载体、半导体器件及其安装方法

文档序号:6812734阅读:189来源:国知局
专利名称:载体、半导体器件及其安装方法
技术领域
本发明涉及在电路板上安装半导体元件的半导体器件领域。
现在参考附图介绍现有技术的半导体器件。
在图8中,半导体器件1包括放置在由绝缘材料制成的载体3上的半导体元件2。通过金突点5焊接或粘接到半导体元件2的电极4的多个电极6放置在载体3的上表面,外电极端8在载体3下表面上排成矩阵状。电极6电连接到外电极端8。半导体元件2和载体3之间的空间和半导体元件2的周围用环氧树脂密封剂7填充和覆盖。在某些情况下,焊料突点9可以形成在外电极端8的表面上。在图8中,半导体器件安装在电路板12上。电极11对应于外电极端8以矩阵状设置在电路板12上半导体器件1将安装的区域内。焊膏13印刷在矩阵电极11上。如图9所示,半导体器件1放置在电路板12上,以允许半导体器件1的外电极端8与电路板12的电极11相接触。通过加热并熔化焊膏13,用焊料10将外电极端8与电极11粘结。
如图9所示,当将半导体器件1安装在电路板12上时,按以上结构设计的半导体器件1难于调节载体3和电路板12之间的高度H。如果高度H很短,由载体3和电路板12之间热膨胀系数的差别产生的热应力集中在焊接部分,在某些情况下,会导致焊接部分的开裂或剥离。
本发明提供一种高可靠性地安装在印刷电路板上的半导体器件,和这种半导体器件的安装方法。
在本发明的半导体器件中,在形成集成电路的半导体元件表面上形成的输出电极连接到形成在半导体载体上的导电电路上,通过形成在半导体的载体上的外电极与外部材料电连接。外电极设置在半导体载体上的凹形部分的底部。
在半导体器件的厚度方向,半导体的载体具有从上部分到下部分突出于底面的多层结构,用于将平板的上部分形成凹形部分。形成多层结构的材料具有跨过半导体器件的半导体载体的热膨胀系数到达半导体器件安装于其上的电路板的热膨胀系数的不同的热膨胀系数。
半导体器件的安装方法包括将焊膏分配到半导体器件的外电极的凹形部分内,倒装半导体器件,将半导体器件安装到电路板上,通过加热电路板进行焊接。另一方法包括将粘结焊剂(adhesive flux)施加到半导体器件的外电极的凹形部分内,在施加的粘结焊剂的顶部形成焊料球,倒装半导体器件,将半导体器件安装到电路板上,通过加热电路板进行焊接。还有一种方法包括将粘结剂施加到不需要电连接,但当半导体器件的凹形部分上的电极电连接电路板的电极时,半导体器件接触电路板的区域,将半导体器件安装到电路板上,通过加热电路板焊接。


图1A为根据本发明的第一示例性实施例的带载体的半导体器件的透视图。
图1B为沿图1A的A-A的剖面视图。
图1C为图1A的底视图。
图2A为根据本发明的第二示例性实施例的带载体的半导体器件的透视图。
图2B为沿图2A的A-A的剖面视图。
图2C为图2A的底视图。
图3A为根据本发明的第三示例性实施例的带载体的半导体器件的透视图。
图3B为沿图3A的A-A的剖面视图。
图3C为图3A的底视图。
图4A-4D为根据本发明的第一示例性实施的例的半导体器件的安装方法的工艺图。
图5A-5D为根据本发明的第二示例性实施例的半导体器件的安装方法的工艺图。
图6A-6E为根据本发明的第三示例性实施例的半导体器件的安装方法的工艺图。
图7为本发明的示例性实施例的半导体器件中所使用的材料的热膨胀系数表。
图8为现有技术的半导体器件的结构侧视图。
图9为安装到电路板上的常规半导体器件的结构侧视图。
第一示例性实施例图1A-1C为本发明的第一示例性实施例的使用载体的半导体器件1的结构。特定电路形成在半导体元件2内,电极4形成在半导体元件2的一部分上。载体3由绝缘衬底17制成,并且半导体元件2放置在载体3上。第二电极6设置在载体3的上表面(另一面),电连接到半导体元件2上的电极4。作为第一电极的外电极端8以矩阵状设置于载体3的底面(一面)上,如图1C所示。外电极端8电连接到第二电极6。填充区18以凹形形式形成在载体(或绝缘材料17)的底面上。在以后的工序中,填充区18将填充有如焊料的粘结材料。外电极端8安置在填充区18的底部。密封剂7填充并覆盖半导体元件2和载体3之间的空间和半导体元件2的周围。这里,填充区的深度取决于在以后的工序中将半导体器件1或载体3粘结到带有特定电路的板(以后也称做“电路板”)上所需的高度。有许多方法可形成凹形填充区18。例如,使用光敏环氧树脂膜,通过曝光和显影形成凹形部分。如果外电极端的对准间距(相邻外电极端8的中心之间的距离)为1mm,并且它的直径(外电极端8的直径)为0.5mm,那么填充区18的深度最好为0.2mm到1.0mm。载体3一般用矾土和如玻璃陶瓷的陶瓷制成,但也可以用如环氧树脂的树脂材料制成。
当通过例如焊接将以上配置的半导体器件电连接到电路板时,可通过改变填充区18的深度,根据需要调节粘结部分的高度H。与不带填充区的半导体器件安装到电路板上的情况相比,这样可在电路板和外电极端8之间获得更大的高度H,因此,可减小施加到外电极端8的粘结面的应力,提高可靠性并改善耐热循环(thermal heat cycle resistance)。
这里,通过将测试件周围的环境温度在高和低之间重复交替对测试件施加热应力来检查耐热循环能力。重复+80℃30分钟和-40℃30分钟的周期1,000次后,可以注意到本发明的半导体器件的焊接部分没有开裂。
此外,当不带填充区18的半导体器件1安装到电路板上时,如图9所示,用于电连接的焊料形成中凸的鼓形。对于本发明的载体3或半导体器件1,焊膏或焊料球提供到填充区18后进行焊接,因此可使焊料在粘结的高度方向内,在凹形中心部分形成沙漏形。这可将通常聚集在粘结表面的应力传递到粘结部分的中心部分,可提高粘结强度,并防止粘结表面的损坏。
第二示例性实施例图2A-2C为本发明的第二示例性实施例的带载体的半导体器件1的结构。与第一示例性实施例相同配置的部分用相同的数字表示,因此省略了对它们的介绍。
载体3包括从形成填充区18(控制材料52)(一面)的半导体器件1的底面(作为衬底的绝缘材料51)到半导体器件1的厚度方向的底面的控制材料52和不带凹形部分的平坦绝缘材料51。作为第一电极的外电极端8设置在绝缘材料51形成有控制材料52的一侧。第二电极6设置在绝缘材料51未形成控制材料52的一侧(另一面)。电连接外电极端8和电极6。控制材料52设置在外电极端8周围,包括作为其底部的外电极端8,从而形成填充区18。当将如焊料的粘结材料施加到外电极端8上时,填充区18控制粘结材料。
在该示例性实施例中,绝缘材料51和控制材料52由不同的材料制成。和树脂的热膨胀系数相比,热膨胀系数更接近半导体元件2的材料用做载体3的绝缘材料51。例如,如果半导体元件2使用硅衬底,那么绝缘材料51可以用如玻璃陶瓷的陶瓷或矾土和玻璃的混合物制成。矾土可用做绝缘材料51和控制材料52。
热膨胀系数介于半导体器件1形成于其上的电路板的热膨胀系数和绝缘材料51的热膨胀系数之间的材料可用做载体3的控制材料52。这样可减轻半导体元件2、绝缘材料51、控制材料52和电路板之间的热应力,在以后的工序中,将如焊料的粘结材料施加到外电极端8后,可改善相关部分的可靠性。如果绝缘材料51由玻璃陶瓷制成,可使用如聚苯硫等的热阻工程塑料作为控制材料52。
除了第一示例性实施例的效果外,以上配置进一步减小了施加到粘结部分的应力。
第三示例性实施例图3A-3C为本发明的第三示例性实施例的带载体的半导体器件1的结构。与第一示例性实施例相同配置的部分用相同的数字表示,因此省略了对它们的介绍。
载体3包括与第二示例性实施例相同方式的控制材料52和绝缘材料51。控制材料52在厚度方向由几种材料制成的几层53到55组成。控制材料52中的层配置成使它们的热膨胀系数呈阶梯状,在绝缘材料51的热膨胀系数与在以后的工序中半导体器件1将安装于其上的电路板的热膨胀系数之间呈正的相关梯度。
构成控制材料52的材料由混有填料(玻璃纤维)的聚苯硫制成,通过改变填料的类型和体积调节它们的热膨胀系数。在该示例性实施例中,填料占据控制材料52的第一层53中整个材料的约60%,在第二层54中约为50%,在第三层55中约为40%。热膨胀系数随填料占整个体积的百分比的减少而增加。层53、54和55用粘结剂粘结。
除了第一示例性实施例的效果外,以上配置进一步减小了施加到粘结部分的应力。在该示例性实施例中使用的材料的热膨胀系数显示在图7中。
在该示例性实施例中的热膨胀系数在厚度方向从绝缘材料51开始呈阶梯状变化。然而,线性改变热膨胀系数可获得相同的效果。
第四示例性实施例下面参照附图4A-4D介绍本发明将半导体器件1安装到电路板上的方法。
首先,如图4A所示,将半导体器件1倒装,使载体3的填充区18内的开口19面朝上,从而将焊膏13(焊料粉和焊剂的糊状混合物)注入填充区18。使用带有开口对应于填充区18的开口19的掩模施加焊膏13。掩模放置在半导体器件1上,掩模的开口定位到开口19上,使用橡皮刮板(squeegee)(用于焊料印刷的橡胶刮板(spatula))通过印刷施加焊膏13。然后填有焊膏13的半导体器件1再次倒装,向下面对填有焊膏13的载体3的填充区18。
如图4B所示,使用掩模也将焊膏13印刷到其上将安装半导体器件1的电路板12上。
接下来,如图4C所示定位后,半导体器件1安装到电路板12上。在回流工艺(使用热空气或热熔化焊料的焊接方法)期间,将安装后的电路板12加热到焊膏的熔点以上,用于通过熔化焊膏焊接外电极端8和电路板12的电极11。一般来说,对于共熔焊料,温度增加到220℃。由于在熔化期间焊膏中的焊剂蒸发,焊膏的体积约减少一半。当焊接后的半导体器件1和电路板12冷却到室温,焊接部分显示为沙漏形状,在粘结的高度方向中间部分呈凹形,如图4D所示。在固化期间,金属体积减少约10%。
可以不使用该示例性实施例中介绍的掩模将焊膏13施加填充区18内。例如,将焊膏13直接施加到载体3上,并使用橡胶刮板除去多余部分以提供焊膏13。
该示例性实施例也使用掩模将焊膏13印刷到电路板12上,是由于除了本发明的半导体器件1以外,如电阻和电容等的电子元件一般和半导体器件1一起安装。然而,由于焊膏13已提供到载体3的填充区18,对于安装半导体器件1,有时不必将焊膏13印刷到电路板12上。对于半导体器件1,是否将焊膏13印刷到电路板12上取决于开口是否提供在掩模上,因此安装过程本身总是相同的。
该示例性实施例的安装方法可以用于安装在第一、第二和第三示例性实施例中的任意一个带有载体的半导体器件。
使用该方法,可以获得第一到第三示例性实施例中介绍的效果。
第五示例性实施例下面参照附图5介绍本发明安装半导体器件的另一方法。
首先,将半导体器件倒装,使位于载体3上的填充区18上的开口19面朝上,将粘结焊剂15施加到外电极端8,焊料球16提供到粘结焊剂15上。
该示例性实施例中,使用异丙醇作为粘结焊剂和溶剂,松香酸作松香,并且乙胺化氢氯作催化剂。然而也可以使用其它物质。
通过放置电子元件的安装器分配粘结焊剂15并提供焊料球16。然而,也可以使用其它方法。这里,分配是指将粘结焊剂15施加到注射器状容器中,通过从另一侧对粘结焊剂15施加压力,粘结焊剂15从针尖向一侧挤出。
然后再次倒装带有焊料球16的半导体器件1,使带有焊料球16的载体3的填充区面朝下。
同时,使用掩模将焊膏13印刷到其上将安装半导体器件1的电路板12上。
接下来,将半导体器件1定位在电路板12上并安装。在回流工艺期间,将电路板12加热到焊膏13的熔点温度以上,熔化焊膏13焊接外电极端8和电路板12的电极11。一般来说,对于共熔焊料,温度增加到220℃。由于在熔化时焊膏体积减小,当焊接后的焊接部分冷却到室温时,焊接部分显示为沙漏形状,在粘结的高度方向中间部分呈凹形,如图5D所示。
该示例性实施例可以用于安装在第一、第二和第三示例性实施例中所述的载体和半导体器件。
在该示例性实施例中,使用掩模将焊膏13印刷到电路板12上,但不必象第四示例性实施例用焊膏13印刷到电路板12上的工艺安装半导体器件1。
使用该安装方法,可以获得第一到第三示例性实施例中介绍的效果。
第六示例性实施例下面参照附图6介绍本发明安装半导体器件1的另一方法。
首先,如图6A所示,将半导体器件1倒装,使载体3上的填充区18上的开口19面朝上,并且填充区18填有焊料13。
粘结剂14施加到电路板12上半导体器件1接触电路板12时不需电连接的接触区20。粘结剂14施加到载体3一侧。
使用带有开口对应于填充区18的开口19的掩模施加焊膏13。掩模放置在半导体器件1上,掩模的开口定位到开口19上,使用橡皮刮板通过印刷施加焊膏13。然后填有焊膏13的半导体器件1再次倒装,向下面对填有焊膏13的载体3的填充区18。如图6B所示,使用掩模将焊膏13印刷到其上将安装半导体器件1的电路板12上。
接下来,将半导体器件1定位在电路板12上并安装。在回流工艺(使用热空气或热熔化焊料的焊接方法)期间,将电路板12加热到焊膏13的熔点温度以上,熔化焊膏13焊接外电极端8和电路板12的电极11。一般来说,对于共熔焊料,温度增加到220℃。由于在熔化时焊膏的体积减小。当焊接后焊接部分冷却到室温时,焊接部分形成沙漏形状,在高度方向中间部分呈凹形,如图6E所示。
因此,半导体器件1接触电路板12,不要求电连接的区域用粘结剂粘接到电路板12上。粘接区域吸收焊接加热产生的应力,因此减小了施加到电粘结部分的应力。
不使用在该示例性实施例的叙述中使用的掩模,也可将焊膏13施加到填充区18内。例如,将焊膏13直接施加到载体3,并使用橡胶刮板除去多余的部分可施加焊膏13。
该示例性实施例在电路板12上也使用用于印刷焊膏13的掩模,和第四示例性实施例一样,对于安装半导体器件1,将焊膏13印刷到电路板12上的工艺不总是很必要。
使用该安装方法,可以获得第一到第三示例性实施例中介绍的效果。
当本发明的载体或半导体器件电连接,包括焊接,到电路板上时,通过调节凹形部分的深度,可以控制粘结部分的高度H。当安装不带凹形部分的半导体器件时,粘结部分的高度H可制作得更大,因此可减少施加到粘结表面的应力,并改善可靠性和耐热循环。
此外,本发明在焊接前,通过用焊膏或焊料球填充填充区,在焊接部分的厚度方向,形成中间部分为凹形的沙漏形。在现有技术中,不带填充区的半导体器件在焊接部分形成凸鼓形。由于当焊膏熔化时焊料的体积收缩,所以本发明的焊接部分形成沙漏形。沙漏形将集中在粘结表面的应力传输到它的中间部分,改善了粘结强度,并防止了粘结部分的损坏。
当电连接半导体的载体上形成的凹形部分和电路板上的电极时,通过用粘结剂固定半导体器件和电路板接触,但不需要电连接的区域,将半导体器件加热和焊接到电路板上,从而粘结部分吸收应力,减少了施加到电连接部分的应力。
使用由具有跨过半导体器件的半导体载体的热膨胀系数到达半导体器件安装于其上的电路板的热膨胀系数的呈阶梯状分布的不同的热膨胀系数的材料,由半导体器件的半导体的载体上形成的凹形部分底部的电极到没有半导体元件的一侧的表面形成的层,本发明也可以减少施加到粘接部分的应力,因此减少施加到电连接部分的的应力。
权利要求
1.一种载体包括在一面上形成有凹形填充区的衬底;形成在所述衬底的所述填充区底部的第一电极;和形成在所述衬底另一面上的第二电极;所述第一电极和所述第二电极电连接。
2.一种载体包括在衬底一面上形成的第一电极;形成在所述衬底另一面并电连接到形成的所述第一电极的第二电极;使用所述第一电极做底部,在所述第一电极周围形成的填充区,所述填充区由控制粘结到所述第一电极的接触材料的控制材料制成。
3.权利要求2所述的载体,其中所述衬底和所述填充区由具有不同热膨胀系数的材料制成。
4.权利要求2所述的载体,其中在所述衬底侧的所述填充区的所述控制材料的热膨胀系数接近于所述衬底的热膨胀系数,并且在厚度方向,分段接近于将安装于其上的所述电路板的热膨胀系数。
5.一种半导体器件,包括具有特定电路和电极的半导体元件的电连接,该半导体元件的所述电极,和由权利要求1到4中的一个所述的载体的第一电极。
6.安装如权利要求5所述的半导体器件的方法,包括步骤将粘结材料施加到形成在所述半导体器件的载体上的填充区;倒装所述半导体器件;将所述半导体器件安装到电路板上;和加热所述半导体器件和所述电路板。
7.安装如权利要求5所述的半导体器件的方法,包括步骤将焊料球施加到形成在所述半导体器件的载体上的填充区;倒装所述半导体器件;将所述半导体器件安装到电路板上;和加热所述半导体器件和所述电路板。
8.安装如权利要求1和2之一所述的半导体器件的方法,包括步骤将粘结剂施加到不需要电连接,但半导体载体的凹形部分中电极与电路板的电极电连接处半导体器件与电路板接触的区域,将半导体器件安装到电路板上,通过加热焊接半导体器件和电路板。
9.一种安装方法,形成粘结材料,将形成在具有特定电路的电路板上的电极和其上安装元件的电路板上的电极粘结成具有凹形中心部分的沙漏形,用于在所述电路板上粘结所述电路板上形成的电极和在所述电路板上安装的元件的电极。
10.一种制作安装封装体的方法,形成粘结材料,将形成在具有特定电路的电路板上的电极和其上安装元件的电路板上的电极粘结成具有凹形中心部分的沙漏形,用于在所述电路板上粘结所述电路板上形成的电极和在所述电路板上安装的元件的电极。
全文摘要
载体、半导体器件,及其安装方法,该方法可提高安装在电路板上的半导体器件的如耐热循环的可靠性。半导体器件1包括用于半导体的载体3,并且凹形部分形成在半导体的载体3的外电极8的区域。外电极8设置在半导体的载体上的凹形部分的底部。焊膏13施加到凹形部分,半导体器件1倒装,并且半导体器件1安装到电路板12上。将安装到电路板12上的半导体器件1加热到焊膏13的熔点以上的温度。
文档编号H01L21/60GK1191628SQ96195696
公开日1998年8月26日 申请日期1996年7月18日 优先权日1995年7月20日
发明者鹤见浩一, 山本宪一 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1