率输送杆、氦通道和类似物的多个孔。为简单起见,在图1中仅图示形成在粘结层104中的示例性升降销孔110。升降销孔110与穿过静电圆盘102形成的升降销孔116和穿过温度控制基底106形成的升降销孔118对准。

参照图2中描绘的静电夹盘组件100的局部截面图,静电圆盘102大体包括嵌入在介电体204中的夹持电极202。介电体204通常由陶瓷材料(诸如氮化铝和/或氧化铝)制造而成。夹持电极202可为金属网或其他适合的导体。通过穿过温度控制基底106和粘结层104的射频功率输送杆(未示出)将直流电压施加至夹持电极202,通过库仑效应或约翰逊-拉贝克(johnsen-rahbeck)效应实现对置于基板支撑表面120上的基板(即,晶片)的夹持。

温度控制基底106大体包括通常由铝、不锈钢或具有良好导热率的其他材料制造而成的导热体216。至少一个温度控制特征结构218可形成在导热体216中和/或耦接至导热体216。温度控制特征结构218可为加热器或冷却器,且在图2所示的实施方式中,温度控制特征结构218图示为内沟道220和外沟道222,单独受控的热传递流体可循环穿过内沟道220和外沟道222以跨越静电圆盘102的基板支撑表面120提供单独的温度控制区域。

在静电夹盘组件100的制造和/或使用期间,尤其在固化期间,由粘结层104释放的挥发物可被截留在静电圆盘102与温度控制基底106之间。截留的挥发性气体可使粘结层104与静电圆盘102和温度控制基底106之一或两者分层,诸如由图2中的空隙210所示。空隙210增加静电圆盘102与温度控制基底106之间的热阻抗,此情况可造成所处理的基板(例如,晶片)上的不符合技术要求(out-of-spec)的温度均匀性,进而导致对产量和生产力的昂贵损失。此外,在湿态固化的硅树脂用作粘结层104的应用中,完全固化粘结层104要求局部位于接合位点处的湿气的充分存在和可用性。在粘结层相对于粘结层的直径非常薄时,充分的湿气可用性变得困难或不可能,造成粘结剂的不完全固化。这进一步加剧在使用期间释放挥发物的可能性和静电夹盘组件100的后续分层和/或性能劣化。

由于必须周期性地整修(refurbish)静电夹盘组件100,粘结层104的高深宽比使得难以将粘结层104的内部彻底暴露至有效削弱静电圆盘102与温度控制基底106之间的接合所需的溶剂。若不能充分削弱粘结层104,则静电圆盘102和/或温度控制基底106在静电圆盘102与温度控制基底106被强制撬开的情况下可能被损坏。在极端情况中,温度控制基底106可能需要被切削掉以释放静电圆盘102。因此,传统静电夹盘组件100的整修可为劳动密集的,具有高废品率(scraprate)且不期望地为昂贵的。

上述问题不是静电夹盘组件唯一具有的,而是一定程度地存在于使用邻接的粘结层接合两个基板的几乎所有半导体腔室部件中。此问题亦存在于显示器及太阳能真空处理应用中以及接合表面面积可大很多的情况中。

因此,需要接合基板的改良方法、用这些方法制造的部件和整修这些部件的改良方法。



技术实现要素:

披露了接合基板的方法,使用该方法形成组件的方法,以及整修所述组件的改良方法,这些方法利用在用于结合两个基板的粘结剂中形成的至少一个沟道以改良组件的制造、性能和整修。在一个实施方式中,在接合两个基板时(诸如将静电圆盘接合至温度控制基底),接合基板的粘结层被分成多个区段,而非连续的整体层。由于在邻近区段之间形成有沟道,所以能够使两个物体容易地被剥离以用于整修。所述沟道另外允许来自两个基板之间的挥发物的释放,从而确保组件的寿命期内的均匀温度分布和热传递性能。

在一个实施方式中,组件包括通过粘结层固定至第二基板的第一基板。所述组件包括沟道,所述沟道具有由粘结层界定的至少一侧并且具有暴露于组件外部的出口。

在一个实施方式中,提供一种制造组件的方法,所述方法包括以下步骤:将粘结层施加至第一基板上,将第二基板放置在粘结层上,从而将所述两个基板固定在一起,所述粘结层界定在基板之间横向延伸至组件外部的沟道的至少一侧,以及使基板和粘结层经受接合工序并且允许来自粘结层的挥发物释放以通过沟道从基板之间逸出。

在一个实施方式中,提供一种整修具有通过粘结层结合在一起的两个基板的组件的方法,其中粘结层的至少一侧界定在基板之间横向延伸至组件外部的沟道。所述方法包括以下步骤:将接合削弱剂通过沟道引入至粘结层的内部区域;分离基板;整修第一基板,以及使用经整修的第一基板形成整修组件。

在另一实施方式中,提供静电夹盘组件,所述静电夹盘组件包括将静电圆盘固定至温度控制基底的粘结层。所述静电夹盘组件包括沟道,所述沟道具有由粘结层界定的至少一侧并且具有暴露于组件外部的出口。

附图说明

可参照实施方式(一些实施方式描绘于附图中)来详细理解本发明的上述特征结构以及以上简要概述的有关本发明更特定的描述。然而,应注意的是,附图仅图示本发明的典型实施方式并因此不被视为限制本发明的范围,因为本发明可允许其他等效的实施方式。

图1为传统静电夹盘组件的顶部分解透视图。

图2为图1的静电夹盘组件的局部截面图。

图3为静电夹盘组件的一个实施方式的顶部分解透视图。

图3a为图3的静电夹盘组件的局部截面图。

图3b为具有密封环的图3的静电夹盘组件的局部截面图。

图3c为沿图3b的截面线3c-3c所取的静电夹盘组件的截面图,图示在粘结层中形成的沟道。

图4-12为在粘结层中形成的沟道的替代性实施方式的截面图。

图13为根据本发明的一个实施方式的喷头组件的分解截面图。

图14为图13的喷头组件的截面图,图示在粘结层中形成的沟道的示例性配置。

图15为组件的一个实施方式的顶部分解透视图,所述组件包括通过粘结层固定的至少两个基板,所述粘结层具有在其中形成的至少一个沟道。

图16为图15的沟道的可选配置的局部截面图。

图17为组件的另一实施方式的顶部分解透视图,所述组件包括至少两个基板,所述至少两个基板具有适用于使固定两个基板的粘结层通气(venting)的至少一个沟道。

图18为制造包括通过粘结层固定的至少两个基板的组件的方法的一个实施方式的流程图。

图19为整修包括通过粘结层固定的至少两个基板的组件的方法的一个实施方式的流程图。

为了便于理解,已尽可能地使用相同的参考数字来标示各图所共有的相同元件。预期一个实施方式的元件可有利地并入其他实施方式。

具体实施方式

本发明的实施方式大体提供一种接合基板的方法、通过此方法制造的组件以及整修所述组件的改良方法。本文描述的本发明的实施方式利用由用于结合两个基板的粘结剂部分界定的至少一个沟道。在本发明的某些实施方式中,沟道被限定在将基板接合在一起的粘结层的邻近区段之间。沟道对基板组件的外部开放,因此在组件的固化或使用期间,为从粘结层释放的挥发性气体提供通气路径以从基板之间逸出。有利地,通气路径增强粘结层的更佳固化。通气路径亦防止在基板之间形成可能不利地影响遍及基板表面的温度分布的气泡(gaspocket)。通过改良控制遍及基板表面的温度分布的能力的可靠性,避免了可能导致处理晶片的产量和生产力的昂贵损失的晶片上不符合技术要求的温度均匀性、热点等。

本发明的某些实施方式包括以下步骤:用被分成多个区段的粘结层而非传统的连续整体粘结层接合两个基板(诸如将静电圆盘接合至温度控制基底)。在邻近的区段之间形成的沟道允许基板容易地被剥离以用于整修和/或保养。此外,在邻近区段之间的沟道还允许挥发物从两个基板之间释放,因为沟道延伸至接合基板的外部。

本发明的第一实施方式将说明性地被描述为静电夹盘组件,所述静电夹盘组件具有通过粘结层结合的两个基板,并且具有为从粘结层释放的挥发物逸出到组件外部提供路径的至少一个沟道。本发明的第二实施方式将说明性地被描述为喷头组件,而本发明的第三实施方式将大体描述至少两个基板的组件。本文描述的本发明的其他实施方式包括制造和整修上述组件的方法。本发明的其他实施方式不一定需要为挥发物提供路径的沟道,而是包括用于确保基板之间的充分粘着力的方法,使得晶片所在的表面的平面度(flatness)保持在限定的平面度公差内。

图3为包括接合在一起的基板的组件的一个实施方式的分解透视图,所述组件图示为静电夹盘组件300。图3a为图3的静电夹盘组件300的局部截面图。参照图3和图3a两者,静电夹盘组件300包括通过粘结层302耦接至温度控制基底106的静电圆盘102。静电圆盘102包括基板支撑表面120,在真空处理期间基板(未示出)静电固持在基板支撑表面120上。尽管上文已描述了示例性静电圆盘102和温度控制基底106,但是可替代性使用具有替代性配置的静电圆盘和温度控制基底。

粘结层302接合静电圆盘102与温度控制基底106的配合表面。粘结层302可包括形成为穿过粘结层302的多个孔,例如升降销孔110和/或用于背侧气体、功率输送、热电偶和类似方面的其他孔。粘结层302由一个或更多个区段304组成。在一些实施方式中,这些区段304的一个或更多个区段可不与粘结层302的其他区段304连接。或者,这些区段304的一个或更多个区段可连接至形成粘结层302的其他区段304的一个或更多个区段。

粘结层302由具有良好导热率的粘结材料(例如具有大于约0.3瓦特每米开氏度(w/mk)的导热率的材料)形成。粘结层302的适合材料包括但不限于丙烯酸基粘结剂、氯丁橡胶基粘结剂、硅树脂粘结剂、环氧树脂、psa(压敏粘结剂)、热塑性粘结剂和热固性粘结剂,或这些粘结剂的组合等。适合的粘结材料的实例包括可购自parker-chomerics的t412粘结剂。在一个实施方式中,粘结层302具有在约10μm至约300μm之间或更大的厚度。粘结层302亦可在25摄氏度下具有至少约40磅每平方英寸(psi)的搭接剪切粘合力(lapshearadhesion)和约40psi的抗张强度。在一个实例中,使用丙烯酸粘结层302,静电圆盘102与温度控制基底106之间的剥离强度在约2磅(约0.91公斤)每线性英寸与约14磅(约6.35公斤)每线性英寸之间。

构成粘结层302的接合材料可为粘合片(可预先形成所述粘合片,随后将所述粘合片铺设在静电圆盘102或温度控制基底106上)或流体(例如,可被分配、丝网印刷或以期望图案分配的糊状物、凝胶或液体)的形式。在一个实施方式中,粘结层302为具有期望形状的多个预切区段304的形式,所述多个预切区段304被小心地平铺在清洁基板(例如,静电圆盘102或温度控制基底106)之一上并且被辗滚(squeegee)以移除大部分的气泡,随后从粘结层的未粘结表面移除释放衬垫且将另一基板(例如,静电圆盘102或温度控制基底106的另一个)精确对准在粘结层302上,并且随后经受接合工序。

粘结层302通过一个或更多个沟道310通气到静电夹盘组件300的外径308(例如,粘结层302、静电圆盘102或温度控制基底106的外径),以提供一路径,从内部区域306(诸如静电夹盘组件300的中心)释放的挥发物可通过所述路径从静电圆盘102与温度控制基底106之间逸出。沟道310可在粘结层302的平面上或与所述平面平行,例如在静电圆盘102与温度控制基底106之间横向延伸。沟道310的至少一个在形成在静电夹盘组件300的外径308上的出口316处终止。在图3所描绘的实施方式中,沟道310的至少一个被限定在粘结层302中分离的粘结区段304之间,这些分离的粘结区段304限定粘结层302的平面。例如在图4所描绘的实施方式中,图示四个沟道310,每一沟道310被限定在邻近区段304的相对边缘312、314之间,其中每一沟道310在静电夹盘组件300的外径308上具有出口316。尽管在图4中图示以十字形式垂直布置的四个沟道310,但是沟道310可为直的、圆形的或具有另一配置。

沟道310的出口316提供允许由粘结层302尤其在固化期间释放的挥发物从静电圆盘102与温度控制基底106之间逸出的通气路径。提供经由沟道310到静电夹盘组件300的外径308的通气路径实质上防止挥发性气体被截留,从而显著降低粘结层302与静电圆盘102和温度控制基底106之一或两者分层的概率。另外,因为通过沟道310提供的通气路径实质上消除空隙形成,所以在静电圆盘102与温度控制基底106之间的热阻抗保持均匀,进而使得在夹盘组件300的工件的处理期间的产量和生产力增加。此外,在将湿态固化硅树脂用作粘结层302的应用中,即使在接合平面薄且具有高深宽比时,例如在粘结层较薄(例如,约1–500μm)且基板的直径较大(例如,大于约150mm)的静电夹盘组件中,通过将湿气经由沟道310局部输送至粘结层302的内部区域306内的接合位点而使完全固化粘结层302得到增强。

沟道310亦为用于削弱粘结层302的接合削弱剂(诸如溶剂)的渗入提供路径,从而允许基板(例如,静电圆盘102和温度控制基底106)更容易被分离以用于整修。因此,与用于移除传统的静电夹盘组件中的整体粘结层的传统方法相比,沟道310允许更快速且更具成本效率的整修,其中对静电圆盘102和温度控制基底106的破坏明显减少。

沟道310大体产生粘结层302中的开放区域。粘结层302的开放区域可多达粘结层302的50%。在一个实施方式中,沟道310(和粘结层302的其他穿孔(perforation))限定小于粘结层302的约1%至约50%的开放区域。

沟道310亦可被部分限定在静电圆盘102与温度控制基底106之一或两者中。沟道310可为狭窄的,具有小于约10mm的宽度,以便促进热传递均匀性。因为沟道310实质上沿着其整个长度与粘结层302接触,所以由粘结层302直接暴露和界定的沟道310的部分成指数地(exponentially)大于沟道310的周长。

具有不连续粘结层302的另一个优点为粘结层302上的应力的减小。因为静电圆盘102与温度控制基底106可具有不同的热膨胀系数,所以在这些基板受热时产生的应力被粘结层302吸收。因此,可选择沟道310的数目、位置和宽度,以使粘结层302中的应力维持在不会不利地影响粘结材料的寿命、引起分层或破坏静电圆盘102的基板支撑表面120的平面度的水平上。大体而言,更多的区段304和沟道310允许粘结层302容纳更多的应力。

在沟道310不在静电夹盘组件300的外径308处终止的替代性实施方式中,在区段304之间跨越沟道310提供的间隙可用于管理粘结层302内的应力。粘结层302中的间隙使静电圆盘102与温度控制基底106之间的热膨胀失配产生的影响最小化,所述失配可不利地影响静电圆盘102的基板支撑表面120的平面度。

图3b为具有密封环360的图3的静电夹盘组件300的局部截面图。另外参照沿图3b的截面线3c-3c所取的静电夹盘组件300的截面图,密封环360(诸如o形环或垫圈)可设置在静电圆盘102与温度控制基底106之间的接合线处。另外,密封环360可固持在形成在温度控制基底106中的密封固持压盖(sealretaininggland)362中。在所述实施方式中,用于来自粘结层302的物种释放的内部区域306的通气可使用穿过温度控制基底106形成的通道364,通道364使一个或更多个沟道310耦接至温度控制基底106的外径308。

通道364具有形成在面向静电圆盘102的温度控制基底106的上表面370上的开口366。通道364具有形成在位于温度控制基底106的上表面370与下表面372之间的静电夹盘组件300的外径308上的开口368。通道364可由两个连接通道(例如,两个交叉的钻孔)形成或由以相对于温度控制基底106的中心线的锐角形成的单个孔形成。开口368距离静电圆盘102的基板支撑表面120的间距允许处理期间释放的任何挥发物进入正被处理的基板下游的处理腔室的内部容积,从而降低对基板的潜在污染。

或者,通道364可为跨越密封固持压盖362横向提供的槽(未示出)的形式,这种形式允许粘结区段304之间的沟道310绕密封环360泄漏到静电夹盘组件300的外径308。

图5-12为可替代上述粘结层302的具有至少一个沟道的粘结层的替代性实施方式的截面图,所述至少一个沟道具有暴露于静电夹盘组件外部的出口。尽管粘结层图示为设置在温度控制基底上,但是粘结层在粘结至温度控制基底之前可替代地设置在静电圆盘上。

现参照图5的截面图,静电夹盘组件500图示为使静电圆盘102被移除以显示设置在温度控制基底106上的下伏(underlying)粘结层502。可以与如上所述的粘结层302类似的方式制造粘结层502。

粘结层502包括以饼状配置布置的多个区段504,使得限定在区段504之间的沟道510穿过粘结层502的内部区域306。至少一个沟道510具有设置在静电夹盘组件500的外径308上的出口316,以为气体从粘结层502有效地逸散或释气提供路径。气体甚至可在粘结层502的直径大于450mm的实施方式中成功释气。沟道510穿过静电夹盘组件500的中心线,这促进粘结层502的均匀和彻底固化。沟道510高效地移除挥发性气体。另外,沟道510有助于接合削弱剂有效输送至粘结层502的内部区域306,以用于在整修期间将静电圆盘102与温度控制基底106快速且实质顺利的剥离。

现参照图6的截面图,静电夹盘组件600使静电圆盘102被移除(例如,在图6中未示出),以显示设置在温度控制基底106上的下伏粘结层602。粘结层602可以与如上所述的粘结层类似的方式被制造并且被用于将圆盘102固定至基底106。

粘结层602包括以饼状配置布置的多个区段604,使得限定在区段604之间的沟道610穿过粘结层602的内部区域306。至少一个沟道610具有设置在静电夹盘组件600的外径308上的出口316。沟道610为气体从粘结层602有效地逸散或释气提供路径。气体甚至可以在粘结层602的直径大于约450mm的实施方式中成功地释气。在一个实施方式中,沟道610可穿过静电夹盘组件600的中心线。

在一个实施方式中,构成粘结层602的区段604可分组成至少一个外区段622和至少一个内区段624。从内区段624径向向外设置外区段622。外区段622与内区段624由内部沟道620分离。内部沟道620可耦接至在出口316处终止的沟道610中的至少一个,使得暴露于沟道620的区段604的部分可通气。额外的内部沟道620(用虚线示出)可用于产生内区段624的同心组(亦用虚线示出)。

在一个实施方式中,外区段622与内区段624可由不同的粘结材料制造。举例而言,构成外区段622的粘结材料可比构成内区段624的粘结材料具有更高的热传递系数。可优先在中心处冷却静电圆盘102,以补偿设置在静电夹盘组件600上的晶片的中心比晶片的边缘加热地更快的工艺。或者,构成外区段622的粘结材料可比构成内区段624的粘结材料具有更低的热传递系数。可相对于静电圆盘102的中心优先在边缘处冷却静电圆盘102。在具有内区段624的同心组的另一实施方式中,内区段624的内部组与外部组可由不同的粘结材料制造,以在静电圆盘102与温度控制基底106之间提供具有不同热传递率的三个或更多个区域。

在另一实施方式中,构成外区段622的粘结材料相对于构成内区段624的粘结材料可具有更大的剥离和/或抗张强度。或者,构成外区段622的粘结材料相对于构成内区段624的粘结材料可具有更小的剥离和/或抗张强度。以此方式,可相对于外区段622选择构成内区段624的材料接合的强度,以在由于静电圆盘102与温度控制基底106之间的热膨胀系数差异导致的热负载之后防止弓弯(bowing)和/或维持基板支撑表面120的平面度。内区段624的内部组与外部组亦可由不同的粘结材料制造以提供具有将静电圆盘102耦接至温度控制基底106的不同粘结强度的三个或更多个区域或同心区域。使用不同强度的粘结材料可防止对基板支撑表面120的平面度的不期望的改变并且降低和/或消除通过化学机械抛光对基板支撑表面120进行整修或平坦化的需要。另外,在沟道610不在静电夹盘组件600的外径308处终止的实施方式中,在不同区段604上使用具有不同强度的粘结材料可管理粘结层602内的应力并且提升基板支撑表面120的平面度。

如图6中所示,可通过沟道610、620的宽度、数目和位置选择粘结层602的开放区域,以在一个位置中相对于另一位置产生更多的开放区域。不同开放区域可用于调适遍及粘结层602的强度和/或传热特性。举例而言,沟道610、620可被配置成相对于靠近静电夹盘组件600的外径308的外部区域630在内部区域306中提供更大百分比的开放区域。内部区域306中更大百分比的开放区域将造成在相对于静电圆盘102的周边的静电圆盘102的中心处,静电圆盘102与温度控制基底106之间较少的热传递。静电圆盘102的内部区域306与周边的热传递率的差异可补偿晶片的周边比晶片的内部区域306加热地更快的工艺。相反,沟道610、620可被配置成相对于粘结层602的外部区域630在内部区域306中提供较小百分比的开放区域。内部区域306中较小百分比的开放区域允许相对于静电圆盘102的外部区域,通过静电圆盘102的内部区域306或中心的更多热传递。

现参照图7的截面图,静电夹盘组件700使静电圆盘102被移除(例如,在图7中未示出)以显示设置在温度控制基底106上的下伏粘结层702。粘结层702可以与如上所述的粘结层类似的方式被制造并且用于将圆盘102固定至基底106。更具体而言,静电夹盘组件700与如上所述的静电夹盘组件600实质相同,不同之处在于具有沟道710,所述沟道710具有在出口316处终止的第一端,沟道710在第二端处连接至内部沟道720。

粘结层702包括以截顶的饼状配置布置的多个区段704。每一沟道710可使一端在内部沟道720处终止而使另一端在设置于静电夹盘组件700的外径308上的出口316处终止。沟道710为气体从粘结层702有效逸出提供路径。

构成粘结层702的区段704可分组成至少一个外区段622和至少一个内区段624。从内区段624径向向外设置外区段622。外区段622与内区段624由内部沟道720分离。

内区段624可由与外区段622的粘结材料不同的粘结材料制造。如上文参照内区段624和外区段622所论述的,构成外区段622的粘结材料可比构成内区段624的粘结材料具有更高或更低的热传递系数。以此方式,可用从边缘至中心的梯度对静电圆盘102进行热调节。在另一实施方式中,构成外区段622的粘结材料相对于构成内区段624的粘结材料可具有更大或更小的剥离和/或抗张强度。举例而言,构成外区段622的粘结材料可选自丙烯酸基粘结剂、氯丁橡胶基粘结剂、硅树脂粘结剂,或相对于构成内区段624的粘结材料提供较低剥离和/或抗张强度的类似者(诸如环氧树脂)。以此方式,可相对于外区段622选择构成内区段624的材料的强度,以在由于静电圆盘102与温度控制基底106之间的热膨胀系数失配导致的热负载之后防止弓弯和/或维持静电圆盘102的基板支撑表面120的平面度。在替代性实施方式中,构成外区段622的粘结材料可被选择以相对于构成内区段624的粘结材料提供更高的剥离和/或抗张强度。在具有内区段624的同心组的实施方式中(未示出),内区段624的内部组与外部组亦可由不同粘结材料制造以提供三个或更多个区域。举例而言,将静电圆盘102耦接至温度控制基底106的内区段624区域可为同心的并且具有不同的粘结强度和/或导热系数。

现参照图8,静电夹盘组件800使静电圆盘102被移除(例如,在图8中未示出)以显示设置在温度控制基底106上的下伏粘结层802。粘结层802可以与如上所述的粘结层类似的方式被制造并且用于将圆盘102固定至基底106。更具体而言,静电夹盘组件800与如上所述的静电夹盘组件实质相同,不同之处在于粘结层802可包括在出口316处终止的至少一个沟道810。单个沟道810形成朝内部区域306向内延伸的螺旋图案。粘结层802中的单个螺旋沟道810可另外提供单个区段804。螺旋沟道810促进粘结层802的内部区域306通气。

现参照图9,静电夹盘组件900使静电圆盘102被移除(例如,在图9中未示出)以显示设置在温度控制基底106上的下伏粘结层902。粘结层902可以与如上所述的粘结层类似的方式被制造并且用于将圆盘102固定至基底106。

如图9中所示,粘结层902包括具有两个相对端的至少一个沟道910,其中每一端在分离的出口316处终止。在一个实施方式中,多个沟道910可以行的形式形成。沟道910的行可为直线的、曲线的、正弦曲线的或其他形状。在一个实施方式中,沟道910的行可为直线的并且平行的,沟道910之间限定区段904。视情况,粘结层902可包括以相对于沟道910的非零角度设置的次沟道920(用虚线示出),从而形成区段904的栅格。次沟道920的至少一端在出口316处终止。在一个实施方式中,可以相对于沟道910的约90度设置次沟道920。

现参照图10的截面图,静电夹盘组件1000使静电圆盘102被移除(例如,在图10中未示出)以显示设置在温度控制基底106上的下伏粘结层1002。粘结层1002可以与如上所述的粘结层类似的方式被制造并且用于将圆盘102固定至基底106。更具体地说,静电夹盘组件1000的粘结层1002可包括多个分立的(discreet)区段1004。分立区段1004的一个或更多个区段可视情况通过粘结剂的腹板(web)1006(用虚线示出)连接。限定在分立区段1004之间的沟道1010通过出口316暴露于外径308。沟道1010使粘结层1002的内部区域306通过出口316通气。

对分立区段1004的数目、尺寸、位置和密度进行选择以控制粘结层1002的开放区域。如上文所论述的,可对开放区域和静电夹盘组件1000的区域之间的开放区域的百分比进行选择以控制遍及静电夹盘组件1000的热传递率和/或粘结强度分布。

举例而言,限定粘结层1002的区段1004可分组成外区段组1020、中间区段组1022和内区段组1024。每一区段组1020、1022、1024可包括可由沟道1010分离的一个或更多个区段1004。可从中间区段组1022径向向外设置外区段组1020。可从内区段组1024径向向外设置中间区段组1022。

构成每一区段组1020、1022、1024的区段1004中的一个或更多个区段和/或区段组1020、1022、1024可由不同的粘结材料制造。如上文参照图6的内区段624和外区段622所论述的,构成特定区段组中的一个或更多个区段1004的粘结材料可比构成所述组内的其他区段1004的粘结材料具有更高或更低的热传递系数和/或强度。举例而言,构成外区段组1020的粘结材料可选自丙烯酸基粘结剂、氯丁橡胶基粘结剂、硅树脂粘结剂,或相对于构成内区段组1024的粘结材料提供更低的剥离和/或抗张强度的类似者(诸如环氧树脂)。以此方式,可用方位梯度对静电圆盘102进行热调节,所述方位梯度可经选择以修正或补偿处理腔室内的其他方位不均匀性。相对于外区段组1020,内区段组1024的材料的强度可经选择以防止由于热负载引起的粘结层1002中的感应应力而造成的弓弯和/或维持基板支撑表面120的平面度。热负载可由于静电圆盘102与温度控制基底106之间的热膨胀系数的失配而发生。

现参照图11,静电夹盘组件1100使静电圆盘102被移除(例如,在图11中未示出)以显示设置在温度控制基底106上的下伏粘结层1102。粘结层1102可以与如上所述的粘结层类似的方式被制造并且用于将圆盘102固定至基底106。更具体而言,静电夹盘组件1100与如上所述的静电夹盘组件实质相同,不同之处在于粘结层1102可包括由在出口316处终止的至少一个沟道1110分离的多个区段1104。另外,多个区段1104可包括限定至少一个次区段1120的至少一个主区段1122。次区段1120可接触起限定作用的主区段1122,或区段1120、1122可由次沟道1124分离。次沟道1124可与沟道1110隔开,或者通过连接沟道1126(用虚线示出)连接至沟道1110。由沟道1110提供的通气路径有助于气体从静电圆盘102与温度控制基底106之间逸出。另外,沟道1110可有助于将接合削弱剂引入到粘结层1102的内部区域306。用于制造区段1120、1122的粘结材料可为类似的或可为不同的。对粘结材料的选择可用于控制热传递分布、管控粘结层1102内的应力和/或控制基板支撑表面120的平面度。

现参照图12,静电夹盘组件1200使静电圆盘102被移除(例如,在图12中未示出)以显示设置在温度控制基底106上的下伏粘结层1202。粘结层1202可以与如上所述的粘结层类似的方式被制造并且用于将圆盘102固定至基底106。静电夹盘组件1200与如上所述的静电夹盘组件1100实质相同。更具体而言,粘结层1202包括由在出口316处终止的至少一个沟道1210分离的多个区段1204。多个区段1204包括限定至少一个次区段1220的至少一个主区段1222,不同之处在于其中分离区段1220、1222的次沟道1224通过连接沟道1226连接至沟道1210。由沟道1210提供的通气路径有助于气体从静电圆盘102与温度控制基底106之间逸出。另外,通气路径有助于将接合削弱剂引入到粘结层1202的内部区域306。用于制造区段1220、1222的粘结材料可为类似的或可为不同的。对粘结材料的选择可用于控制热传递分布、管理粘结层1102内的应力和/或控制基板支撑表面120的平面度。

图13为包括接合在一起的基板的喷头组件1300的分解截面图。图14为沿图13的截面线14-14所取的喷头组件1300的截面图。参照图13和图14两者,喷头组件1300包括通过粘结层1302耦接至气体分配板1354的喷头1352。粘结层1302包括与形成在喷头1352中的孔1312和形成在气体分配板1354中的孔1314对准的多个孔1308。孔1312、1324允许气体在晶片处理期间穿过喷头组件1300。

粘结层1302接合喷头1352与气体分配板1354的配合表面。粘结层1302由一个或更多个区段1304组成。在具有两个或更多个区段1304的实施方式中,区段1304中的一个或更多个区段可通过沟道1310与其他区段1304分离。或者,这些区段1304的一个或更多个区段可与形成粘结层1302的其他区段1304中的一个或更多个区段相连。粘结层1302可由粘结材料形成以控制热传递分布、管理粘结层1302内的应力和/或控制喷头组件1300的气体分配板1354的平面度。

粘结层1302通过一个或更多个沟道1310通气至喷头组件1300的外径1358(例如,外径)。来自喷头1352与气体分配板1354之间的粘结层1302的内部区域1306的挥发物可通过一个或更多个沟道1310从喷头组件1300的中心释放。沟道1310的至少一个在形成在喷头组件1300的外径1358上的出口1316处终止。在一个实施方式中,沟道1310的至少一个被限定在分离的粘结区段1304之间的粘结层1302中,这些分离的粘结区段1304限定粘结层1302的平面。尽管在图13中示出约60度布置的六个沟道1310,但是沟道1310可具有其他几何形状、密度、宽度、数目、间距或其他配置。粘结层1302、沟道1310和/或区段1304可另外参照用于静电圆盘中的粘结层以上文所论述的任一方式配置,以实现如上所述的优点。

沟道1310亦为接合削弱剂提供通向粘结层1302的内部区域的路径,以削弱粘结层1302。接合削弱剂允许基板(例如,喷头1352和气体分配板1354)更容易被分离以用于整修。因此,与用于移除传统喷头组件中的整体粘结层的传统方法相比,沟道1310允许对喷头组件1300更快速且更具成本效率的整修,其中对喷头1352和气体分配板1354的破坏明显减少。

图15为组件1500的顶部分解透视图。组件1500包括通过粘结层1504固定的至少两个基板1502、1506。组件1500另外包括配置成使粘结层1504通气至组件1500的外部1550的至少一个沟道1510。沟道1510为从粘结层1504释放的挥发物从基板1502、1506之间逸出提供路径。

组件1500可为一系统或部件,该系统或组件被设计成在超净的(例如,净室(cleanroom))环境中、在等离子体处理系统或其他系统中的真空条件下使用以减轻由于从基板1502、1506之间的粘结层释放的气体引起的释气污染和/或分层风险。组件1500亦可为一部件,其中可能需要对粘结层1504的化学削弱,用于基板1502、1506的稍后分离。

组件1500可为用于半导体真空处理腔室的部件,所述半导体处理腔室具有暴露于等离子体环境的组件1500的外表面1550的至少一部分。在一个实施方式中,组件1500为盖组件,其中第一基板1502为盖的第一部分且第二基板1506为盖的第二部分(诸如加热器)。在另一实施方式中,组件1500为基板支撑基座组件,其中第一基板1502为基板支撑基座的第一部分且第二基板1506为基板支撑基座的第二部分(诸如加热器)。在另一实施方式中,组件1500为用于腔室壁或基板支撑件的衬垫组件,其中第一基板1502为衬垫的第一部分且第二基板1506为衬垫的第二部分。在又一实施方式中,组件1500可为两部分的环(诸如盖环、沉积环、聚焦环和类似环),其中第一基板1502为环的第一部分且第二基板1506为环的第二部分。在又一实施方式中,组件1500为两部分的屏蔽件(shield),其中第一基板1502为屏蔽件的第一部分且第二基板1506为屏蔽件的第二部分。

粘结层1504可参照图3-12按如上所述进行制造和配置。穿过粘结层1504形成的一个或更多个沟道1510在组件1500的外部1550上具有至少一个出口1512,以促进粘结层1504的释气。另外,穿过粘结层1504形成的一个或更多个沟道1510可用于将接合削弱剂引入到粘结层1504的内部区域1514,以用于分离接合的基板1502、1506。

如图16中所示,穿过粘结层1504形成的沟道1510可另外包括在基板1502、1506的至少一个中形成的部分1602。基板1502、1506的至少一个中的沟道1510的部分1602的形成实质确保沟道1510不会在以下情况下关闭:界定沟道1510的粘结层1504的侧壁1606由于粘结层1504中产生的应力、区段1508的错位或由于其他原因而凸出(bulge)(如由虚线1604所示)。

图17为组件1700的顶部分解透视图。组件1700包括由粘结层1704固定的至少两个基板1702、1706。组件1700还包括在基板1702、1706的至少一个中形成的至少一个沟道1710。沟道1710被配置成使固定两个基板1702、1706的粘结层1704通气至组件1700的外部1750。沟道1710的至少一侧以粘结层1704为界。沟道1710为从粘结层1704释放的挥发物从基板1702、1706之间逸出提供路径。组件1700可为如上参照组件1500所述的系统或部件。

粘结层1704可参照图3-16按如上所述进行制造和配置,且可视情况包括在粘结层1704中形成的通气沟道(即,在图17中未示出的沟道310、510、610、710、810、910、1010、1210、1310、1510)。在基板1702、1706的至少一个中形成的一个或更多个沟道1710的至少一侧由粘结层1704界定并且在组件1700的外部1750上具有至少一个出口1712以便于粘结层1704的释气。另外,沟道1710可用于将接合削弱剂引入至粘结层1704的内部区域1714,以用于分离接合的基板1702、1706。

图18为制造组件的方法1800的框图。组件可包括通过诸如上文参照图3-17所述的粘结层固定的至少两个基板。方法1800大体包括以下步骤:将粘结层施加至第一基板上。将第二基板放置至用于将两个基板附接在一起的粘结层上。粘结层具有在基板之间横向延伸至组件的外部的沟道的至少一侧。使基板和粘结层经受接合工序,并且使来自基板之间的粘结层的挥发物通过沟道释放。

在一个实施方式中,方法1800始于步骤1802,清洁待经装配以形成组件(诸如腔室部件)的两个基板的配合表面。可通过用溶剂、去离子水或其他适合的清洁剂擦拭配合表面来完成清洁。可视情况使两个基板的配合表面粗糙化。

在步骤1804处,将粘结层施加至配合表面的至少一个。粘结层可为预先形成的粘结片(可被铺设)或流体(例如,能够被分配、丝网印刷、掩模或以期望图案施加的糊状物)的形式。在一个实施方式中,粘结层包括被固定至基板的配合表面的至少一个的多个预切形状。粘结层可被辗滚以实质移除气泡并且确保粘结层相对于配合表面为实质平坦的。以限定通向腔室部件外部的一个或更多个沟道的侧的方式将粘结层施加至配合表面的至少一个。沟道被配置成允许从粘结层释放的挥发物从基板之间逸出和/或在期望稍后分离基板时允许在分离期间将接合削弱剂引入到粘结层的内部区域中。

在步骤1806处,移除设置在粘结层上的任何释放衬垫并且将另一基板精确对准并置于粘结层上,从而将两个基板固定在一起。

在步骤1808处,使基板和粘结层经受适于所使用的粘结剂类型的接合工序。对于用于组件的示例性丙烯酸基粘结层,接合工序可包括在高压釜中烘烤一预定时间段。接合工序可在真空下执行以促进挥发物从粘结层释放。沟道以粘结层为界允许对构成粘结层的粘结材料更快和更彻底的固化,并允许从粘结层释放的任何挥发物从基板之间逸出。

在步骤1810处,清洁、测试接合的组件并且准备装运。

图19为整修组件的方法1900的框图。组件(诸如以上参照图3-17所述的组件)可包括通过粘结层固定的至少两个基板。粘结层的至少一侧界定在基板之间横向延伸至组件外部的沟道。方法1900大体包括以下步骤:将接合削弱剂通过沟道引入至粘结层的内部区域;分离基板;整修第一基板,和使用经整修的第一基板形成整修组件。

在步骤1902处,通过将接合削弱剂经由具有由粘结层界定的至少一侧的沟道引入至粘结层的内部区域,削弱通过粘结层形成的接合。沟道从组件的外部延伸进入粘结层的内部区域。接合削弱剂可为适于削弱构成粘结层的特定粘结材料的接合的溶剂或其他材料。可通过使接合削弱剂经由沟道流至内部区域完成接合削弱剂至粘结层的内部区域的引入。因为沟道具有由粘结层界定的至少一侧,所以接合削弱剂跨越粘结层的较大区域而接触。另外,基板可被加热以增强由接合削弱剂对粘结层的化学侵蚀。

在步骤1904处,分离基板。分离基板的步骤可视情况包括以下步骤:撬开基板。

在步骤1906处,为基板的至少一个修整表面。举例而言,由于暴露于等离子体环境而产生麻点的表面可经移除表面的一部分而留下实质无麻点的表面。可通过机械加工、磨削、珠粒喷击(beadblasting)、喷磨、化学机械抛光、研磨或其他适用技术移除表面的所述部分。

在经修整表面的基板为陶瓷静电圆盘的情况下,可将新陶瓷材料层设置在修整表面后的表面上。新陶瓷材料层可被喷射沉积或以其他方式接合至基板。随后对沉积在基板上的新陶瓷材料层进行加工以添加表面特征结构(诸如台面(mesa)、表面气体分配沟道和类似特征结构)。

在经修整表面的基板为气体分配板的情况下,修整表面使暴露于等离子体环境的表面实质修复至表面粗糙度等同于新气体分配板的表面粗糙度的。对表面的修复可包括材料移除和抛光工艺。举例而言,表面可被抛光至约20ra或更低的表面粗糙度。

在其他实施方式中,可用新的或不同的基板替换一个基板而非修整分离的基板之一的表面。

在步骤1908处,经修整表面(或更换)的基板为清洁的并且准备好与第二基板结合。第二基板可为再生基板(诸如,先前在步骤1902所接合的经修整表面的基板)或新基板。可通过用溶剂、去离子水或其他适合的清洁剂擦拭配合表面来完成对两个基板的配合表面的清洁。可在结合之前视情况使两个基板的配合表面粗糙化。

在步骤1910处,通过粘结层将经修整表面的基板结合至第二基板。基板结合技术可为如上所述的方法1800或其他适合的结合技术。

总而言之,已披露了接合基板的方法和通过此方法制造的组件,以及整修这些组件的改良方法。组件利用具有由用于结合两个基板的粘结剂界定的至少一个沟道的粘结层。粘结剂中的沟道改良组件的制造、性能和整修。沟道为挥发性气体在组件的固化或使用期间从粘结层释气并且从基板之间逸出提供通气路径。有利地,通气路径增强对粘结层的更佳固化、改良温度分布控制、允许用于增强平面度控制的组件内部的压力管理,并且允许对基板更有效的并且更小破坏性的剥离/分离。本文描述的本发明尤其适用于半导体真空处理腔室部件(即,组件),诸如静电夹盘组件和喷头组件等。然而,本发明亦可用于其他应用,这些应用中需要使固定两个或更多个基板的粘结层通气的能力。

尽管上文涉及本发明的实施方式,但可在不脱离本发明的基本范围的情况下设计本发明的其他实施方式和进一步实施方式,且本发明的范围由以下要求保护的范围确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1