用于电子部件的导件及其制造方法

文档序号:6815317阅读:189来源:国知局
专利名称:用于电子部件的导件及其制造方法
技术领域
本发明涉及用于电子部件的导件,例如,用于将各种电子部件如半导体器件与外部电路连接的导线及其制造方法。更具体地说,本发明涉及一种廉价的用于电子部件的导件及其制造方法,所述导件具有良好的耐热性和耐氧化性以及耐腐蚀性,并由此具有优异的焊接性。
二极管、晶体管和IC等各种半导体器件、以及包含这些半导体器件的电容器、电阻器等各种电子部件具有将器件或部件与例如印刷电路板的终端连接的导接部分。电子部件的导接部分和印刷电路板的终端部分通过导件如典型的为导线而相互电连接。通常用焊接进行连接。
以往,作为此类导线,往往使用Cu单一金属、Cu-Fe类或Cu-Sn类的Cu合金制成的线材,或者用Au、Ag、Sn、Ni或Sn-Pb合金镀层的包铜钢线。
用于制造导线的材料根据导线连接的电子部件而适当选择。
例如,对主要要求连接后保持机械强度的电子部件,使用Cu合金制成的导线或包铜钢线。另一方面,对主要要求确保导电性的电子部件,使用铜线。
对在制造过程中进行浸蚀处理电子部件,选择对在浸蚀工序中使用的浸蚀剂具有耐腐蚀性的材料。当电子部件需进行熔接、焊接、固化模塑或熟化等热处理时,使用具有耐热性和耐氧化性的材料。
例如,对Si接头进行使用强酸或强碱的浸蚀处理并将导线接在Si接头上时,在高达350-400℃的温度将导线焊接在Si接头上。而且,当使用硅氧烷树脂固化模塑所得器件时,在200-250℃的温度于空气中进行热固化。这时,导线必须具有耐热性、耐氧化性和耐腐蚀性。
作为暴露在上述环境中的Si接头的导线,目前已知有Ag镀层的导线,该导线包含由含Ag的无氧铜制成的芯材、包覆该芯材表面的Ni或Ni合金的底层以及作为表层而形成在底层上的Ag镀层。
在该Ag镀层的导线中,形成表层的Ag兼备耐热性、耐氧化性和耐腐蚀性,但Ag本身昂贵且易发生原子移动。此外,当在高温下将导线在空气中加热时,氧透过表层(Ag)而扩散,并将底层氧化,其结果,焊接性下降。
为解决Ag镀层导线的上述问题,已有人设计了一种用Pd或Pd合金表层代替Ag表层的导线(参见日本专利公开公报1985年第217693号)。
Pd或Pd合金表层具有优异的耐热性、耐氧化性和耐腐蚀性,并具有不会发生Ag那样的原子移动的长处。
然而,该现有的导线由于其表层材料是Pd或Pd合金而仍然昂贵。为降低成本,可将表层制成尽可能的薄。若表层太薄,则与Ag表面镀层一样,在热处理时焊接性下降。
因此,为提高其焊接性,必须增加由Pd或Pd合金制成的表层的厚度,但这会导致导线成本的上升。
本发明者为解决上述表层在焊接时焊接性下降的问题,进行了深入研究,结果得到下述发现。
即,当在焊接过程中加热导线时,构成导线基体表面部分的金属成分如铜成分透过形成底层的金属晶粒间界或透过晶粒间界内的小孔而热扩散并污染表层,其结果,表层的焊接性下降。
根据上述发现,本发明者得到下述技术思想即,若加大构成上述底层的金属粒积,可减少晶粒间界的数目,从而可抑制金属成分从基体表面部分向表层的热扩散,由此可防止表层被污染和焊接性下降。
基于该技术思想,本发明得以完成。
本发明的一个目的在于,提供一种具有优异的耐热性、耐氧化性和耐腐蚀性且即使其表层的厚度减少,焊接性也不会下降的用于电子部件的导件。
本发明的另一目的在于,提供一种低成本制造用于电子部件的导件的方法,该导件具有优异的耐热性、耐氧化性和耐腐蚀性,还具有优异的焊接性。
为达到上述目的,本发明提供一种用于电子部件的导件,它包括至少表面部分由Cu或Cu合金制成的基体;由选自Ni、Co、Ni合金和Co合金中的一种制成的、形成在基体表面上的底层;以及由选自Pd、Ru、Pd合金和Ru合金中的一种制成的、形成在底层表面上的表层,其中,所述底层由粒积在20mm以上的晶粒组成。本发明还提供一种制造用于电子部件的导件的方法,它包括下述工序对至少表面部分由Cu或Cu合金制成的基体进行热处理,将Cu或Cu合金的粒积控制在20mm以上;用Ni、Co、Ni合金和Co合金中的一种对热处理过的表面部分进行镀层,形成底层;以及用Pd、Ru、Pd合金和Ru合金中的一种对底层进行镀层,形成表层。


图1是本发明一实施例中的导件A的剖面图;图2是本发明的另一实施例中的导件B的剖面图;图3是本发明的又一实施例中的导件C的剖面图;图4是本发明的再一实施例中的导件C′的剖面图。
图1是导件A的剖面图,更具体地说,是作为本发明一实施例的导线。
导件A包含基体1、包覆基体1的表面的底层2、和形成在底层2上的表层3。
基体1可完全由Cu或由Cu合金制成。另外,基体1可包含例如用Cu或Cu合金镀层的钢线,以使钢线表面部分仅由Cu或Cu合金形成。
所用的Cu合金可以是例如Cu-Zn合金、Cu-Sn合金、Cu-Ag合金、或Cu-Ni合金。
底层2形成在基体1的表面上。该底层2起防止基体1的金属元素在加热进行焊接过程中从基体热扩散至后述的表层并使其污染。
更具体地说,底层2是由Ni、Cu、和Ni合金如Ni-Co合金、Ni-Fe合金、Ni-Sn合金、Ni-Zn合金、以及Cu合金如Cu-Zn合金、Cu-Ni合金、Cu-Sn合金、Cu-Ag合金组成的、粒积在20mm以上的层。
若粒积小于20mm,则底层2中的晶粒间界的数目增加且晶粒间界内的小孔数目也增加。由此,不能有效地抑制金属从基体1扩散至表层,其结果,表层被污染,其焊接性下降。底层2中的粒积最好为50-100mm。
通常,对基体1镀层,形成底层2。此时形成在基体1上的镀层的粒积可通过后述的对基体的退火处理和控制在基体表面部分重结晶的晶粒的大小来进行调节。
形成表层3,使其覆盖底层2。该表层3系用Pd、Ru、Pd合金如Pd-Ni合金、Pd-P合金、以及Ru合金如Ru-Ni合金对底层2镀层来加以形成。
构成表层3的金属不会原子移动并具有优异的耐热性、耐氧化性和耐腐蚀性,因此,具有这样的表层的导接不会发生原子移动并具有优异的耐热性、耐氧化性和耐腐蚀性。
表层3的构成金属非常昂贵,因此,表层厚度应尽可能地薄以降低导接成本。根据本发明,由于上述底层2的功能,若表层3的厚度减至约0.02mm,焊接性不会下降。
导接A可按下述方法制造。
首先,制备基体1,然后用本领域已知的方法对其镀层,在基体1的表面上形成底层2。
此时,为使底层2中的粒积大于或等于20mm,进行下述处理。
将基体1在非氧化气氛中退火。具体地说,将基体1在炉内于非氧化气体环境中按预定的时间加热。此时,当变化加热温度而使热处理时间固定时,基体1的表面部分中的晶粒的粒积随着处理温度的上升而增大,其结果,堆积在基体表面部分的这些上述晶粒上的底层的粒积也增大。
例如,若在400℃将基体1退火,则镀在基体上的底层的粒积约为20mm,而若在600℃将基体1退火,则底层的粒积约为80mm。
因此,通过控制基体的退火温度,可调节底层2的结晶粒积。
对底层2的厚度无特殊限制。然而,若底层2太薄,则抑制金属成分从基体1热扩散的效果消失,而若底层太厚,则由于镀层应力增加而易于从基体1剥离。因此,底层2的厚度最好约为0.1-2.0mm。
用该方法镀上底层2,并形成表层3,由此得到本发明的导件A。
若表层3太薄,则小孔数目增加且底层2的暴露面积也增加,由此产生焊接性下降的问题。另一方面,若表层3太厚,则制造成本增加。因此,表层3的厚度最好控制在约0.01-0.4mm。
图2是为本发明另一实施例的导件B的剖面图。
该导件B具有与导件A相同的层结构,所不同之处在于,后述的中间层4形成在表层3和底层2之间。
中间层4是由Ni-P合金、Ni-B合金、Co-P合金、Co-B合金、Ni-Co-P合金或Ni-Co-B合金制成的镀层,与底层2的构成材料相比,更具有耐氧化性。
因此,在该导件B中,由于中间层的功能,底层2的氧化被抑制,从而可抑制导件的焊接性下降。对中间层4的厚度无特殊限制。若中间层4太薄,则上述有利效果减小,而若中间层太厚,则导件的特性如可弯曲性等下降。因此,为确保导件的加工性以及抑制对底层2的氧化的效果,中间层4的厚度最好为0.01-0.5mm。
图3是为本发明的又一实施例的导件C的剖面图。
该导件C具有与导件A相同的层结构,所不同之处在于,后述的辅助层5形成在表层3上。
辅助层5是由Au、Ag、Rh、Pt、Os或Ir制成的镀层。这些材料均具有非常优异的耐氧化性。因此,即使辅助层5极薄,它也能提供抑制表层3氧化的效果,从而可抑制导件焊接性的下降。然而,若辅助层5的厚度太薄,则上述有利效果减小,而若辅助层太厚,则制造成本上升。因此,为确保焊接性以及从经济性的角度出发,辅助层5的厚度最好为0.001-0.1mm。
图4是为本发明的再一实施例的导件C’的剖面图。
该导件C′具有与导件C相同的层结构,所不同之处在于,辅助层5形成在紧邻表层3的下方,即形成在底层2和表层3之间。
在该导件C’中,底层2的氧化被更有效地抑制,这样,导件的焊接性改善。
辅助层5可形成在图2所示导件B的表层3上或形成在表层3和中间层4之间。此时,与导件C和C′同样,也可改善导件的焊接性。实施例1-9,比较例1&2按照下述步骤制造导件A。
制备直径各为0.6mm的无氧铜线作为基体。将无氧铜线在管式炉内于N2-H2混合气体气氛中在表1所示温度热处理(退火)30分钟。
通过连续镀层作业线的方式对退火过的无氧铜线进行常规的预处理后,使铜线连续地通过预定的镀槽,得到具有表1所示层结构的导线。这些导线具有与图1所示导件A相同的层结构。
接着,将所得导线切割成30mm长的试样,对试样进行集管加工并在大气中于200℃加热8小时。按下述方法评定它们的焊接性。
焊接性的评定用丙酮将各试样充分清洗并在具有235℃的低共熔点的熔融焊剂浴中浸渍5秒钟,用放大镜(放大约15倍)测定附着在各试样表面上的焊剂面积,并除以试样的浸渍面积,得到附着面积的百分率。
附着面积的数值越大,表示试样的焊接性也越高。
此外,按下述方法测定形成在无氧铜线上的底层中的晶粒粒积。
底层的粒积的测定用扫描式电子显微镜(放大率1000至100)观察各底层,得到平均粒积。
使用下述电镀浴并按下述条件电镀各试样。变化电镀时间以得到各种厚度的镀层。
(1)Ni电镀镀浴240g/lNiSO4、45g/lNiCl2和30g/lH3BO3。
电镀条件电流密度为5A/dm2,浴温为50℃。
(2)Co电镀镀浴400g/lCoSO4、20g/lNaCl和40g/lH3BO3。
电镀条件电流密度为5A/dm2,浴温为30℃。
(3)Ni-Co电镀镀浴240g/lNiCO4、45g/lNiCl2、30g/lH3BO3和15g/lCoSO4。
(使用该镀浴可形成Ni-10%Co合金的电镀层。)电镀条件电流密度为5A/dm2,浴温为55℃。
(4)Pd电镀镀浴40g/lPd(NH3)2Cl2、90ml/l NH4OH和50g/l(NH4)2SO4。
电镀条件电流密度为1A/dm2,浴温为30℃。
(5)Ru电镀镀浴10g/lRuNOCl3·5H2O和15g/lNH2SO3H。
电镀条件电流密度为1A/dm2,浴温为60℃。
(6)Pd-20%Ni合金电镀镀浴40g/lPd(NH3)2Cl2、45g/lNiSO4、90ml/lNH4OH和50g/l(NH4)2SO4。
电镀条件电流密度为1A/dm2,浴温为30℃。
结果归纳在表1中。
表1
表1表明(1)实施例1-6和比较例1的比较结果清楚地显示,虽然它们的表层各为0.02mm厚的Pd镀层,但本发明的实施例1-6的导线具有更大的焊剂附着面积和改善的焊接性。
考虑到实施例1-6的底层具有比比较例1更大的粒积这一事实,结果显示,增加底层的粒积对改善导线的焊接性是非常有效的。
(2)这也可以从焊剂附着面积(%)随着底层的粒积的增加而增加(实施例1-5)这一事实而得到证明。
(3)表1的结果还进一步表明,为增加底层的粒积,最好应在电镀形成底层之前将无氧铜线退火。表1结果尤其显示,最好应在400℃以上的温度将无氧铜线退火30分钟。实施例10-13将已在600℃退火过的无氧铜线电镀,形成表2所示的各底层,然后在各底层上形成表2所示的中间层,并形成表2所示的表层,得到具有图2所示层结构的本发明的导线B。
按与实施例1-9相同的方法,测定导线底层的粒积和焊剂附着面积(%)。结果归纳在表2中。
使用下述镀浴,并按下述电镀条件电镀中间层。(1)Ni-3%B电镀镀浴240g/lNiSO4、45g/lNiCl2、30g/lH3BO3和3g/l(CH3)3NBH3。电镀条件电流密度为1-10A/dm2,浴温为55℃。(2)Ni-20%P电镀镀浴240g/lNiSO4、15g/lNiCl2、30g/lH3BO3和32g/lH3PO3。电镀条件电流密度为5A/dm2,浴温为30℃。(3)Ni-Co-3%B电镀镀浴10g/lNiCl2·6H2O、45g/lCoCl2·6H2O、12g/lNH4Cl、160ml/lNH4OH、45ml/l(C2H5)4NCl和1ml/lNaBH2。电镀条件在45℃浴温化学镀。(4)Ni-Co-5%P电镀镀浴15g/lNiCl2·6H2O、10g/lCoSO4·7H2O、84g/l枸橼酸钠、42g/l(NH4)2SO4、14ml/lNH4OH和8ml/lH3PO2。电镀条件在90℃浴温化学镀。
表2
对表1所示结果和表2所示结果进行比较,可以清楚地看到,当表层的厚度具有相同的厚度且底层用相同粒积形成时,这些各具有形成在底层和表层之间的中间层的导线显示更大的焊剂附着面积。
这表明,形成中间层可有效地增强导线的焊剂附着性。实施例14-26在已在表3所示温度退火过的无氧铜线上依次形成表3所示各底层、表层和辅助层,得到具有图3所示层结构的本发明的导线C。按该方法得到的这些导线分别作为实施例14-19。
在实施例19中,在底层和表层之间形成表3所示的中间层。
同样地,在底层和表层之间形成表3所示的辅助层,制造图4所示的本发明的导线C’。将这些导线分别作为实施例20-26。在实施例26中,在底层和辅助层之间形成表3所示的中间层。
使用下述镀浴,并按下述电镀条件电镀辅助层。
(1)Au电镀首先,用N.E.CHEMCAT公司生产的N-200镀浴在电流密度2A/dm2、浴温25℃的电镀条件下进行Au触击电镀,然后,用N.E.CHEMCAT公司生产的N-44镀浴在电流密度1A/dm2、浴温65的电镀条件下进行Au电镀。
(2)Ag电镀首先,用5g/lAgCN、60g/lKCN和30g/lK2CO3的镀浴在电流密度2A/dm2、浴温为30℃的电镀条件下进行Ag触击电镀,然后,用50g/lAgCN、100g/lKCN和30g/lK2CO3的镀浴在电流密度1A/dm2、浴温为30℃的电镀条件下进行Ag电镀。
(3)Rh电镀镀浴N.E.CHEMCAT公司生产的RH#225。
电镀条件电流密度为1A/dm2,浴温为55℃。
(4)Pt电镀镀浴10g/lPt(NH3)2(NO2)2、100g/lNH4NO3、10g/l亚硝酸铵和55ml/lNH4OH。
电镀条件电流密度为1A/dm2,浴温为90℃。
(5)Os电镀镀浴25g/lK2[Os(NO)(OH)(NO2)]4。
电镀条件电流密度为2A/dm2,浴温为70℃、pH为12-13。
(6)Ir电镀镀浴EEJA生产的INDEX 100。
电镀条件电流密度为0.15A/dm2,浴温为85℃。
按与实施例1-9相同的方法测定按上述方法制得的各导线的底层的粒积和整个结构的焊接性。结果归纳在表3中。
表3
将表3和表1的结果或表3和表2的结果进行比较,可以清楚地看出,与不具有辅助层的导线相比,具有形成在表层外侧或内侧的辅助层的导线具有更大的焊剂附着面积。这表明,辅助层的形成起增强导线的焊接性的作用。
如上所述,在本发明的用于电子部件的导件中,将底层的粒积加大至20mm以上,即,减小作为基体成分扩散途径的晶粒间界的数目,从而使导件的表面不易被污染,由此提供优异的焊接性。具有这样的大的粒积的底层可容易地通过在具有大的粒积的基体上电镀底层而得到。因此,根据本发明的方法,即使使用贵金属形成表层,也可减小表层的厚度。这样,可以低成本制造具有优异的焊接性的导件,因此,本发明具有显著的工业价值。
权利要求
1.用于电子部件的导件,包含至少表面部分由Cu或Cu合金制成的基体;由选自Ni、Co、Ni合金和Co合金中的一种制成的、形成在上述基体表面上的底层;以及由选自Pd、Ru、Pd合金和Ru合金中的一种制成的、形成在底层表面上的表层,其中,所述底层由粒积在20mm以上的晶粒组成。
2.如权利要求1所述的导件,其特征在于,由选自Ni-P合金、Ni-B合金、Co-P合金、Co-B合金、Ni-Co-P合金和Ni-Co-B合金中的一种制成的中间层形成在上述底层和表层之间。
3.如权利要求1或2所述的导件,其特征在于,由选自Au、Ag、Rh、Pt、Os或Ir中的一种制成的、厚度为0.001-0.1mm的辅助层形成在上述表层上。
4.如权利要求1或2所述的导件,其特征在于,由选自Au、Ag、Rh、Pt、Os或Ir中的一种制成的辅助层形成在紧邻上述表层的下方。
5.用于电子部件的导件的制造方法,它包括下述工序对至少表面部分由Cu或Cu合金制成的基体进行热处理,使将Cu或Cu合金的粒积控制在20mm以上;用Ni、Co、Ni合金和Co合金中的一种对热处理过的表面部分进行镀层,形成底层;以及用Pd、Ru、Pd合金和Ru合金中的一种对底层进行镀层,形成表层。
全文摘要
提供一种具有优异的耐热性、耐氧化性和耐腐蚀性且尤其具有优异的焊接性的用于电子部件的导件以及通过电镀低成本地制造该导件的方法。该导件包含至少表面部分由Cu或Cu合金制成的基体、按所述次序依次形成的Ni、Co、Ni合金和Co合金的底层以及Pd、Ru、Pd合金和Ru合金的表层。所述底层由粒积在20mm以上的晶粒组成。
文档编号H01L21/60GK1170233SQ9711276
公开日1998年1月14日 申请日期1997年6月13日 优先权日1996年6月13日
发明者铃木智, 谷木守正 申请人:古河电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1