降低或者消除Ⅲ-氮化物结构中的纳米管缺陷的制作方法

文档序号:15591703发布日期:2018-10-02 19:01阅读:301来源:国知局

本发明涉及降低或者消除ⅲ-氮化物结构中的纳米管缺陷。



背景技术:

包括发光二极管(led)、谐振腔发光二极管(rcled)、垂直腔激光二极管(vcsel)和边发射激光器的半导体发光器件处于当前可用的最高效的光源之中。能够跨可见光谱操作的高亮度发光器件的制造中的当前感兴趣的材料系统包括ⅲ-ⅴ族半导体,尤其是镓、铝、铟和氮的二元、三元和四元合金,其也被称为ⅲ-氮化物材料。典型地,ⅲ-氮化物发光器件通过借由金属有机化学气相沉积(mocvd)、分子束外延(mbe)或者其它外延技术在蓝宝石、碳化硅、ⅲ-氮化物或者其它适合的衬底上外延生长不同组分和掺杂物浓度的半导体层的叠层来制作。叠层通常包括形成在衬底之上的掺杂有例如si的一个或多个n型层、形成在一个或多个n型层之上的有源区中的一个或多个发光层以及形成在有源区之上的掺杂有例如mg的一个或多个p型层。电气接触形成在n和p型区上。

ⅲ-氮化物器件通常生长在蓝宝石、si或sic衬底上。由于衬底材料与ⅲ-氮化物半导体材料之间的晶格常数和热膨胀系数中的差异,在生长期间在半导体中形成缺陷,其可能限制ⅲ-氮化物器件的效率。



技术实现要素:

本发明的目的是降低或者消除ⅲ-氮化物结构中的纳米管缺陷。

本发明的实施例包括布置在n型区与p型区之间的ⅲ-氮化物发光层、包括纳米管缺陷的ⅲ-氮化物层和布置在ⅲ-氮化物发光层与包括纳米管缺陷的ⅲ-氮化物层之间的纳米管终止层。纳米管在纳米管终止层中终止。

本发明的实施例包括布置在n型区与p型区之间的ⅲ-氮化物发光层,以及可以掺杂有受主的ⅲ-氮化物层。n型区布置在掺杂有受主的ⅲ-氮化物层与发光层之间。受主可以是例如镁。

根据本发明的实施例的方法包括在生长衬底之上生长ⅲ-氮化物层,ⅲ-氮化物层包括纳米管缺陷,在ⅲ-氮化物层之上生长纳米管终止层,以及在纳米管终止层之上生长ⅲ-氮化物发光层。纳米管在纳米管终止层中终止。

附图说明

图1图示了生长在衬底上的ⅲ-氮化物成核层。

图2图示了生长在图1中图示的结构之上的有源区和高温层中的纳米管的形成。

图3图示了包括纳米管终止结构的ⅲ-氮化物结构。

图4图示了包括多个受主掺杂层的纳米管终止结构。

图5图示了包括受主掺杂层和附加层的纳米管终止结构。

图6图示了超晶格纳米管终止结构。

图7图示了形成到倒装芯片器件中的图3的结构。

图8图示了并入到静电放电保护电路中的纳米管终止结构。

图9是图8中图示的结构的电路图。

具体实施方式

图1和2图示了在本文中被称为纳米管的缺陷类型的形成。纳米管由于其大尺寸——通常数微米长,以及直径中的数十或数百埃——而是特别成问题的缺陷。例如,在ⅲ-氮化物材料中,纳米管可以在一些实施例中至少10å宽,以及在一些实施例中不大于500å宽。在诸如sic之类的一些材料中,纳米管可以是1微米宽,或者甚至更宽。纳米管可能由诸如gan膜中的氧、硅、镁、铝和铟之类的杂质造成。纳米管还可能涉及衬底表面上的杂质或缺陷,诸如刮痕,或者纳米管可能存在于衬底自身中,并且可能从衬底继续到生长在衬底上的ⅲ-氮化物材料中。纳米管通常以~106cm-2的密度形成在ⅲ-氮化物器件中,所述密度比典型的ⅲ-氮化物器件中的位错密度(其可以从~107cm-2变化到~1010cm-2)低得多。

在图1中,低温成核层12(通常gan或aln)沉积在衬底10上,所述衬底10可以是例如蓝宝石、sic、si、复合衬底或者任何另一适合的衬底。成核层12通常是例如以低于800℃的温度沉积的多晶或者非晶层。然后,以高于沉积温度的温度对成核层12进行退火。当成核层12被退火时,成核层在衬底上形成成核层的小分离岛14。

在图2中,高温ⅲ-氮化物层16(通常gan)生长在成核层12之上以减小器件中的线位错的密度,以及创建其上可以生长有源区和其它器件层的光滑、均匀的表面。高温层16初始在岛14上成核,这导致单独的岛18a、18b、18c和18d,其最终合并到光滑、均匀的膜中。岛之间的大多数边界合并以形成光滑均匀的膜,但是诸如岛18a与18b之间的边界或者岛18c与18d之间的边界之类的这些边界可能包含一个或多个位错,因此引起线位错密度~107cm-2到~1010cm-2。虽然大多数岛合并,但是在一些岛之间留有间隙,并且这些间隙形成时常被称为纳米管的长窄缺陷。一个这样的纳米管20在图2中被图示在岛18b与18c之间。在诸如led之类的ⅲ-氮化物器件中,发光或者有源区22生长在高温层16上方。纳米管20可能蔓延靠近有源区22或者到有源区22中而形成受损区域24。有源区中的这些受损区域可能造成低劣的led性能和低劣的可靠性,并且因此是不合期望的。

在本发明的实施例中,防止纳米管蔓延到稍后生长层或者降低纳米管的尺寸的结构(其在本文中被称为“纳米管终止结构”或者nts)在有源区之前生长。图3图示了包括nts的ⅲ-氮化物结构。在图3中,高温层16(通常未掺杂或者n型gan层)生长在衬底上的成核层(未示出)之上,如以上在图1和2中所描述的那样。高温层可能包括一个或多个纳米管20。nts26生长在包括纳米管20的高温层16之上。nts26的至少一部分可以未被有意地掺杂、掺杂有诸如镁之类的受主或者掺杂有诸如si之类的施主。

n型区28生长在nts26之上,其后是有源区30,其后是p型区32。适合的发光区30的示例包括单个厚或薄发光层,或者包括通过阻挡层分离的多个薄或厚发光层的多量子阱发光区。在发射可见光的器件中,有源区30中的发光层典型地是ingan。在发射uv光的器件中,有源区30中的发光层可以是gan或者algan。n型区28和p型区32中的每一个可以包括不同组分、厚度和掺杂物浓度的多个层,包括未被有意地掺杂的层或者相反导电类型的层。在一个示例中,n型区28包括掺杂有si的至少一个n型gan层,有源区30包括通过gan阻挡层分离的ingan量子阱层,并且p型区32包括掺杂有mg的至少一个p型gan或者algan层。

在一些实施例中,nts26是低温gan层。例如,低温gannts可以以低于高温gan层16的生长温度近似100到200℃的温度来生长。该低温gannts可以在一些实施例中至少为10nm厚,在一些实施例中不大于40nm厚,在一些实施例中25nm厚,在一些实施例中至少100nm厚,在一些实施例中不大于1微米厚,以及在一些实施例中0.5微米厚。低温gan层是基本上单晶层,并且其可以是掺杂或者未掺杂的。

在一些实施例中,nts26是包括铝的ⅲ-氮化物层,诸如aln、algan、albgan或者alingan。alxga1-xnnts中的组分x可以在一些实施例中至少为0.1,在一些实施例中不大于0.5,在一些实施例中至少0.2,以及在一些实施例中不大于0.3。在一个示例中,alxga1-xnnts层在x=0.25处为150å厚。关于厚度和组分的上限由针对gan上的algan的生长的破裂阈值来确定,因此如果nts26足够薄以避免破裂,则可以使用aln。作为结果,最大可允许厚度随着al组分增加而减小。含铝nts的厚度可以在一些实施例中至少为50å厚,在一些实施例中不大于0.5μm厚,在一些实施例中至少100å厚,以及在一些实施例中不大于500å厚。含铝nts可以未掺杂或者掺杂有诸如镁之类的受主。在一些实施例中,含铝层包括未掺杂有si或者不是掺杂的n型的至少某个最小厚度。例如,该最小厚度在一些实施例中至少为2nm以及在一些实施例中至少5nm。

在一些实施例中,nts26是掺杂有受主缺陷的ⅲ-氮化物层。镁是优选的受主,尽管也可以使用其它受主缺陷。针对这些受主缺陷的其它潜在候选包括碳、铍或者本征缺陷。镁掺杂nts26可以例如是包括gan、ingan、algan或者alingan的任何适合的ⅲ-氮化物材料。在一些实施例中,镁掺杂nts26可以在对成核层12进行退火之后立即生长,使得高温层16(其通常是未掺杂的)被省略。镁浓度的范围可以在一些实施例中从1x1017cm-3到1x1020cm-3以及在一些实施例中从1x1017cm-3到1x1019cm-3。该层中的镁掺杂物不需要在生长之后被激活。

在一些实施例中,镁掺杂nts26中的镁的浓度是渐变的。如本文所使用的,术语“渐变”当描述器件中的一个或多个层中的掺杂物浓度时意指涵盖以除组分中的单个台阶之外的任何方式实现掺杂物浓度中的改变的任何结构。每个渐变层可以是子层的叠层,子层中的每一个具有不同于邻近于它的任一子层的掺杂物浓度。如果子层具有可分辨的厚度,那么渐变层是台阶式渐变层。在一些实施例中,台阶式渐变层中的子层可以具有范围从数十埃到数千埃的厚度。在其中各个子层的厚度接近零的限制中,渐变层是连续渐变的区。构成每一个渐变层的子层可以被设置成形成掺杂物浓度相对厚度中的各种分布,包括但不限于线性渐变、抛物线渐变和幂律渐变。而且,渐变层或者渐变区不限于单个渐变分布,而是可以包括具有不同渐变分布的部分和具有基本上恒定的掺杂物浓度的一个或多个部分。例如,在渐变的镁掺杂nts26中,镁浓度可以随nts26生长而以线性方式增加,使得镁的浓度在较靠近有源区的nts26的部分中比在较远离有源区的nts26的部分中更高。

在一些实施例中,nts26包括多个层。图4、5和6图示了具有多个层的纳米管终止结构。

图4图示了具有掺杂有镁或任何其它适合的受主的多个层的nts26。层40、42和44中的每一个可以具有不同的掺杂物浓度。例如,层40可以具有在零(未掺杂有mg)与2x1018cm-3之间的镁浓度,层42可以具有在一些实施例中在1x1017cm-3与1x1020cm-3之间以及在一些实施例中在2x1017cm-3与5x1019cm-3之间的镁浓度,并且层44可以具有在零(未掺杂有mg)与1x1019cm-3之间的镁浓度。在一些实施例中,最靠近有源区30的nts26中的层可以具有最高的掺杂物浓度。在一些实施例中,最靠近生长衬底10的nts26中的层可以具有最低的掺杂物浓度。尽管图4图示了三个层,但是具有多个受主掺杂层的nts可以包括比三个层更多或者更少的层。层40、42和44可以具有相同的组分,尽管它们不需要这样。例如,层40、42和44可以是gan、ingan、algan、aln或者alingan。

在图5中,nts26包括至少两个层46和48。层46生长在高温含纳米管层16上。层46可以掺杂有镁或者另一受主。层46通常是gan,尽管它可以是ingan、algan或者alingan。层48生长在层46之上。层48可以包括铝和/或铟。例如,层48可以是algan、ingan或者alingan。可替换地,层48可以是以低于高温层16的温度100至200℃的温度生长的gan层。低温gan层可以是掺杂或者未掺杂的。有源区30生长在层48之上。有源区30可以与层48直接接触地生长,或者可以通过例如如图3中图示的n型区28从层48间隔开。

在图6中,nts26是超晶格。超晶格可以是掺杂或者未掺杂的。超晶格包括层50和52的多个对。层50和52交替。尽管图示了三个层对,但是可以使用更多或者更少的层对。有源区30生长在超晶格之上。有源区30可以与超晶格直接接触地生长,或者可以通过例如如图3中图示的n型区28从超晶格间隔开。尽管超晶格被图示成以与高温层16直接接触的层50开始并且以布置在有源区30下方的层52终止,但是超晶格可以以或者层50或者层52开始或者终止,并且超晶格可以包括不完整的层对。在一个实施例中,层50是gan,并且层52是具有在0.05与1之间的铝组分a的alaga1-an。在一个实施例中,层50是gan并且层52是aln。在一些实施例中,层50是albga1-bn,并且层52是alcga1-cn,其中,在一个实施例中b≠c,在一些实施例中b>c,以及在一些实施例中b<c。在一个实施例中,层50和52可以具有组分b=0.05和c=1。还可以使用应变补偿层对,其中层50和52中的一个受压缩应变,诸如通过使用ingan或者另一含铟层,并且层50和52中的另一个处于拉伸应变之下,诸如通过使用algan、aln或者alingan。层50和52中的每一个可以是例如在一些实施例中至少为1nm厚以及在一些实施例中不大于50nm厚。超晶格的总厚度可以在一些实施例中至少为10nm厚以及在一些实施例中不大于1000nm厚。

在一些实施例中,nts26从有源区30间隔开。例如,nts26(其可以是以上所描述的任何nts)可以通过n型区28从有源区30间隔开。nts26可以在一些实施例中与有源区30间隔至少500nm,在一些实施例中与有源区30间隔至少1微米,以及在一些实施例中与有源区30间隔不大于5微米。nts26在器件的有源区之前生长,使得nts26包括在其上生长有源区30的模板中。在生长之后,可以维持取向,使得nts位于有源区下方,或者器件可以翻转,使得nts位于有源区上方。

在一些实施例中,有源区布置在n型区与p型区之间。金属接触形成在n和p型区上以便正向偏置有源区。在一些实施例中,没有金属接触形成在nts上使得nts在器件中不是有意地电气有源的,这意味着nts不在从接触流过半导体结构的电子和空穴的直接路径中。在一些实施例中,一些电流可能无意地流到nts中或者流过nts。

图3、4、5和6中图示的半导体结构可以形成到任何适当的器件中。图7图示了适当的器件的一个示例,倒装芯片。半导体结构70可以包括以下中的一个或多个:成核层12、高温层16、nts26、n型区28、有源区30和p型区32,并且可以包括以上所描述的这些结构或者这些结构的特征的任何组合。金属p接触60形成在p型区上。如果大部分光通过与p接触相对的表面被引导离开半导体结构,那么p接触60可以是反射性的。倒装芯片器件可以通过借由标准光刻操作对半导体结构进行图案化并且对半导体结构进行蚀刻以移除p型区的整个厚度的一部分和发光区的整个厚度的一部分以形成显露其上形成金属n接触62的n型区的表面的台面来形成。p和n接触通过可以填充有介电材料的间隙64从彼此电气隔离。可以以任何适合的方式来形成台面以及p和n接触。形成台面以及p和n接触对于本领域技术人员而言是众所周知的。衬底10可以被移除或者减薄,或者可以留在器件中,如图7中所示。如果衬底10被移除,那么成核层12、高温层16和nts26中的任何或全部可以被移除或者减薄。

在一些实施例中,金属接触可以形成在nts和高温区二者上,使得nts可以形成诸如静电放电保护电路之类的辅助电气保护电路的部分。图8图示了包括形成静电放电保护电路的部分的nts的器件的横截面。图9是图8中图示的结构的电路图。在图8和9的器件中,nts26电气连接到n型区28,并且p型区32电气连接到高温层16,使得nts26和高温层16形成反并联连接到由围绕有源区30的n型和p型区28和32形成的二极管的静电放电(esd)保护二极管。第一和第二金属接触64和66分别形成在nts26和高温层16上,如图8中所示。除了暴露其上形成接触62的n型区的台面之外,可以蚀刻台面以暴露其上形成接触64的nts26,并且暴露其上形成接触66的高温层16。接触62与64之间的电气连接80和接触60与66之间的电气连接82可以是形成在具有适当的介电隔离层的芯片上的金属层,或者可以通过外部电路形成在底座上。

图8和9中的led包括n型区28、有源区30和p型区32。led通过向分别电气连接到p型区32和n型区28的金属接触60和62施加电流来被正向偏置。esd保护二极管包括高温层16和nts26,其分别连接到金属接触66和64。

图9是图8中图示的器件的电路图。图9中图示了led90和静电放电保护二极管88。箭头84图示了正常led操作期间的电流流动。箭头86图示了静电放电事件期间的电流流动。

尽管在以下示例中,半导体发光器件是发射蓝光或uv光的ⅲ-氮化物led,但是除led之外的诸如激光二极管之类的半导体发光器件可以在本发明的范围内。

已经详细描述了本发明,本领域技术人员将领会到,在给出本公开的情况下,可以对本发明做出修改而不脱离于本文所描述的发明概念的精神。因此,不旨在将本发明的范围局限于所图示和描述的特定实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1