一种结合石墨烯的可充电锂离子电池及其制造方法

文档序号:9566136阅读:580来源:国知局
一种结合石墨烯的可充电锂离子电池及其制造方法
【技术领域】
[0001]本发明涉及到锂离子电池的制造领域,特别涉及到一种结合石墨烯的可充电锂离子电池的制造方法。
【背景技术】
[0002]早期锂离子电池利用纯金属锂箔为负极,由此引发的安全性考虑促进了将碳材料作为负极材料的锂离子电池的技术发展。目前商品化的锂离子电池以石墨作为负极,结合含锂的氧化物比如,LiCo02和LiMn204作为正极。在理想的充电/放电反应状态下,多层石墨烯间插入和脱出锂离子的过程是可逆的,可达到100%的充电/放电效率。得到的插层锂离子的石墨烯可以表示为LixC6。对于没有明显乱层结构的有序石墨,其中X通常小于1,相当于372mAh/g的理论比容量(x = 1, e.g:LiC6)。为了减少锂离子插层反应过程中的容量损失,LixC6中的X必须最大化,且在最初的反应周期中,副反应引起的不可逆容量损失必须最小化。
[0003]由于特殊的高导电性,高比表面积和直的孔道结构,石墨烯被认为是一种在锂离子电池的高功率和高能量传递中很有应用前途的电极材料。石墨烯具有巨大的比表面积、丰富的边缘结构和缺陷。同时,石墨烯有更多的微腔和微孔呈现在重新排列的石墨烯微晶上。因此与传统的石墨负极相比,这些特性为石墨烯提供了更多与锂离子成键和结合的位置,可以存储更多锂离子。(见图la和lb)。图la和lb呈现了一个有序的石墨结构模型(la)和一个无序的石墨烯堆叠结构模型(lb)。石墨烯已经被证实能够明显提高负极的可逆容量,理论上可将可逆容量提高到740mAh/g(LiC3组成)。除此之外,锂离子掺杂入石墨烯的过程并不受传统石墨负极的动力学分段反应所限制。锂离子在石墨烯中的高扩散系数和高传导性大大加速了电极中电荷转移和扩散的反应速率,因此石墨烯可在快速充放电速率下仍保持高的锂离子存储比容量。
[0004]然而,石墨烯负极与电解液接触时不可避免地产生大量不可逆反应。这是由大的不规则的比表面面积的石墨烯片层和高度活跃的边缘与电解液作用所造成。在最初的充放电循环反应中,锂离子的不可逆消耗导致电池中锂离子的流失,负极结构的破坏和后续的容量衰减。为了减少碳质负极与锂离子的不可逆反应,传统工艺中通常将碳质粒子研磨,从而重组石墨片层以获得光滑的表面,或者高温石墨化以消除结构的无序性。为进一步减小不可逆反应,另一方式为在石墨片层边缘包覆微米或纳米颗粒防止其直接接触到电解液。然而,这些过程会牺牲石墨烯负极的优势特征,如高比表面积和锂离子扩散系数等,进而抑制石墨烯负极的可逆容量和充放电倍率性能。
[0005]解决这个问题的另一个常见做法是在组装锂离子电池时装载过量的正极材料。在最初的反应周期中,消耗的锂离子可以通过过剩的正极材料引入的锂离子进行补充。然而这种方法导致电池的负极和正极不能更好匹配。多余的正极材料增加了电池的重量和制造成本。如果多余的锂离子在负极沉积得不均匀或者游离在两电极间,可进一步造成短路。生成的可燃气体还将导致灾难性后果。(指G.-A.Nazri and B.J.Howie的《制造惰性锂碳阳极的方法》欧洲专利EP96201589.7)。

【发明内容】

[0006]本发明的目的在于提供一种结合石墨烯的可充电锂离子电池的制造方法,其成品具有更高的供电能力和更快的充电速率。本发明描述了结合石墨烯负极的可充电锂离子电池的设计路线,并描述了解决上述石墨烯负极问题的预锂化处理方法。
[0007]本发明提供一种结合石墨烯的可充电锂离子电池的制造方法,所述方法包括步骤如下:(a)以石墨烯或者石墨烯的复合物为基础制造负极薄膜;(b)在负极薄膜中引入预设含量的锂形成预锂化的石墨烯负极;(c)利用一个正极薄膜和预锂化的石墨烯负极构建一个完整的电池;所述正极和负极浸没在液态电解质中,并用隔膜隔开。
[0008]其中,所述引入预设含量的锂的步骤包含了通过喷涂、滴涂、旋涂方法将稳定的锂金属粉末在负极薄膜上表面喷涂均匀的步骤,其中所需锂的含量由负极薄膜的不可逆容量决定,以足以弥补在初始充放电反应中损失的锂离子。
[0009]其中,所述引入预设含量的锂的步骤包含了在负极薄膜上表面物理贴附上金属锂箔或者金属锂带和在锂/负极接触面注入有机溶剂的步骤;然后锂离子自发地从金属锂扩散至负极表面,剩余锂箔或锂带从负极表面剥离。
[0010]其中,所述引入预设含量的锂的步骤包含了将负极薄膜和锂相对电极和电解质组装成半电池的步骤,预锂化负极薄膜放电至某一电位,该电位决定了锂化的深度,然后拆分半电池,取预锂化后的负极薄膜搭配正极组成一个完整的电池。
[0011]其中,所述制造石墨烯负极时,石墨烯纳米片(GnP),官能化石墨烯、还原氧化石墨烯和其他预设前驱物混合聚合物粘结剂和导电添加剂;混合物通过流延、旋涂、浸涂或层压等方法沉积到负极集流体。
[0012]其中,所述石墨烯可以掺杂进电化学物质形成一种混合活性物质,这些电化学物质可以是金属、金属氧化物和导电聚合物。
[0013]本发明还提供一种结合石墨烯的可充电的锂离子电池,所述电池包含正极与引入预设含量的锂形成预锂化的石墨烯负极,所述正极和负极浸没在液态电解质中,并用隔膜隔开;所述正极外部有一层正极集流体,用于收集从正极产生的电流,所述负极外部有一层负极集流体,用于收集从负极产生的电流。
[0014]本发明所述的电池包含一个引入预设含量的锂形成预锂化的石墨烯负极,与正极相对应,并提供了预锂化的石墨烯纳米片层负极的制备过程,为实现具有前所未有的能量和功率输出的高性能的锂离子电池提供可能性。在电池组装前锂化石墨烯负极不仅消除了与石墨烯不可逆反应有关的锂离子的消耗问题,还可以在减少操作期间的安全隐患的基础上达到提高电极利用率、容量保持能力和循环效率的目的。
【附图说明】
[0015]图1为一个有序的石墨结构模型(la)和一个无序的石墨烯堆叠结构模型(lb)。
[0016]图2为本发明一个正极和预锂化的石墨烯负极浸没在电解质中并被聚合物隔膜隔离的锂离子电池。
[0017]图3为本发明预锂化的石墨烯纳米片层负极的制备过程。
[0018]图4为本发明石墨烯纳米片层负极与传统石墨负极在不同的电流密度下的比容量和库伦效率。
[0019]图5为本发明石墨烯纳米片层负极与传统石墨负极的充放电曲线。
[0020]图6为本发明带有NMC正极和石墨烯纳米片层负极的锂离子电池的放电容量和库伦效率。
[0021]图7为本发明带有NMC正极和石墨烯纳米片层负极的锂离子电池的充放电曲线。
【具体实施方式】
[0022]为了使本发明的目的、特征和优点更加的清晰,以下结合附图及实施例,对本发明的【具体实施方式】做出更为详细的说明,在下面的描述中,阐述了很多具体的细节以便于充分的理解本发明,但是本发明能够以很多不同于描述的其他方式来实施。因此,本发明不受以下公开的具体实施的限制。
[0023]本发明描述了一种结合石墨烯的可充电锂离子电池的设计,并通过预锂化石墨烯电极克服上述提到的问题。如图2所示,所述电池包含与正极20相对应的预装入预设含量的锂的结合石墨烯的负极10。图2显示了一个正极20和预锂化的石墨烯负极10配对浸没在液体、固体或者凝胶形式的无水离子导体30中,并被聚合物隔膜40隔离的锂电池。一层负极集流体50在负极10的外部,用于收集从负极10产生的电流;和一层正极集流体60在正极20的外部,用于收集从正极20产生的电流。
[0024]制造石墨烯负极,是将石墨烯纳米片、官能化的石墨烯和还原氧化石墨烯中的一种或几种混合一种聚合物粘结剂和一种导电添加剂,如炭黑、碳纳米管、碳纳米纤维形成的。通过流延、旋涂、浸涂或层压等方法将混合物沉积在集流体上。粘结剂包括PVDF(聚偏氟乙烯)、PVDF的共聚物如PVDF-HFP (聚偏氟乙烯-六氟丙烯),纤维素,PVC (聚氯乙烯)、PE(聚乙烯)、PP(聚丙烯)、醋酸乙烯酯、PVA(聚乙烯醇)中的至少一种;纤维素包括甲基纤维素、羧甲基纤维素、乙基纤维素、丁基醋酸纤维素、硝酸纤维素等。其他的电化学物质也能被掺杂进石墨烯形成一种混合活性物质,这些电化学物质可以是金属、可发生氧化还原反应的过渡金属氧化物和导电聚合物。其中金属包括硅、锗和锡;过渡金属氧化物包括氧化锡(SnO and Sn02)、氧化铁(Fex0y)和氧化钴(CoO and Co304)等。
[0025]正极薄膜是一种导电添加剂、聚合物粘合剂和活性物质的混合物,其中导电添加剂包括石墨片、CNTs碳纳米管、CNFs碳纳米纤维或者石墨烯;活性物质包括嵌入材料、硫或者活性有机物,其中嵌入材料包括LiCo02,LiMn204,锂镍氧化物(LiNi02),磷酸铁锂(LiFeP04),氧化锰(Μη02),氧化钒(V205)和氧化钥(Mo03);活性有机物包括导电聚合物和碳氧化物盐。
[0026]电解液是一种包含一个或者几个类型的碳酸酯以及锂盐的无水溶液,其中碳酸酯包含:碳酸乙烯酯(EC),碳酸丙烯酯(PC),碳酸二甲酯(DMC)和碳酸二乙酯(DEC)等;锂盐包括:
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1