显示基板、显示面板的制作方法

文档序号:22224412发布日期:2020-09-15 19:20阅读:157来源:国知局
显示基板、显示面板的制作方法
本公开实施例涉及显示
技术领域
,特别涉及显示基板、显示面板。
背景技术
:有机发光二极管(oled)显示面板中,每个像素(或称子像素、亚像素)包括一个oled,而驱动芯片(ic)的阳极端口电连接阳极接头,以通过阳极线为各像素的oled的阳极供电,即向oled的阳极提供阳极电压vdd。显然,阳极线有一定电阻率,故信号在其中传播时存在一定的压降(irdrop),且传播距离越长则压降越大。因此,距离ic越远的像素中的oled实际获得的阳极电压vdd越低,即oled的跨压vds越低。其中,跨压是指oled的阳极电压vdd与阴极电压vss的差值。而在相同的数据电压(或者说相同灰阶)下,跨压越低则oled的亮度越低,由此导致相同情况下距离ic越远的像素的亮度越低,从而显示面板不同位置出现亮度差,即产生“阴阳屏”现象,长程均一性(lru)差,显示效果不好。而且,以上“阴阳屏”现象在高亮度模式(hbm,highbrightmode)下更加明显。尤其是,不同颜色的oled的亮度随阳极电压vdd(或者说跨压vds)的变化规律也不同,这导致在显示面板的某个位置实现白平衡(即不同颜色的像素在相同灰阶发出的光可正好混合为白光)时,显示面板其它位置处各颜色的分量不匹配,无法达到白平衡。例如,当显示面板的某个位置实现白平衡时,比该位置更靠近ic的部分会偏红(偏粉),而比该位置更远离ic的部分则会偏青(偏绿),导致“发红/发青”现象。技术实现要素:本公开实施例提供一种显示基板、显示面板。第一方面,本公开实施例提供一种显示基板,其包括:多个包括发光器件的像素,其中至少部分所述像素包括第一颜色的发光器件,所述发光器件包括阴极和阳极;阳极接头,用于通过阳极线为各所述发光器件的阳极供电;连接在任意所述发光器件与阳极接头间的阳极线的总电阻为该发光器件的供电电阻;其中,至少部分所述第一颜色的发光器件的阳极的耦合电容值不同;对任意两个阳极的耦合电容值不同的第一颜色的发光器件,阳极的耦合电容值较大的发光器件的供电电阻,小于阳极的耦合电容值较小的发光器件的供电电阻。在一些实施例中,显示基板分为n个补偿区,每个所述补偿区包括多个所述第一颜色的发光器件,n为大于或等于2的整数;同一所述补偿区中的所述第一颜色的发光器件的阳极的耦合电容值相同;第i补偿区中所述第一颜色的发光器件的供电电阻的最大值小于第i+1补偿区中所述第一颜色的发光器件的供电电阻的最小值;第i补偿区中的所述第一颜色的发光器件的阳极的耦合电容值,大于第i+1补偿区中的所述第一颜色的发光器件的阳极的耦合电容值;i为任意大于0且小于n的整数。在一些实施例中,所有像素设于显示区中,阳极接头设于显示区的一侧之外;第i补偿区与第i+1补偿区间通过边界分开,第i补偿区位于该边界靠近阳极接头一侧,第i+1补偿区位于该边界远离阳极接头一侧。在一些实施例中,第i补偿区中的任意所述第一颜色的发光器件的阳极的面积,大于第i+1补偿区中的任意所述第一颜色的发光器件的阳极的面积。在一些实施例中,n等于3。在一些实施例中,发光器件为有机发光二极管。在一些实施例中,第一颜色为红色。在一些实施例中,显示基板还包括多个不同于第一颜色的其它颜色的发光器件;除第一颜色的发光器件外,其它任意同颜色的发光器件的阳极的耦合电容值相同。在一些实施例中,所述显示基板还包括衬底;每个像素还包括用于驱动发光器件的驱动电路,驱动电路包括多个导电结构,其中与发光器件的阳极绝缘的导电结构为潜在电容结构;每个像素中,发光器件的阳极在衬底上的正投影与至少部分潜在电容结构在衬底上的正投影有交叠;对任意两个阳极的耦合电容值不同的第一颜色的发光器件,阳极的耦合电容值较大的发光器件的阳极的正投影与潜在电容结构的正投影的交叠面积,大于阳极的耦合电容值较小的发光器件的阳极的正投影与潜在电容结构的正投影的交叠面积。在一些实施例中,所有第一颜色的发光器件所在的像素中,潜在电容结构在衬底上的正投影的形状相同;对任意两个阳极的耦合电容值不同的第一颜色的发光器件,阳极的耦合电容值较大的发光器件的阳极在衬底上的正投影的面积,大于阳极的耦合电容值较小的发光器件的阳极在衬底上的正投影的面积。在一些实施例中,每个发光器件还包括设于阴极和阳极间的发光层,所有发光器件的阳极包括与发光层接触的主体部;所有第一颜色的发光器件的阳极的主体部的形状相同;除阳极的耦合电容值最小的第一颜色的发光器件的阳极外,其它第一颜色的发光器件的阳极均还包括从主体部边缘向外延伸的补偿部,且阳极的耦合电容值越大的发光器件对应的补偿部面积越大。在一些实施例中,发光器件的阴极设于阳极远离衬底一侧;正投影与发光器件的阳极的正投影有交叠的潜在电容结构,位于阳极与衬底之间,且与阳极间通过至少一个绝缘层隔开。第二方面,本公开实施例提供一种显示面板,其包括:上述任意一种的显示基板。在一些实施例中,所述显示面板还包括:驱动芯片,驱动芯片具有与显示基板的阳极接头电连接的阳极端口。附图说明附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:图1为本公开实施例提供的一种显示基板的结构示意图;图2为本公开实施例提供的一种显示基板中不同发光器件对应不同供电电阻的原理示意图;图3为一些相关技术中显示面板的亮度不均现象的示意图;图4为不同颜色oled的亮度与跨压的关系示意图;图5为不同颜色oled的驱动电流与跨压的关系示意图;图6为本公开实施例提供的一种显示基板中的像素的驱动电路的电路图;图7为本公开实施例提供的一种显示基板的补偿区的划分示意图;图8为本公开实施例提供的一种显示基板中一个没有补偿的像素的局部结构示意图;图9为图8沿aa’的剖面结构示意图;图10为本公开实施例提供的一种显示基板中一个进行了补偿的像素的局部结构示意图;图11为图10沿bb’的剖面结构示意图;其中,附图标记为:1、像素;11、潜在电容结构;18、像素界定层;19、绝缘层;2、发光器件;21、阳极;211、主体部;212、补偿部;22、阴极;23、发光层;3、阳极线;5、阳极接头;9、衬底;91、显示区;t1、第一晶体管;t2、第二晶体管;t3、第三晶体管;t4、第四晶体管;t5、第五晶体管;t6、第六晶体管;t7、第七晶体管;cst、存储电容;reset、第一重置端;reset’、第二重置端;vinit、初始化端;gate、栅线端;data、数据线端;em、控制端;vdd、阳极信号端;vss、阴极信号端。具体实施方式为使本领域的技术人员更好地理解本公开实施例的技术方案,下面结合附图对本公开实施例提供的显示基板、显示面板进行详细描述。在下文中将参考附图更充分地描述本公开实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。本公开实施例可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。本公开所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本公开所使用的术语“和/或”包括一个或多个相关列举条目的任何和所有组合。如本公开所使用的单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。如本公开所使用的术语“包括”、“由……制成”,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。除非另外限定,否则本公开所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本公开明确如此限定。本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。第一方面,参照图1至图11,本公开实施例提供一种显示基板,其包括:多个包括发光器件2的像素1,其中至少部分像素1包括第一颜色的发光器件2,发光器件2包括阴极22和阳极21;阳极接头5,用于通过阳极线3为各发光器件2的阳极21供电;连接在任意发光器件2与阳极接头5间的阳极线3的总电阻为该发光器件2的供电电阻。参照图1、图2,本公开实施例的显示基板包括多个像素1(或称子像素、亚像素),每个像素1中包括一个发光器件2,每个像素中的发光器件2可被独立的驱动并以特定亮度发光,使相应像素1显示特定内容,从而每个像素1为显示基板中一个可独立控制的最小的“点”。而且,每个像素1中的发光器件2具有特定颜色,即发光器件2发出特定颜色的光,从而让每个像素1也有相应的颜色。而且,至少部分像素1中的发光器件2是第一颜色(如红色)的,即显示基板中包括第一颜色的发光器件2。当然,应当理解,若显示基板中的所有像素1中的发光器件2均为一种颜色(如白色)时,则该颜色就是第一颜色。或者,显示基板也可包括不同于第一颜色的其它颜色的发光器件2,从而多个不同颜色(如红色、绿色、蓝色)的发光器件2发出的光可混合,以实现彩色显示。每个像素1中的发光器件2均包括阳极21和阴极22(还可包括发光层23)。而为给发光器件2的阳极21供电,显示基板中还设有阳极接头5(如用于与驱动芯片的阳极端口电连接),阳极接头5通过阳极线3连接各像素1,从而可向各发光器件2的阳极21提供阳极电压(vdd)。当然,显示基板中也可设有为发光器件2的阴极22供电的结构,在此不再详细描述。显然,阳极线3有一定的电阻率,故参照图2,每段阳极线3都相当一个等效电阻(图2中用r表示)。由此,对距离阳极接头5越远的发光器件2,其与阳极接头5间的阳极线3的长度越大,相应的实际电阻值就越大,而该电阻值被定义为相应发光器件2的供电电阻。显然,信号在引线中传播时,经过的电阻越大,则相应的压降(irdrop)也就越大。由此,参照图2,越远离阳极接头5的像素1中,发光器件2的供电电阻越大,相应的压降也就越大,从而发光器件2的阳极21实际获得的阳极电压vdd就越低,由此发光器件2的跨压(即阳极电压vdd与阴极电压vss的差)vds也越低。而在其它条件相同的情况下(如灰阶相同),跨压vds越低则发光器件2的亮度越低。由此,参照图3,在一些相关技术的显示面板中,会出现在理论显示亮度相同(灰阶相同)时,靠近阳极接头5的像素1偏亮(因其跨压vds较高),而远离阳极接头5的像素1偏暗(因其跨压vds较低)的现象,也就是出现“阴阳屏”现象,导致线面板的长程均一性(lru)差,显示效果不好。尤其是,在高亮度模式(hbm)下(或者说灰阶较高时),以上“阴阳屏”现象就更加明显。本公开实施例的显示基板中,至少部分第一颜色的发光器件2的阳极21的耦合电容值不同;对任意两个阳极21的耦合电容值不同的第一颜色的发光器件2,阳极21的耦合电容值较大的发光器件2的供电电阻,小于阳极21的耦合电容值较小的发光器件2的供电电阻。参照图6,每个发光器件2的阳极21必然会与像素1中的其它的导电结构靠近而形成电容(图中的c1至c6),这些电容即为发光器件2的阳极21的“耦合电容”,而该耦合电容也会对发光器件2的亮度造成影响。本公开实施例的显示基板中,至少在第一颜色的多个发光器件2中有部分发光器件2的结构不同,从而使不同的发光器件2的阳极21的耦合电容值也有不同,且其整体的规律是:供电电阻越大(或者说越远离阳极接头5)发光器件2,阳极21的耦合电容值越小。当然,该整体规律并不要求所有供电电阻不同的发光器件2的耦合电容值全都不同。示例性的,本公开实施例中,发光器件2可为有机发光二极管(oled),且每个像素1还包括相应的驱动电路,驱动电路的结构可参照图6,为7t1c结构。其中,以上驱动电路包括第一晶体管t1、第二晶体管t2、第三晶体管t3、第四晶体管t4、第五晶体管t5、第六晶体管t6、第七晶体管t7、存储电容cst、第一重置端reset、第二重置端reset’、初始化端vinit、栅线端gate、数据线端data、控制端em、阳极信号端vdd、阴极信号端vss等结构;其中,各晶体管可均为p型晶体管(如pmos),阳极信号端vdd连接阳极线3,其它各端也连接相应的供电结构(如控制线、栅极线、数据线、重置线等)。根据oeld的发光原理可知,其亮度与流过其的驱动电流ioled正相关。而驱动电流ioled的计算公式为:ioled=0.5*k*(vgs-vth)2;其中,k为固定系数,vth为驱动晶体管(即第三晶体管t3)的阈值电压,vgs为驱动晶体管(即第三晶体管t3)栅源电压,即n1节点电压与第三晶体管t3源极电压的差。在其它情况相同(如数据电压、跨压vds均相同)时,发光器件2(oled)的阳极21的耦合电容值越大,则n1节点的电压越低,从而栅源电压vgs越小,相应的驱动电流ioled越小,发光器件2(oled)的亮度越低。本公开实施例的显示基板中,增大了供电电阻较小(或者说较靠近阳极接头5)的发光器件2的阳极21的耦合电容值,或者说对供电电阻较小的发光器件2进行了“补偿(电容补偿)”。如前,供电电阻较小(距离阳极接头5较近)的发光器件2对应的压降vds较小,故其发光亮度应当较高;而本公开实施例中,供电电阻较小的发光器件2的阳极21的耦合电容值较大,这会使发光器件2的亮度降低、由此,通过供电电阻和耦合电容值的综合影响,可避免发光器件2的发生偏差。由此可见,本公开实施例中,不同发光器件2的阳极21的耦合电容值的不同(或者说补偿不同),从而一定程度上抵消了供电电阻的不同对像素1亮度的影响,即,以上耦合电容值的不同相当于降低了原本偏亮的像素1的亮度,而提高了原本偏暗的像素1的亮度,从而使显示面板中距离阳极接头5不同位置处的像素1的亮度比较均匀,消除“阴阳屏”现象,改善显示面板的长程均一性(lru),提高显示效果。尤其是,在高亮度模式(hbm)下(或者说灰阶较高时),本公开实施例对显示效果的改善更加明显。另外,由于通过补偿改善了亮度均匀性,故提供给各发光器件2的阴极22的阴极电压vss可更低,这有利于降低显示面板的在显示时的功耗。在一些实施例中,发光器件2为有机发光二极管。在一些实施例中,第一颜色为红色。也就是说,显示基板中的发光器件2具体可为有机发光二极管(oled),而显示基板可为oled显示基板。相应的,此时第一颜色可为红色,即在oled显示基板中,至少要对红色的像素1进行以上补偿。由于发光材料等的限制,故参照图4,通常红色oled的亮度随阳极电压vdd的变化规律与其它颜色(如蓝色、绿色)的oled的变化规律不同,而由此会导致显示面板不同位置颜色的不均匀,如产生以上“发红/发青”现象。参照图5,在不同的阳极电压vdd(也就是不同跨压vds)下,不同颜色的oled驱动曲线不同,进而它们与一定灰阶(或者说一定阈值电压vgs)下的驱动晶体管(如第三晶体管t3)的驱动曲线(t3驱动曲线)的交点也不同,该交点对应的驱动电流ioled也不同,也就是发光亮度不同。参照图5可见,对蓝色oled和绿色oled,其不同跨压vds下的驱动曲线基本都与t3驱动曲线的饱和区相交,故参照图4,它们的亮度随跨压vds的变化不明显,且基本为直线。相对的,参照图5,红色oled在部分跨压vds下的驱动曲线是与t3驱动曲线的线性区相交的,而此时交点对应的驱动电流ioled会随跨压vds的不同而明显变化;故参照图4,红色oled的亮度随跨压vds的变化很明显,且为折线(折线的两部分分别对应饱和区和线性区)。由此可见,红色oled是引起颜色偏差和亮度不同的主要因素,因此,本公开实施例的显示基板中,至少红色发光器件2的阳极21的耦合电容值需要不同,或者说至少需要对红色发光器件2进行“补偿”。在一些实施例中,显示基板还包括多个不同于第一颜色的其它颜色的发光器件2;除第一颜色的发光器件2外,其它任意同颜色的发光器件2的阳极21的耦合电容值相同。如前,除了第一颜色(如红色)的发光器件2(如oled)外,显示基板中还可包括其它颜色(如蓝色、绿色)的发光器件2(如oled);而从简化结构的角度考虑,其它颜色的发光器件2中,同颜色的发光器件2的阳极21的耦合电容值可以相同(因为这些颜色的发光器件2的亮度偏差较小),即可不必对其它颜色的发光器件2进行“补偿”。当然,应当理解,若其它颜色的发光器件2的阳极21的耦合电容值也不同,也是可行的;且其它颜色的发光器件2的阳极21的耦合电容值的变化规律,可与第一颜色的发光器件2的阳极21的耦合电容值的变化规律相同,即:对任意一种颜色的两个阳极21的耦合电容值不同的发光器件2,同样是阳极21的耦合电容值较大的发光器件2的供电电阻,小于阳极21的耦合电容值较小的发光器件2的供电电阻。在一些实施例中,显示基板分为n个补偿区,每个补偿区包括多个第一颜色的发光器件2,n为大于或等于2的整数;同一补偿区中第一颜色的发光器件2的阳极21的耦合电容值相同;第i补偿区中第一颜色的发光器件2的供电电阻的最大值小于第i+1补偿区中第一颜色的发光器件2的供电电阻的最小值;第i补偿区中的第一颜色的发光器件2的阳极21的耦合电容值,大于第i+1补偿区中的第一颜色的发光器件2的阳极21的耦合电容值;i为任意大于0且小于n的整数。理论上说,根据每个发光器件2实际获得的阳极电压vdd为其设置对应的阳极21的耦合电容值是最完美的,但实际中,不论从设计还是从工艺上,将数量众多的发光器件2全部设置为不同结构以使其获得所需耦合电容值将是很困难的。因此,可参照图7,将显示基板划分为多个“补偿区”,每个补偿区中的像素1位置比较接近,故其发光器件2对应的供电电阻相差不大。由此,在每个补偿区中,至少第一颜色(如红色)的发光器件2的结构是相同的,从而它们的阳极21的耦合电容值也都是相同的;而至少对第一颜色的发光器件2,则是不同补偿区中的第一颜色的发光器件2的阳极21的耦合电容值不同,且是对应的供电电阻越大的补偿区中,发光器件2的阳极21的耦合电容值越小。也就是说,本公开实施例中的补偿可以是“分区”进行的,每个区中的补偿情况相同,而不同区的补偿不同。当然,应当理解,对其它颜色的发光器件2的补偿也可以是分区进行的,且不同颜色的发光器件2的补偿区的划分,可以相同,也可不同。在一些实施例中,n等于3。通常而言,显示基板分为3个补偿区就可以实现比较好的补偿效果了。例如,参照图7,若显示面板的白平衡是根据第2补偿区和第3补偿区边界位置的情况确定的,则可以是第3补偿区中未进行补偿,而第1补偿区的补偿比第2补偿区的补偿更大。或者说,可以是第2补偿区中第一颜色(如红色)的发光器件2的阳极21的耦合电容值相对第3补偿区中第一颜色的发光器件2的阳极21的耦合电容值“增大”,而第1补偿区中第一颜色的发光器件2的阳极21的耦合电容值相对第2补偿区中第一颜色的发光器件2的阳极21的耦合电容值“增大”在一些实施例中,所有像素1设于显示区91中,阳极接头5设于显示区91的一侧之外;第i补偿区与第i+1补偿区间通过边界分开,第i补偿区位于该边界靠近阳极接头5一侧,第i+1补偿区位于该边界远离阳极接头5一侧。参照图1、图7,所有像素1都可位于显示区91中,而阳极接头5则位于显示区91外(如参照图1、图7位于显示区91上方),而阳极线3是从阳极接头5连接到各发光器件2的,故通常是距离阳极接头5越远的发光器件2对应的供电电阻越大。因此,以上补偿区也可按照距离阳极接头5所在位置的远近划分,即越靠近阳极接头5的补偿区的编号越小,即其中发光器件2的阳极21的耦合电容值越大。其中,具体的补偿区,可根据未进行补偿的显示面板产品(pnl)在实际显示中的不均匀情况进行实际设置。例如,参照图1、图7,在横向上,阳极接头5通常位于显示基板的上方的中部,故越靠下的像素1对应的阳极线3越长,供电电阻越大;而在同一行中,由于阳极线3的设置,故靠近左右两侧的像素1对应的阳极线3相对更短,故不同补偿区的边界可参照图7,在左右两侧处远离近阳极接头5所在侧。在一些实施例中,第i补偿区中的任意第一颜色的发光器件2的阳极21的面积,大于第i+1补偿区中的任意第一颜色的发光器件2的阳极21的面积。显然,阳极21的耦合电容是通过阳极21与其它导电结构的交叠形成的,因此,为增大发光器件2的阳极21的耦合电容值,最简便的方式是增加阳极21的面积(相当于增大耦合电容中的一个极片的面积),即让第i补偿区中的第一颜色的发光器件2的阳极21的面积比第i+1补偿区中的第一颜色的发光器件2的阳极21的面积更大。其中,具体如何通过改变阳极21的面积改变耦合电容值,在后续再详细描述。在一些实施例中,显示基板还包括衬底9;每个像素1还包括用于驱动发光器件2的驱动电路,驱动电路包括多个导电结构,其中与发光器件2的阳极21绝缘的导电结构为潜在电容结构11;每个像素1中,发光器件2的阳极21在衬底9上的正投影与至少部分潜在电容结构11在衬底9上的正投影有交叠;对任意两个阳极21的耦合电容值不同的第一颜色的发光器件2,阳极21的耦合电容值较大的发光器件2的阳极21的正投影与潜在电容结构11的正投影的交叠面积,大于阳极21的耦合电容值较小的发光器件2的阳极21的正投影与潜在电容结构11的正投影的交叠面积。参照图6,像素1中设有用于驱动发光器件2的驱动电路(如以上7t1c的驱动电路),而驱动电路中的很多导电结构都与发光器件2的阳极21绝缘(即在非工作状态下不导通),因此这些导电结构可能与发光器件2的阳极21交叠即可形成电容(耦合电容),故它们是潜在电容结构11。例如,参照图6,其中多个潜在电容结构11可与阳极21间形成多个耦合电容,具体为图中示出的电容c1、c2、c3、c4、c5、c6。其中,对一种具体的布图设计,经过模拟计算发现,以上各电容c1、c2、c3、c4、c5、c6的相对电容值如下表:电容编号c1c2c3c4c5c6相对电容值8.45.12.61.22.90.3由此可见,对该具体的布图设计,发光器件2的阳极21的耦合电容主要由以上电容c1(即阳极21与初始化端vinit间的电容)和c2(即阳极21与n1节点间的电容)构成。当然,针对不同的像素结构和布图设计,发光器件2的阳极21的耦合电容的组成也可有不同。由此,通过调整潜在电容结构11与发光器件2的阳极21的交叠面积,也就实现了对发光器件2的阳极21的耦合电容值的调整,即实现了补偿。例如,可以是对应供电电阻越大的发光器件2,潜在电容结构11与阳极21的交叠面积越小,即阳极21的耦合电容值越小。其中,改变阳极21与潜在电容结构11的交叠面积的具体方式是多样的。例如,可以是增大/减小阳极21的面积使其与更多/更少的潜在电容结构11交叠,以改变阳极21与潜在电容结构11的交叠面积。或者,也可以是增大/减小与阳极21交叠的潜在电容结构11的面积(如增大/减小引线宽度),以改变阳极21与潜在电容结构11的交叠面积。或者,也可以是改变潜在电容结构11的布图设计(即分布方式),以使不同的潜在电容结构11与阳极21交叠,以改变阳极21与潜在电容结构11的交叠面积。在一些实施例中,所有第一颜色的发光器件2所在的像素1中,潜在电容结构11在衬底9上的正投影的形状相同;对任意两个阳极21的耦合电容值不同的第一颜色的发光器件2,阳极21的耦合电容值较大的发光器件2的阳极21在衬底9上的正投影的面积,大于阳极21的耦合电容值较小的发光器件2的阳极21在衬底9上的正投影的面积。虽然改变阳极21与潜在电容结构11的交叠面积的具体方式是多样的,但在显示基板中,通常驱动电路的各种导电结构(潜在电容结构11)的分布是十分密集的,之间的空隙很狭小,因此若要改变潜在电容结构11的布图或面积,通常是比较困难的。相对的,发光器件2的阳极21与多数潜在电容结构11都分布在不同的层中,且不同发光器件2的阳极21是相互独立的,之间原本具有较大的间隙,因此,通过改变阳极21的面积(尤其是增大需要补偿的发光器件2的阳极21的面积)是比较容易实现的。在一些实施例中,每个发光器件2还包括设于阴极22和阳极21间的发光层23,所有发光器件2的阳极21包括与发光层23接触的主体部211;所有第一颜色的发光器件2的阳极21的主体部的形状相同;除阳极21的耦合电容值最小的第一颜色的发光器件2的阳极21外,其它第一颜色的发光器件2的阳极21均还包括从主体部211边缘向外延伸的补偿部212,且阳极21的耦合电容值越大的发光器件2对应的补偿部212面积越大。参照图9、图11,发光器件2(如有机发光二极管)通常是通过叠置的阳极21、发光层23(如有机发光层)、阴极22实现发光的。而在改变阳极21面积时,若也增大了阳极21与发光层23的接触面积,则相当于改变了发光器件2的发光面积,这也会影响发光器件2的发光效果。为此,参照图8至图11,在所有的发光器件2中,可以是阳极21均包括形状相同的、与发光层23接触的主体部211(即实际实现发光的部分)。且参照图8、图9,对不需要补偿的发光器件2,其阳极21仅有主体部211。而参照图10、图11,需要更大耦合电容值(或者说需要补偿)的发光器件2的阳极21,则还包括与主体部211连接但不与发光层23接触的补偿部212,且该补偿部212面积越大则阳极21的耦合电容值越大。也就是说,可通过在部分发光器件2的阳极21中“增设”特定面积的补偿部212,实现对其耦合电容值的补偿。其中,设置不与发光层23接触的补偿部212的具体方式是多样的。例如,参照图8至图11,显示基板中不同发光器件2的阳极21可以是相互独立的,而发光层23和阴极22则可分别连接成整体的“层结构”,且不同发光器件2之间通过像素界定层18(pdl)隔开。由此,可将以上阳极21的补偿部212设于像素界定层18的下方(即靠近衬底9一侧),而发光层23和阴极22则位于像素界定层18上方(即远离衬底9一侧),从而阳极21的补偿部212与发光层23虽然叠置但不接触。其中,应当理解,图8至图11中,只是示意性的表明了阳极21与潜在电容结构11的位置关系,而并不代表实际的阳极21、潜在电容结构11具体是图中的结构。当然,改变发光器件2的阳极21的耦合电容值的具体方式是多样的,不限于对阳极21和潜在电容结构11的交叠面积的改变。例如,也可以增大/减小潜在电容结构11与阳极21间的距离(例如改变潜在电容结构11与阳极21间的绝缘层19的厚度,或者增加/较减少潜在电容结构11与阳极21间的绝缘层19),以改变发光器件2的阳极21的耦合电容值。或者,也可以是增大/降低潜在电容结构11与阳极21间的绝缘层19的介电系数(如改变绝缘层19的材料),以改变发光器件2的阳极21的耦合电容值。在一些实施例中,发光器件2的阴极22设于阳极21远离衬底9一侧;正投影与发光器件2的阳极21的正投影有交叠的潜在电容结构11,位于阳极21与衬底9之间,且与阳极21间通过至少一个绝缘层19隔开。参照图9、图11,从简化结构的角度考虑,以上驱动电路中的各种潜在电容结构11通常是先形成在衬底9上,而之后再依次形成绝缘层19、像素界定层18、阳极21、发光层23、阴极22等结构;因此,以上潜在电容结构11通常是位于阳极21与衬底9之间的,而阴极22则位于阳极21上方(即远离衬底9一侧)。当然,由于潜在电容结构11是与阳极21绝缘的,故至少在与阳极21的交叠位置,潜在电容结构11与阳极21间必然设有绝缘层19(如栅绝缘层、钝化层、层间绝缘层、平坦化层等)。应当理解,不同的潜在电容结构11可能位于不同的层中,且其与阳极21之间间隔的绝缘层19数量也可有不同。第二方面,参照图1至图11,本公开实施例提供一种显示面板,其包括:上述的任意一种显示基板。也就是说,可将以上的显示基板与其它的器件(如对盒盖板、驱动芯片、电源等)组合起来,形成具有完整的显示功能的显示面板。具体的,该显示面板可电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。在一些实施例中,本公开实施例的显示面板还包括:驱动芯片,驱动芯片具有与显示基板的阳极接头5电连接的阳极端口。为向阳极接头5提供阳极电压,可将驱动芯片(ic)与显示基板连接(如绑定,或通过柔性线路板连接),并使显示基板上的阳极接头5与驱动芯片的相应阳极端口电连接。由此,以上描述的远离/靠近阳极接头5的位置,实际也就是远离/靠近ic的位置。本公开已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1