一种制备SmCo7/Co复合永磁体的方法及其磁体与流程

文档序号:15048716发布日期:2018-07-27 23:30阅读:1163来源:国知局

本发明涉及一种钐钴永磁体的制备方法,具体涉及一种制备smco7/co复合永磁体的方法及其磁体。



背景技术:

近年来,在航空航天、国防军工以及民用工业领域的许多重要器件和设备都要求永磁材料要同时具有高的磁能积和工作温度。在已商业化的高磁性能永磁体中,只有sm-co基磁体同时具有较高的居里温度和较大的磁能积。sm-co系合金具有多种结构,而目前得到实际应用的只有smco5和sm2co17相的合金。smco7型合金成分介于于smco5和sm2co17之间,其具有tbcu7型结构,且居里温度和饱和磁化强度均高于smco5型合金。并且,smco7合金还具有较大的各向异性场和较低的内禀矫顽力温度系数等优良性能,在高温磁体领域具有广泛应用前景。

但由于smco7相为高温相,属于亚稳态,常温下不稳定且不易得到,因此常常需要掺杂各种其他元素使得smco7相稳定存在。另一方面,根据单畴粒子理论,合金铸锭的晶粒粗大(微米级),其矫顽力较低,故还需要实现晶粒细化(纳米级)以得到高性能smco7磁体。

现有的smco7磁体的制备方法一般包括合金铸锭及破碎、非晶合金粉末制备和烧结等步骤。例如,专利文献cn101962722a和科技论文(smco7块状纳米晶烧结磁体的研究,材料研究学报,2007)公开了制备smco7块状纳米晶烧结磁体的方法。其基本过程为,借助真空熔炼技术先将金属sm和co制备成合金铸锭,该铸锭以smco5和sm2co17相为主,为使其向smco7相转化,需要再借助真空甩带工艺,以快淬方式得到具有smco7相的快淬带,这一步骤同时也使晶粒细化;接着再进行球磨制备非晶合金粉末,最后烧结制备供使用的块状致密磁体。

但上述制备工艺非常复杂,需要掺杂其他合金元素,并且由于sm为易挥发元素,导致在熔炼过程中成分较难精确控制。因此,有必要发展一种更简单的工艺方法,制备高性能的纳米晶smco7相磁体。



技术实现要素:

为解决以上技术问题,本发明的目的之一在于提供一种制备smco7/co复合永磁体的方法。

技术方案如下:

一种制备smco7/co复合永磁体的方法,其关键在于包括以下步骤:

(1)将破碎后的金属sm和co按24.5~33.8:66.2~75.5的重量比进行物理混合,然后将混合后的金属在惰性气体氛围下进行球磨得到非晶结构粉末;

(2)在惰性气体保护下,对所述非晶结构粉末进行热压烧结,其烧结温度为650~850℃,得到smco7/co复合磁体。

采用以上工艺,通过合理的sm和co原料配比,采用球磨制备两种金属的非晶结构粉末,实现两种原料金属的机械合金化,随后使用热压烧结,控制晶粒的尺寸从而得到含有smco7和co两相的纳米晶粒块状磁体。该制备方法与现有技术相比,无需复杂的真空熔炼和甩带快淬工艺,也不掺杂其他元素,制备工艺大大简化,能得到高性能的致密smco7/co复合永磁体。

作为优选技术方案,步骤(1)中所述球磨在高能球磨机中进行,球料比为15:1。采用以上工艺,能够保证球磨效率,实现粉末的非晶化和合金化。

作为优选技术方案,步骤(1)中所述球磨转速为800~1200r/min,球磨时间为8~15h。采用以上工艺,能够保证球磨效率和实现粉末的非晶化。

作为优选技术方案,步骤(1)中所述球磨转速为1000r/min,球磨时间为8h。采用以上工艺,其优点在于进一步优化球磨效率和实现粉末的非晶化。

作为优选技术方案,步骤(1)中所述金属sm和co的纯度为99.5%以上。采用以上工艺,能够保证产物产率和磁性能。

作为优选技术方案,步骤(2)中所述热压烧结的烧结时间为3~5min。采用以上工艺,其优点在于通过快速烧结成型,从而控制晶粒的生长尺寸。

作为优选技术方案,上述步骤(2)中所述加压烧结的压力为1gpa。采用以上工艺,其优点在于保证制得的磁体致密。

作为优选技术方案,步骤(2)中,在手套箱中将所述非晶结构粉末放入热压模具中,再将热压模具放入烧结炉中,并抽真空,通入惰性气体再进行热压烧结。采用以上工艺,其优点在于在手套箱为常见的具有惰性气体氛围的操作装置,保证非晶结构粉末不受氧化和污染。

本发明的目的之二在于提供一种smco7/co复合永磁体,其关键在于,由上述方法制得。

对于永磁材料尤其是纳米晶永磁体,均匀细小的软磁相的存在有助于磁体永磁性能的改善,得到所谓纳米晶复合永磁,该磁性材料可兼有高矫顽力和高磁能积的优点。在纳米晶复合smco7/co永磁中,软磁相co的存在不仅有助于增强磁体的双向耦合效应,也有利于smco7(h)相的稳定化。本发明通过两种金属原料的不同配比,可根据需要调整所得复合磁体中两相的比例和磁体性能。

有益效果:采用本发明的有益效果是,与现有制备方法相比,避免了复杂的真空熔炼和甩带工艺过程,大大简化了smco7类型合金磁体的制备,得到具有纳米晶结构、较高矫顽力和较高磁能积的致密smco7/co复合永磁体,且该磁体中不添加其他稳定元素,co单质相的存在有助于smco7(h)相的稳定,通过不同原料的配比可调控磁体中两相的比例。

附图说明

x射线衍射—xrd;透射电子显微镜—tem

图1为实施例1中制备的非晶sm、co粉末的xrd图谱;

图2为实施例1中制备的致密纳米晶smco7/co合金的xrd图谱;

图3为实施例1中制备的致密纳米晶smco7/co合金的tem图片;

图4为实施例1中制备的致密纳米晶smco7/co合金的退磁曲线;

图5为实施例2中制备的非晶sm、co粉末的xrd图谱;

图6为实施例2中制备的致密纳米晶smco7/co合金的xrd图谱;

图7为实施例2中制备的致密纳米晶smco7/co合金的tem图片;

图8为实施例2中制备的致密纳米晶smco7/co合金的退磁曲线。

具体实施方式

下面结合实施例和附图对本发明作进一步说明。

实施例1:

一种制备smco7/co复合永磁体的方法,其步骤如下:

将纯度为99.5%以上的金属sm和co破碎为粉末,并在手套箱中将两种粉末放入球磨罐中,球料比为15:1,按重量比计,sm和co的比例为33.8:66.2,将所述球磨罐密封后放入高能球磨机中,球磨转速为800r/min,球磨时间为15h,得到球磨粉末。如图1所示,所得粉末的xrd图中仅有较宽化的峰,表明所得粉末主要为非晶结构粉末。

在手套箱中将球磨罐中所述非晶结构粉末取出,并放入热压模具中,将所述热压模具放入放电等离子烧结炉或感应炉中,并抽真空,通入惰性气体如氩气,在氩气氛围内加压烧结,烧结温度为650℃,烧结压力1gpa,保温5min。该烧结工艺加热迅速,温度可控,有利于控制晶粒大小。

烧结后,取出模具,并脱模,得到磁体,其xrd如图2所示,表明该磁体合金由smco7(h)和co两相组成,即为smco7/co复合磁体,测得磁体密度为8.2g/cm3,为致密磁体。如图3所示,根据该磁体合金的tem图片,可知该磁体合金为纳米晶,晶粒大小为30-50nm。退磁曲线如图4所示,测得smco7/co复合磁体的矫顽力为10.2koe,最大磁能积为5.1mgoe。

表明采用本方法制得的smco7/co复合磁体为纳米晶结构,具有较好的磁性能。

实施例2:

一种制备smco7/co复合永磁体的方法,其步骤如下:

将纯度为99.5%以上的金属sm和co破碎为粉末,并在手套箱中将两种粉末放入球磨罐中,球料比为15:1,按重量比计,sm和co的比例为24.5:75.5,将所述球磨罐密封后放入高能球磨机中,球磨转速为1000r/min,球磨时间为8h,得到球磨粉末。如图5所示,所得粉末的xrd图中仅有较宽化的峰,表明所得粉末主要为非晶结构粉末。

在手套箱中将球磨罐中所述非晶结构粉末取出,并放入热压模具中,将所述热压模具放入放电等离子烧结炉中,并抽真空,通入惰性气体如氩气,在氩气氛围内加压烧结,烧结温度为750℃,烧结压力1gpa,保温3min。

烧结后,取出模具,并脱模,得到磁体,其xrd如图6所示,表明该磁体合金由smco7(h)和co两相组成,即为smco7/co复合磁体,测得磁体密度为8.2g/cm3,为致密磁体。如图7所示,根据该磁体合金的tem图片,可知该磁体合金为纳米晶,晶粒大小为20-50nm。退磁曲线如图4所示,测得smco7/co复合磁体的矫顽力为11.8koe,最大磁能积为5.2mgoe。

表明采用本方法制得的smco7/co复合磁体为纳米晶粒结构,具有较好的磁性能。

实施例3:

与实施例2相比,实施例3的不同之处在于,按重量比计,金属sm和co的比例为26.7:73.3,球磨转速为1200r/min,球磨时间为8h,烧结温度为850℃,烧结时间为3min,其余不变。制得的磁体与实施例2中所得磁体性能相近,在此不再赘述。

最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1