无线能量转移系统的制作方法

文档序号:11593513阅读:457来源:国知局

本申请是申请日为2009年9月25日、申请号为200980147815.x、国际申请号为pct/us2009/058499、发明名称为“无线能量转移系统”的专利申请的分案申请。

相关申请的交叉引用

本申请要求以下美国专利申请的优先权,其中的每一个整体地通过引用结合到本文中:

2008年9月27日提交的美国申请no.61/100,721;2008年10月27日提交的美国申请no.61/108,743;2009年1月26日提交的美国申请no.61/147,386;2009年2月12日提交的美国申请no.61/152,086;2009年5月15日提交的美国申请no.61/178,508;2009年6月1日提交的美国申请no.61/182,768;2008年12月9日提交的美国申请no.61/121,159;2009年1月7日提交的美国申请no.61/142,977;2009年1月6日提交的美国申请no.61/142,885;2009年1月6日提交的美国申请no.61/142,796;2009年1月6日提交的美国申请no.61/142,889;2009年1月6日提交的美国申请no.61/142,880;2009年1月6日提交的美国申请no.61/142,818;2009年1月6日提交的美国申请no.61/142,887;2009年3月2日提交的美国申请no.61/156,764;2009年1月7日提交的美国申请no.61/143,058;2009年2月13日提交的美国申请no.61/152,390;2009年3月26日提交的美国申请no.61/163,695;2009年4月24日提交的美国申请no.61/172,633;2009年4月14日提交的美国申请no.61/169,240;以及2009年4月29日提交的美国申请no.61/173,747。

背景

本公开涉及亦被称为无线功率传输的无线能量转移(transfer)。



背景技术:

可以使用多种已知辐射或远场和非辐射或近场技术来无线地转移能量或功率。例如,可以将使用低方向性天线的辐射无线信息转移(诸如在无线电和蜂窝式通信系统和家用计算机网络中使用的那些)视为无线能量转移。然而,此类辐射转移是非常低效的,因为仅获取了供应或辐射的功率的很小一部分,即沿着接收机的方向并与之重叠的那部分。大多数功率沿着所有其它方向被辐射开并损耗在自由空间中。此类低效功率转移对于数据传输而言是可接受的,但是对于为了做工目的(诸如为了向电气设备供电或充电)而转移有用量的电能而言是不实际的。改善某些能量转移方案的转移效率的一种方式是使用定向天线来约束并优选地指引辐射能量朝向接收机。然而,这些定向辐射方案在移动发射机和/或接收机的情况下可能要求不中断的视线和潜在地复杂的跟踪和转向机构。另外,此类方案可能对正在传送中度或大量功率时穿过或横穿射束的对象或人造成危险。常常称为感应或传统感应的已知非辐射或近场无线能量转移方案并非(故意地)辐射功率,而是使用流过初级线圈的振荡电流来产生在附近接收或次级线圈中感生电流的振荡磁近场。传统感应方案已经证明了适中到大量功率的传输,然而仅仅是在非常短的距离上,并且在主电源单元与辅助接收机单元之间具有非常小的偏移容差。电变压器和接近充电器(proximitycharger)是利用此已知近程、近场能量转移方案的设备的示例。

因此,需要一种能够在中程(mid-range)距离或对准偏移内传送有用量的电功率的无线功率转移方案。此类无线功率转移方案应能够相较传统感应方案所实现的那些在更大的距离和对准偏移内实现有用能量转移,但是没有辐射传输方案所固有的限制和风险。



技术实现要素:

本文公开了一种能够在中程距离和对准偏移内传送有用量的功率的非辐射或近场无线能量转移方案。本发明的技术使用具有长寿命的振荡谐振模的耦合电磁谐振器来从电源向功率消耗装置(powerdrain)转移功率。该技术是全面的,并且可以应用于大范围的谐振器,即使在本文公开的涉及电磁谐振器的特定示例的情况下。如果谐振器被设计使得由电场存储的能量被主要约束在结构内且由磁场存储的能量主要在谐振器周围的区域中。则主要由谐振磁近场来调解(mediate)能量交换。可以将这些类型的谐振器称为磁谐振器。如果谐振器被设计使得由磁场存储的能量被主要约束在结构内且由电场存储的能量主要在谐振器周围的区域中。则主要由谐振电近场来调解能量交换。可以将这些类型的谐振器称为电谐振器。还可以将两种中任一类型的谐振器称为电磁谐振器。在本文中公开了这两种类型的谐振器。

我们公开的谐振器的近场的全向但固定(无损耗)性质在很宽的方向和谐振器取向的范围内实现在中程距离上的高效无线能量转移,适合于充电、供电或同时对多种电子设备供电和充电。结果,一种系统可以具有多种可能的应用,其中,被连接到电源的第一谐振器在一个位置,并且潜在地连接到电气/电子设备、电池、供电和充电电路的第二谐振器等处于第二位置,并且其中,从第一谐振器到第二谐振器的距离约为几厘米至几米。例如,连接到有线电力网的第一谐振器可以位于房间的天花板上,而被连接到诸如机器人、交通工具、计算机、通信设备、医疗设备等设备的其它谐振器等在房间内来回移动,并且其中,这些设备恒定地或间歇地从源谐振器无线地接收功率。对于这一个示例而言,一个人可以想象许多应用,其中本文公开的系统和方法可以跨越中程的距离提供无线功率,包括消费者电子装置、工业应用、基础设施供电和照明、运输交通工具、电子游戏、军事应用等。

当谐振器被调谐至基本相同的频率且系统中的损耗最小时,能够使两个电磁谐振器之间的能量交换最优化。无线能量转移系统可以被设计使得谐振器之间的“耦合时间”比谐振器的“损耗时间”短得多。因此,本文所述的系统和方法可以利用具有低固有损耗率的高品质因数(高q)谐振器。另外,本文所述的系统和方法可以使用具有明显比谐振器的特性尺寸更长地延伸的近场的亚波长谐振器,使得交换能量的谐振器的近场在中程距离处重叠。这是之前尚未实践的操作区,并且明显不同于传统感应设计。

重要的是认识到这里公开的高q磁谐振器方案与已知近程或接近感应方案之间的差别,即那些已知方案按照惯例没有利用高q谐振器。使用耦合模理论(cmt)(参见例如wavesandfieldsinoptoelectronics,h.a.haus,prenticehall,1984),可以显示高q谐振器耦合机制能够实现比传统感应方案所实现的间隔开中程距离的谐振器之间的功率递送高几个数量级的高效功率递送。耦合高q谐振器已经证明了在中程距离上实现高效能量转移及在短程能量转移应用中改善效率和偏移容差。

本文所述的系统和方法可以提供经由强耦合高q谐振器的近场无线能量转移,一种具有安全地且在比使用传统感应技术实现的大得多的距离上转移从皮可瓦到千瓦的功率水平的潜力的技术。针对强耦合谐振器的多种一般系统,可以实现高效的能量转移,诸如强耦合声谐振器、原子能谐振器、机械谐振器等的系统,如最初由m.i.t.在其出版物“efficientwirelessnon-radiativemid-rangeenergytransfer”,annalsofphysics,vol.323,issue1,p.34(2008)和“wirelesspowertransferviastronglycoupledmagneticresonances”,science,vol.317,no.5834,p.83,(2007)中描述的那样。本文公开的是电磁谐振器和耦合电磁谐振器的系统,更具体地也称之为耦合磁谐振器和耦合电谐振器,具有10ghz之下的工作频率。

本公开内容描述了也称为无线功率传输技术的无线能量转移技术。综观本公开内容,我们可互换使用术语无线能量转移、无线功率转移、无线功率传输等。我们可以提到将来自源、ac或dc源、电池、源谐振器、电源、发电机、太阳能电池板和集热器等的能量或功率供应给设备、远程设备、多个远程设备、一个或多个设备谐振器等。我们可以描述中间谐振器,其通过允许能量跳跃、转移通过、被临时存储、被部分地耗散、或允许以任何方式来调解从源谐振器到其它设备与中间谐振器的任何组合的转移来扩展无线能量转移系统的范围,从而可以实现能量转移网络或串或延长的路径。设备谐振器可以从源谐振器接收能量,将该能量的一部分转换成用于对设备供电和充电的电功率,并同时将接收到的能量的一部分传到其它设备或移动设备谐振器上。能量可以从源谐振器转移至多个设备谐振器,显著地延长可无线地转移能量的距离。可以使用多种系统架构和谐振器设计来实现无线功率传输系统。该系统可包括向单个设备或多个设备传送功率的单个源或多个源。可以将谐振器设计为源或设备谐振器,或者可以将其设计为重发器(repeater)。在某些情况下,谐振器可以同时是设备和源谐振器,或者可以将其从作为源进行操作切换至作为设备或重发器进行操作。本领域的技术人员将理解的是可以由在本申请中描述的大范围的谐振器设计和功能来支持多种系统架构。

在我们描述的无线能量转移系统中,可以使用无线供应的功率或能量直接对远程设备供电,或者可以将设备耦合到诸如电池、法拉电容器、超级电容器等的储能单元(或其它种类的功率消耗装置),其中,可以无线地对储能元件充电或再充电,和/或其中,无线功率转移机制仅仅是设备的主电源的补充。可以由诸如具有集成存储电容器等的混合电池/储能设备来对设备供电。此外,可以将新型电池和储能设备设计为利用由无线功率传输系统实现的操作改进。

其它功率管理方案包括使用无线地供应的功率来对电池再充电或对储能单元充电,同时其进行供电的设备被关断、处于空闲状态、处于睡眠模式等。可以以高(快)或低(慢)速率对电池或储能单元充电或再充电。可以对电池或储能单元涓流充电或浮动充电。可以并行地同时对多个设备充电或供电,或者可以使到多个设备的功率递送串行化,使得一个或多个设备在其它功率递送被切换到其它设备之后的一段时间内接收功率。多个设备可以同时地或以时间复用方式或以频率复用方式或以空间复用方式或以取向复用方式或以时间和频率和空间和取向复用的任何组合来与一个或多个其它设备共享来自一个或多个源的功率。多个设备可以相互共享功率,至少一个设备被连续地、间歇地、周期性地、偶尔地或临时地重新配置以作为无线功率源进行操作。本领域的技术人员应理解的是存在向设备供电和/或充电的多种方式,并且所述多种方式可以应用于本文所述的技术和应用。

无线能量转移具有多种可能的应用,包括例如将源(例如连接到有线电力网的一个)放置在房间的天花板上、在地板下或在墙壁中,同时将诸如机器人、交通工具、计算机、pda等放置在室内或其在室内自由地移动。其它应用可以包括对电引擎交通工具供电或再充电,诸如公交车和/或混合汽车和医疗设备,诸如可穿戴或可植入设备。附加示例性应用包括对独立电子装置(例如膝上型计算机、蜂窝电话、便携式音乐播放器、家务机器人、gps导航系统、显示器等)、传感器、工业和制造设备、医疗设备和监视器、家用器具和工具(例如灯、风扇、钻、锯、加热器、显示器、电视、柜台上器具等)、军用设备、保暖或照明衣物、通信和导航设备,包括嵌入交通工具、衣物和保护性衣物中诸如头盔、防弹服和背心的设备等供电或再充电的能力,以及向被物理隔离的设备传送功率的能力,诸如向植入的医疗设备,向隐藏、掩埋、植入或嵌入的传感器或标签,和/或从屋顶太阳能电池板向室内配电盘等。

在一方面,本文公开的系统包括具有品质因数q1和特性尺寸x1并被耦合到发电机的源谐振器,和具有品质因数q2和特性尺寸x2并被耦合到位于与源谐振器相距距离d的负载的第二谐振器,其中,所述源谐振器和第二谐振器被耦合以在源谐振器和第二谐振器之间无线地交换能量,并且其中

q1可以小于100。q2可以小于100。该系统可以包括被配置为用源和第二谐振器来非辐射地转移能量的具有品质因数q3的第三谐振器,其中,q3可以小于100。

可以用直接电连接将源谐振器耦合到发电机。系统可以包括阻抗匹配网络,其中,所述源谐振器通过直接电连接而耦合并阻抗匹配到发电机。所述系统可以包括可调谐电路,其中,所述源谐振器通过具有直接电连接的可调谐电路而耦合到发电机。所述可调谐电路可以包括可变电容器。所述可调谐电路可以包括可变电感器。至少一个直接电连接可以配置为基本上保持源谐振器的谐振模。源谐振器可以具有第一端子、第二端子和中心端子,并且第一端子与中心端子之间和第二端子与中心端子之间的阻抗可以是基本上相等的。源谐振器可以包括具有第一端子、第二端子和中心端子的电容性加载环路,其中,第一端子与中心端子之间和第二端子与中心端子之间的阻抗基本上是相等的。可以将源谐振器耦合到阻抗匹配网络,并且阻抗匹配网络还可以包括第一端子、第二端子和中心端子,其中,第一端子与中心端子之间和第二端子与中心端子之间的阻抗基本上是相等的。

可以将第一端子和第二端子直接耦合到发电机并用异相约180度的振荡信号来驱动。源谐振器可以具有谐振频率ω1,并且可以将第一端子和第二端子直接耦合到发电机并用基本上等于谐振频率ω1的振荡信号来驱动。可以将中心端子连接到电接地。源谐振器可以具有谐振频率ω1,并且可以将第一端子和第二端子直接耦合到发电机并用基本上等于谐振频率的频率来驱动。所述系统可以包括被耦合到发电机和负载的多个电容器。所述源谐振器和第二谐振器每个可以被封闭在低损耗角正切材料(tangentmaterial)中。所述系统可以包括功率转换电路,其中,第二谐振器被耦合到功率转换电路以向负载递送dc功率。所述系统可以包括功率转换电路,其中,第二谐振器被耦合到功率转换电路以向负载递送ac功率。所述系统可以包括功率转换电路,其中,第二谐振器被耦合到功率转换电路以向负载递送ac和dc功率这二者。所述系统可以包括功率转换电路和多个负载,其中,第二谐振器被耦合到功率转换电路,并且功率转换电路被耦合到所述多个负载。所述阻抗匹配网络可以包括电容器。所述阻抗匹配网络可以包括电感器。

纵观本公开内容,我们可以将诸如电容器、电感器、电阻器、二极管、开关等某些电路组件称为电路组件或元件。我们还可以将这些组件的串联和并联组合称为元件、网络、拓扑结构、电路等。我们可以将电容器、二极管、变抗器、晶体管和/或开关的组合描述为可调整阻抗网络、调谐网络、匹配网络、调整元件等。我们还可以提到使电容和电感这二者遍及整个对象分布(或部分地分布,与单独地集总相反)的“自谐振”对象。本领域的技术人员将理解的是在电路或网络内调整和控制可变组件可以调整该电路或网络的性能,并且那些调整可以一般描述为调谐、调整、匹配、修正等。除调整诸如电感器和电容器或成组的电感器和电容器的可调谐组件之外,其它调谐或调整无线功率转移系统的方法可以单独使用。

除非另外定义,本文所使用的所有技术和/或科学术语具有与本公开所属领域的技术人员通常理解的意义相同的意义。在与出版物、专利申请、专利和通过引用在本文中提及或结合到本文中的其它参考文献冲突的情况下,本说明书(包括定义)将具有支配权。

在不脱离本公开的范围的情况下,可以单独地或组合地使用任何上述特征。通过以下详细说明和附图,本文公开的系统和方法的其它特征、目的和优点将是显而易见的。

附图说明

图1(a)和(b)描绘了包含以距离d分隔开的源谐振器1和设备谐振器2的示例性无线功率系统。

图2示出根据本公开中描述的加标签惯例被加标签的示例性谐振器。请注意,在谐振器1的附近未示出无关对象或附加谐振器。

图3示出在存在“加载”对象的情况下,根据本公开中描述的加标签惯例被加标签的示例性谐振器。

图4示出在存在“扰动”对象的情况下,根据本公开中描述的加标签惯例被加标签的的示例性谐振器。

图5示出效率η对比强耦合系数的绘图。

图6(a)示出谐振器的一个示例的电路图,(b)示出电容加载电感器环路磁谐振器的一个示例的图示,(c)示出具有分布式电容和电感的自谐振线圈的图,(d)示出与本公开的示例性磁谐振器相关联的电场和磁场线的简化图,以及(e)示出电谐振器的一个示例的图示。

图7示出可以用于mhz频率下的无线功率传输的示例性谐振器的作为频率的函数的“品质因数”q(实线)的图。吸收性q(短划线)随着频率增加,而辐射性q(点线)随着频率减小,因此,促使总的q在特定频率处达到峰值。

图8示出谐振器结构的图,其特性尺寸、厚度和宽度均被指示。

图9(a)和(b)示出示例性感应环路元件的图。

图10(a)和(b)示出在印刷电路板上形成并用来实现磁谐振器结构中的感应元件的迹线(trace)结构的两个示例。

图11(a)示出平面磁谐振器的透视图,(b)示出具有各种几何结构的两个平面磁谐振器的透视图,以及(c)示出以距离d分隔开的两个平面磁谐振器的透视图。

图12是平面磁谐振器的示例的透视图。

图13是具有圆形谐振器(circularresonator)线圈的平面磁谐振器布置的透视图。

图14是平面磁谐振器的有效区域(activearea)的透视图。

图15是无线功率转移系统的应用的透视图,其中处于桌子中心处的源对放置在源周围的多个设备供电。

图16(a)示出由绕其中心处的阻塞点的电流的正方形环路驱动的铜和磁性材料结构的3d有限元模型。在本示例中,结构可以由用诸如铜的导电材料制成、被一层磁性材料覆盖并通过一块磁性材料连接的两个盒子组成。本示例中的两个导电盒子的内部将与在盒子外面产生的ac电磁场屏蔽开来,并且可以容纳可能降低谐振器的q的有损耗对象或可能被ac电磁场负面地影响的敏感组件。还示出了所计算的由此结构生成的磁场流线,指示磁场线趋向于遵循磁性材料中的较低磁阻路径。图16(b)示出如图(a)所示的两个相同结构之间的如所计算的磁场流线所指示的交互作用。由于对称性以及为了降低计算复杂性,仅对系统的一半进行建模(但是,该计算假定了另一半的对称布置)。

图17示出包括绕结构缠绕n次的导线的磁谐振器的等效电路表示,可能包含可透磁材料。使用绕包括磁性材料的结构缠绕的导电环路来实现电感,并且电阻器表示系统中的损耗机构(rwire用于环路中的电阻损耗,rμ表示被环路围绕的结构的等效串联电阻)。可以将损耗最小化以实现高q谐振器。

图18示出频率6.78mhz的外部磁场中的由有损耗电介质材料组成的圆盘之上和之下的两个高导电率表面的有限元法(fem)模拟。请注意,磁场在圆盘之前是均匀的,并且导电材料被引入模拟环境。在圆柱形坐标系中执行此模拟。图像是绕r=0轴方位角对称的。有损耗电解质圆盘具有∈r=1和σ=10s/m。

图19示出在其附近具有被高导电率表面完全地覆盖的有损耗对象的磁谐振器的图。

图20示出在其附近具有被高导电率表面部分地覆盖的有损耗对象的磁谐振器的图。

图21示出在其附近具有被设置在高导电率表面之上的有损耗对象的磁谐振器的图。

图22示出完全无线投影仪的图示。

图23示出沿着包含圆形环路电感器的直径和沿着环路电感器的轴的电场和磁场的幅值。

图24示出磁谐振器和其外壳以及被放置在(a)外壳的角落中,尽可能远离谐振器结构或(b)在被磁谐振器中的电感元件封闭的表面的中心上的必需但有损耗的对象的图。

图25示出具有在其上方的高导电率表面和有损耗对象的磁谐振器的图,所述有损耗对象可以被带到谐振器的附近,但是在高导电率片材上方。

图26(a)示出被暴露于沿着z轴的最初均匀的外加磁场(灰色磁通线)的薄导电(铜)圆柱或圆盘(直径为20cm,高度为2cm)的轴向对称fem模拟。对称轴在r=0处。所示的磁流线在源于z=-∞,其中,其被以1cm的间隔间隔开r=3cm至r=10cm。轴刻度以米为单位。图26(b)示出与在(a)中相同的结构和外加场,除导电圆柱已被修改为在其外表面上包括具有μr'=40的0.25mm的磁性材料层(不可见)。请注意,磁流线偏转远离圆柱的程度明显比在(a)中小。

图27示出基于图26所示的系统的变化的轴对称视图。有损耗材料仅有一个表面被铜和磁性材料的分层结构覆盖。如图所示,电感器环路被放置在与有损耗材料相对的铜和磁性材料结构的一侧。

图28(a)描绘了包括到高q电感元件的间接耦合的匹配电路的一般拓扑结构。

图28(b)示出了包括导体环路电感器和可调谐阻抗网络的磁谐振器的方框图。可以将到此谐振器的物理电连接进行至端子连接。

图28(c)描绘了被直接耦合到高q电感元件的匹配电路的一般拓扑结构。

图28(d)描绘了被直接耦合到高q电感元件并被反对称地驱动(平衡驱动)的对称匹配电路的一般拓扑结构。

图28(e)描绘了被直接耦合到高q电感元件并在主谐振器的对称点处接地(非平衡驱动)的匹配电路的一般拓扑结构。

图29(a)和29(b)描绘了被耦合(即间接地或电感地)到高q电感元件的匹配电路变压器的两个拓扑结构。(c)中的史密斯图的突出显示部分描绘了在ωl2=1/ωc2的情况下从可以被图31(b)的拓扑结构匹配到任意实阻抗z0的复数阻抗(从电感元件的l和r产生)。

图30(a)、(b)、(c)、(d)、(e)、(f)描绘了被直接耦合到高q电感元件并包括与z0串联的电容器的匹配电路的六个拓扑结构。用输入端子处的共模信号来驱动图30(a)、(b)、(c)所示的拓扑结构,而图30(d)、(e)、(f)所示的拓扑结构是对称的,并接收平衡驱动。图30(g)中的史密斯图的突出显示部分描绘了可以通过这些拓扑结构匹配的复数阻抗。图30(h)、(i)、(j)、(k)、(l)、(m)描绘了被直接耦合到高q电感元件并包括与z0串联的电感器的匹配电路的六个拓扑结构。

图31(a)、(b)、(c)描绘了被直接耦合到高q电感元件并包括与z0串联的电容器的匹配电路的三个拓扑结构,其在电容器的中心点处接地并接收不平衡驱动。图31(d)中的史密斯图的突出显示部分描绘了可以通过这些拓扑结构匹配的复数阻抗。图31(e)、(f)、(g)描绘了被直接耦合到高q电感元件并包括与z0串联的电感器的匹配电路的三个拓扑结构。

图32(a)、(b)、(c)描绘了被直接耦合到高q电感元件并包括与z0串联的电容器的匹配电路的三个拓扑结构。其通过电感器环路的中心点处的分接(tapping)接地并接收不平衡驱动。(d)中的史密斯图的突出显示部分描绘了可以被这些拓扑结构匹配的复数阻抗,(e)、(f)、(g)描绘了被直接耦合到高q电感元件并包括与z0串联的电感器的匹配电路的三个拓扑结构。

图33(a)、(b)、(c)、(d)、(e)、(f)描绘了被直接耦合到高q电感元件并包括与z0并联的电容器的匹配电路的六个拓扑结构。用输入端子处的共模信号来驱动图33(a)、(b)、(c)所示的拓扑结构,而图33(d)、(e)、(f)所示的拓扑结构是对称的,并接收平衡驱动。图33(g)中的史密斯图的突出显示部分描绘了可以被这些拓扑结构匹配的复数阻抗。图33(h)、(i)、(j)、(k)、(l)、(m)描绘了被直接耦合到高q电感元件并包括与z0并联的电感器的匹配电路的六个拓扑结构。

图34(a)、(b)、(c)描绘了被直接耦合到高q电感元件并包括与z0并联的电容器的匹配电路的三个拓扑结构。其在电容器的中心点处接地并接收不平衡驱动。(d)中的史密斯图的突出显示部分描绘了可以被这些拓扑结构匹配的复数阻抗。图34(e)、(f)、(g)描绘了被直接耦合到高q电感元件并包括与z0并联的电感器的匹配电路的三个拓扑结构。

图35(a)、(b)、(c)描绘了被直接耦合到高q电感元件并包括与z0并联的电容器的匹配电路的三个拓扑结构。其通过电感器环路的中心点处的分接接地并接收不平衡驱动。图35(d)、(e)和(f)中的史密斯图的突出显示部分描绘了可以被这些拓扑结构匹配的复数阻抗。

图36(a)、(b)、(c)、(d)描绘了被设计为在可变电容器上产生具有更细调谐分辨率的总可变电容和某些具有降低的电压的固定和可变电容器的四个网络拓扑结构。

图37(a)和37(b)描绘了被设计为产生总可变电容的固定电容器和可变电感器的两个网络拓扑结构。

图38描绘了无线功率传输系统的高级方框图。

图39描绘了示例性被无线供电的设备的方框图。

图40描绘了示例性无线功率转移系统的源的方框图。

图41示出了磁谐振器的等效电路图。通过电容器符号的短斜线指示所表示的电容器可以是固定或可变的。可以将端口参数测量电路配置为测量某些电信号,并且可以测量信号的幅值和相位。

图42示出其中用电压控制电容器来实现可调谐阻抗网络的磁谐振器的电路图。可以由包括可编程或可控电压源和/或计算机处理器的电路来调整、调谐或控制此类实施方式。可以响应于由端口参数测量电路测量并由测量分析和控制算法和硬件处理的数据来调整电压控制电容器。电压控制电容器可以是开关电容器组。

图43示出了端到端无线功率传输系统。在本示例中,源和设备都包含端口测量电路和处理器。标记为“耦合器/开关”的方框指示可以由定向耦合器或开关将端口测量电路连接到谐振器,使得能够与功率转移功能相结合地或分开地进行源和设备谐振器的测量、调整和控制。

图44示出端到端无线功率传输系统。在本示例中,仅源包含端口测量电路和处理器。在这种情况下,所述设备谐振器工作特性可以是固定的,或者可以由模拟控制电路来调整,并且不需要由处理器生成的控制信号。

图45示出端到端无线功率传输系统。在本示例中,源和设备这二者都包含端口测量电路,但是仅源包含处理器。通过可以用单独天线或通过源驱动信号的某种调制来实现的无线通信信道来传送来自设备的数据。

图46示出端到端无线功率传输系统。在本示例中,仅源包含端口测量电路和处理器。通过可以用单独天线或通过源驱动信号的某种调制来实现的无线通信信道来传送来自设备的数据。

图47示出可以使用利用处理器或计算机实现的算法来自动地调整其频率和阻抗的耦合磁谐振器。

图48示出变抗器阵列。

图49示出由源无线地供电或充电的设备(膝上型计算机),其中,源和设备谐振器在物理上与源和设备分离,但是被电连接到源和设备。

图50(a)是被无线地供电或充电的膝上型计算机应用的图示,其中设备谐振器在膝上型计算机外壳内且不可见。

图50(b)是被无线地供电和充电的膝上型计算机应用的图示,其中谐振器在膝上型计算机底座下面且通过线缆电连接到膝上型计算机功率输入端。

图50(c)是被无线地供电或充电的膝上型计算机应用的图示,其中谐振器被附着于膝上型计算机底座。

图50(d)是被无线地供电和充电的膝上型计算机应用的图示,其中谐振器被附着于膝上型计算机显示器。

图51是具有无线功率转移的屋顶pv板的图示。

具体实施方式

如上所述,本公开涉及具有可以从电源向功率消耗装置无线地转移功率的长寿命振荡谐振模的耦合电磁谐振器。然而,本技术不限于电磁谐振器,但是具有一般性,并且可以应用于多种谐振器和谐振对象。因此,我们首先描述一般技术,然后公开用于无线能量转移的电磁示例。

谐振器

可以将谐振器定义为能够以至少两种不同的形式储存能量的系统,并且其中储存的能量在两种形式之间振荡。谐振具有特定的振荡模,其具有谐振(模态)频率f和谐振(模态)场。可以将角谐振频率ω定义为ω=2πf,可以将谐振波长λ定义为λ=c/f,其中,c是光速,并且可以将谐振周期t定义为t=1/f=2π/ω。在不存在损耗机制、耦合机制或外部能量供应或消耗机制的情况下,总谐振器储存能量w将保持固定,并且两种能量形式将振荡,其中,一个在另一个是最小值时将是最大值,反之亦然。

在不存在无关材料或对象的情况下,图1所示的谐振器102中的能量可能衰减或被固有损耗所损耗。谐振器场则服从以下线性等式:

其中,变量a(t)是谐振场振幅,其被定义使得由|a(t)|2来给定包含在谐振器内的能量。γ是固有能量衰减或损耗率(例如由于吸收和辐射损耗)。

表征能量衰减的谐振器的品质因数或q因数或q与这些能量损耗成反比。可以将其定义为q=ω*w/p,其中,p是在稳态下损耗的时间平均功率。也就是说,具有高q的谐振器102具有相对低的固有损耗,并且能够相对长时间地储存能量。由于谐振器以其固有的衰减速率2γ损耗能量,所以由q=ω/2γ来给定也称为其固有q值的其q。质量因数还表示振荡周期t的数目,其使得谐振器中的能量以e的因数衰减。

如上所述,我们将谐振器的品质因数或q定义为仅仅是由于固有损耗机制引起的。诸如q1的下标指示q所指代的谐振器(在这种情况下为谐振器1)。图2示出根据此惯例标记的电磁谐振器102。请注意,在本图中,在谐振器1的附近不存在无关对象或附加谐振器。

根据诸如谐振器和对象或其它谐振器之间的距离、对象或其它谐振器的材料组成、第一谐振器的结构、第一谐振器中的功率等多种因数,在第一谐振器附近的无关对象和/或附加谐振器可以对第一谐振器造成扰动或加载,从而对第一谐振器的q造成扰动或加载。可以将在谐振器附近的非故意的外部能量损耗或到无关材料和对象的耦合机制称为对谐振器的q造成“扰动”,并且可以由圆括号()内的下标来指示。可以将与经由到无线能量转移系统中的其它谐振器和发电机和负载的耦合所进行的能量转移相关联的预期外部能量损耗称为对谐振器的q进行“加载”,并且可以由方括号[]内的下标来指示。

可以将被连接或耦合到发电机g或负载302l的谐振器102的q称为“加载品质因数”或“加载q”,并且如图3所示,可以用q[g]或q[l]来表示。通常,不止一个发电机或负载302可以连接到谐振器102。然而,我们未单独地列出那些发电机或负载,而是使用“g”和“l”来指代由发电机和负载的组合施加的等效电路加载。在一般性说明中,我们可以使用下标“l”来指代被连接到谐振器的发电机或负载。

在本文的某些讨论中,我们将由于被连接到谐振器的发电机或负载而引起的“加载品质因数”或“加载q”定义为δq[l],其中1/δq[l]≡1/q[l]-1/q。请注意,发电机或负载的加载q、即δq[l]越大,被加载q、即q[l]越少地偏离谐振器的未加载q。

在存在并非意在作为能量转移系统的一部分的无关对象402p的情况下,谐振器的q可以称为“被扰动品质因数”或“被扰动q”,并且如图4所示可以用q(p)来表示。通常,可以存在被表示为p1、p2等的许多无关对象或对谐振器102的q造成扰动的一组无关对象{p}。在这种情况下,可以将被扰动q表示为q(p1+p2+…)或q({p})。例如,q1(brick+wood)可以表示在存在砖或一块木材的情况下,用于无线功率交换的系统中的第一谐振器的被扰动品质因数,并且q2({office})可以表示在办公室环境中的用于无线功率交换的系统中的第二谐振器的被扰动品质因数。

在本文的某些讨论中,我们将由于无关对象p而引起的“扰动品质因数”或“扰动q”定义为δq(p),其中1/δq(p)≡1/q(p)-1/q。如上所述,扰动品质因数可以是由于多个无关对象p1、p2等或一组无关对象{p}引起的。对象的扰动q、即δq(p)越大,被扰动q、即q(p)越少地偏离谐振器的未扰动q。

在本文的某些讨论中,我们还定义了θ(p)≡q(p)/q并在存在无关对象的情况下,将其称为谐振器的“品质因数不灵敏度”或“q不灵敏度”。诸如θ1(p)的下标指示被扰动或未扰动品质因数所指的谐振器,即θ1(p)≡q1(p)/q1。

请注意,还可以在必要时将品质因数q表征为“未扰动”以将其与被扰动品质因数q(p)区别开,并在必要时将其表征为“未加载”以将其与加载品质因数q[l]区别开。同样地,还可以在必要时将被扰动品质因数q(p)表征为“未加载”,以将其与被加载被扰动品质因数q(p)[l]区别开。

耦合谐振器

通过其近场的任何部分被耦合,具有基本上相同的谐振频率的谐振器可以交互并交换能量。存在可以用来理解、设计、优化并表征此能量交换的多种物理图片和模型。描述两个耦合谐振器并对其之间的能量交换进行建模的一种方式是使用耦合模理论(cmt)。

在耦合模理论中,谐振器场服从以下线性方程组:

其中,指数表示不同的谐振器,并且κmn是谐振器之间的耦合系数。对于相反系统,耦合系数可以服从关系κmn=κnm。请注意,出于本说明书的目的,将忽视远场辐射干扰效应,并因此将耦合系数视为实值。此外,由于在本说明中的系统性能的所有后续计算中,耦合系数几乎以其平方出现,所以我们使用κmn来表示实耦合系数的绝对值。

请注意,来自上述cmt的耦合系数κmn通过与谐振器m和n之间的所谓耦合因数kmn相关。我们用将“强耦合系数”umn定义为谐振器m和n之间的耦合和损耗率的比率。

以与由所连接的功率生成或消耗设备对谐振器进行加载的类似方式,可以由该谐振器n或附加谐振器对存在类似频率的谐振器n或附加谐振器的情况下的谐振器m的品质因数进行加载。可以由谐振器n对谐振器m进行加载且反之亦然这一事实,仅仅是以不同方式看待谐振器被耦合。

可以将这些情况下的谐振器的被加载q表示为qm[n]和qn[m]。对于多个谐振器或加载源或设备而言,可以通过将每个负载建模为电阻损耗并以适当的并行和/或串行组合将多个负载相加以确定系综的等效负载来确定谐振器的总加载。

在本文的某些讨论中,我们将由于谐振器n而引起的谐振器m的“加载品质因数”或“加载qm”定义为δqm[n],其中1/δqm[n]≡1/qm[n]-1/qm。请注意,谐振器m也来对谐振器n造成加载,并由1/δqn[m]≡1/qn[m]-1/qn来给定其“加载qn”。

当一个或多个谐振器被连接到发电机或负载时,将线性方程组修改为:

其中,s+m(t)和s-m(t)分别是从发电机到谐振器m中并从谐振器m出来朝着发电机返回或进入负载的场的振幅,其被定义使得由|s+m(t)|2和|s-m(t)|2来给定其载送的功率。加载系数κm涉及在谐振器m和与之相连的发电机或负载之间交换能量的速率。

请注意,来自上述cmt的加载系数κm通过δqm[l]=ωm/2κm与早先定义的加载品质因数δqm[l]相关。

我们将“强加载因数”um[l]定义为谐振器m的加载和损耗率的比um[l]=κm/γm=qm/δqm[l]。

图1(a)示出两个耦合谐振器1000、即被配置为源谐振器的第一谐振器102s和被配置为设备谐振器的第二谐振器102d的示例。可以在谐振器之间的距离d上转移能量。可以由电源或发电机(未示出)来驱动源谐振器102s。可以由功率消耗装置或负载(例如,负载电阻器,未示出)来从设备谐振器102d提取功。让我们将下标“s”用于表示源、“d”用于表示设备,“g”用于表示发电机,并且“l”用于表示负载,并且由于在本示例中仅存在两个谐振器且κsd=κds,让我们放弃κsd、ksd和usd上的下标,并分别将其表示为κ、k和u。

发电机可以以对应于角驱动频率ω的恒定驱动频率f来恒定地驱动源谐振器,其中ω=2πf。

在这种情况下,从发电机到负载(经由源和设备谐振器)的功率传输的效率η=|s-d|2/|s+s|2在以下条件下被最大化:必须使源谐振频率、设备谐振频率和发电机驱动频率匹配,即ωs=ωd=ω.

此外,必须使由于发电机而引起的源谐振器的加载qδqs[g]与由于设备谐振器和负载而引起的源谐振器的被加载qqs[dl]匹配(相等),并且相反地,必须使由于负载而引起的设备谐振器的加载qδqd[l]与由于源谐振器和发电机而引起的设备谐振器的被加载qqd[sg]匹配(相等),即

δqs[g]=qs[dl]且δqd[l]=qd[sg]。

这些等式将通过发电机的源谐振器,以及通过负载的设备谐振器的最佳加载率确定为

请注意,以上频率匹配和q匹配条件在电气工程中被一起称为“阻抗匹配”。

在上述条件下,最大化效率是源与设备谐振器之间的仅强耦合因数的单调递增函数,并且由给出,如图5所示。请注意,耦合效率η在u大于0.2时大于1%,在u大于0.7时大于10%,在u大于1时大于17%,在u大于3时大于52%,在u大于9时大于80%,在u大于19时大于90%,并且在u大于45时大于95%。在某些应用中,可以将其中u>1的操作区称为“强耦合”区。

由于在某些情况下期望大的所以可以使用高q的谐振器。每个谐振器的q可以是高的。谐振器的q的几何平均数也可以是或替代地是高的。

耦合因数k是0≤k≤1之间的数,并且其可以独立于(或几乎独立于)源和设备谐振器的谐振频率,确切地说,其可以主要由其相对几何结构和调解其耦合的场的物理衰变定律来确定。相比之下,耦合系数可以是谐振频率的强函数。可以优选地将谐振器的谐振频率选择为实现高q而不是实现低γ,因为这两个目标在两个单独的谐振频率区处是可实现的。

可以将高q谐振器定义为具有q>100的谐振器。两个耦合谐振器可称为高q谐振器的系统,当其中每个谐振器具有大于100的q、qs>100且qd>100时。在其它实施方式中,当谐振器的q的几何平均数大于100时,可以将两个耦合谐振器称为高q谐振器的系统。

可以将谐振器命名或编号。可以将其称为源谐振器、设备谐振器、第一谐振器、第二谐振器、重发器谐振器等。应理解的是虽然在图1中示出两个谐振器,但在以下许多示例中,其它实施方式可以包括三个(3)或更多谐振器。例如,单个源谐振器102s可以将能量转移至多个设备谐振器102d或多个设备。可以将能量从第一设备转移至第二个,然后从第二设备转移至第三个,以此类推。多个源可以将能量转移至单个设备或连接到单个设备谐振器的多个设备或连接到多个设备谐振器的多个设备。谐振器102可以交替地或同时地作为源、设备,或者其可以用来将功率从一个位置上的源中继到另一位置上的设备。可以使用中间电磁谐振器102来扩展无线能量转移系统的距离范围。多个谐振器102可以被菊链式连接在一起,在扩展的距离上与大范围的源和设备交换能量。高功率水平可以被在多个源102s之间拆分,转移至多个设备并在远距离位置处重新组合。

可以单个源和单个设备谐振器的分析扩展至多个源谐振器和/或多个设备谐振器和/或多个中间谐振器。在此类分析中,结论可以是所述多个谐振器的至少某些或全部之间的大的强耦合因数umn对于无线能量转移中的高系统效率而言是优选的。再次地,实施方式可以使用具有高q的源、设备和中间谐振器。每个谐振器的q可以是高的。用于谐振器对m和n(对于它们而言期望大的umn)的q的几何平均数也可以或替代地是高的。

请注意,由于可以由两个谐振器之间的耦合机制和每个谐振器的损耗机制的相对幅值来确定两个谐振器的强耦合因数,所以可以在如上所述的谐振器附近存在无关对象的情况下扰动任何或所有这些机制的强度。

延续来自前面部分的用于标记的惯例,我们将k描述为在不存在无关对象或材料的情况下的耦合因数。我们将存在无关对象的情况下的耦合因数p表示为k(p),并且将其称为“被扰动耦合因数”或“被扰动k”。请注意,必要时还可以将耦合因数k表征为“未扰动”,以与被扰动耦合因数k(p)区别开。

我们定义δk(p)≡k(p)-k,并且我们将其称为由于无关对象p而引起的“耦合因数的扰动”或“k的扰动”。

我们还定义β(p)≡k(p)/k,并且我们将其称为“耦合因数不灵敏度”或“k不灵敏度”。诸如β12(p)的下标指示被扰动和未扰动耦合因数所涉及的谐振器,即β12(p)≡k12(p)/k12。

同样地,我们将u描述为不存在无关对象的情况下的强耦合因数。我们将存在无关对象的情况下的强耦合因数p表示为u(p),并且我们将其称为“被扰动强耦合因数”或“被扰动u”。请注意,必要时还可以将强耦合因数u表征为“未扰动”,以与被扰动强耦合因数u(p)区别开。请注意,必要时还可以将强耦合因数u表征为“未扰动”,以与被扰动强耦合因数u(p)区别开。

我们定义δu(p)≡u(p)-u并将其称为由于无关对象p而引起的“强耦合因数的扰动”或“u的扰动”。

我们还定义ξ(p)≡u(p)/u并将其称为“强耦合因数不灵敏度”或“u不灵敏度”。诸如ξ12(p)的下标指示被扰动和未扰动耦合因数所涉及的谐振器,即ξ12(p)≡u12(p)/u12。

可以由给出未扰动系统的效率的相同公式给出被扰动系统中的能量交换的效率,其中,诸如强耦合因数、耦合因数和品质因数的所有参数由其被扰动等价参数所代替。例如,在包括一个源和一个设备谐振器的无线能量转移的系统中,可以将最佳效率计算为因此,在被无关对象扰动的无线能量交换的系统中,对于无线能量转移中的高系统效率而言,可能期望至少某些或全部的多个谐振器之间的大的扰动强耦合因数umn(p)。源、设备和/或中间谐振器可以具有高q(p)。

某些无关扰动有时对于被扰动强耦合因数而言是不利的(经由耦合因数或品质因数的大的扰动)。因此,可以使用技术来减少无关扰动对系统的影响并保持大的强耦合因数不灵敏度。

能量交换效率

有用能量交换中的所谓“有用能量”是必须被转移至一个或多个设备以便对设备供电或充电的能量或功率。对应于有用能量交换的转移效率可以是系统或应用相关的。例如,转移几千瓦的功率的高功率交通工具充电应用可能需要具有至少80%的效率以便供应有用的功率量,带来足够向交通工具电池重新充电的有用能量交换,而不显著地对转移系统的各种组件加热。在某些消费者的电子装置应用中,有用能量交换可以包括任何大于10%的能量转移效率,或者任何其它可接受的保持可再充电电池“填满(toppedoff)”并长时间运行的量。对于某些无线传感器应用而言,比1%小得多的转移效率可能适合于从位于距离传感器相当远的距离处的单个源向多个低功率传感器供电。对于不可能有线功率转移或有线功率转移不切实际的其它应用而言,大范围的转移效率对于有用能量交换而言可以是可接受的,并且可认为是向那些应用中的设备供应有用功率。通常,操作距离是根据本文所述的原理保持或能够保持有用功率交换的任何距离。

用于供电或再充电应用中的无线能量转移的有用能量交换可以是高效、高度高效或足够高效的,只要浪费的能量水平、热耗散和相关场强度在可容许极限内即可。可容许极限可以取决于应用、环境和系统位置。用于供电或再充电应用中的无线能量转移的有用能量交换可以是高效、高度高效或足够高效的,只要对于合理的成本限制、重量限制、尺寸限制等而言可以获得期望的系统性能即可。可以相对于使用非高q系统的传统感应技术所能实现的来确定高效的能量转移。然后,如果递送了比在传统感应方案中由类似尺寸的线圈结构在类似距离或对准偏移内可以递送的能量更多的能量,则可以将能量转移定义为高效、高度高效或足够高效的。

请注意,即使某些频率和q匹配条件可以使能量转移的系统效率最优化,也不需要完全满足这些条件以便具有用于有用能量交换的足够高效的能量转移。只要谐振频率的相对偏移小于1/qm(p),1/qn(p)和kmn(p)之中的近似最大值,就可以实现高效的能量交换。对于高效能量交换而言,q匹配条件可以不像频率匹配条件那么严格。由发电机和/或负载而引起的谐振器的强加载因数um[l]可以偏离其最优值但仍具有足够高效的能量交换的程度取决于特定的系统,是否所有或某些发电机和/或负载都是q不匹配的等。

因此,谐振器的谐振频率可以不是完全匹配的,而是在以上容差内是匹配的。由于发电机和/或负载而引起的至少某些谐振器的强加载因数可以不是完全与其最优值匹配的。电压水平、电流水平、阻抗值、材料参数等可以不处于在本公开中描述的精确值,但是将在那些值的某些可接受容差内。除效率、q、频率、强耦合因数等考虑因素之外,系统最优化可以包括成本、尺寸、重量、复杂性等考虑因素。某些系统性能参数、规格和设计可能远非最佳的,以便使其它系统性能参数、规格和设计最优化。

在某些应用中,至少某些系统参数可以在时间上改变,例如因为诸如源或设备的组件可能移动或老化,或者因为负载可能是可变的,或者因为扰动或环境条件正在改变等。在这些情况下,为了实现可接受匹配条件,可能需要至少某些系统参数是可动态地调整或调谐的。所有系统参数可以是可动态地调整或调谐的以实现近似的最佳工作条件。然而,基于上述讨论,即使某些系统参数不是可变的,也可以实现足够高效的能量交换。在某些例子中,至少某些设备可以不被动态地调整。在某些例子中,至少某些源可以不被动态地调整。在某些例子中,至少某些中间谐振器可以不被动态地调整。在某些例子中,系统参数中没有一个可以被动态地调整。

电磁谐振器

用来交换能量的谐振器可以是电磁谐振器。在此类谐振器中,由谐振器的吸收(或电阻)损耗和辐射损耗来给出固有能量衰变率γm。

可以将谐振器构造为使得由电场存储的能量被主要约束在结构内且由磁场存储的能量主要在谐振器周围的区域中。然后,主要由谐振磁近场来调解能量交换。可以将这些类型的谐振器称为磁谐振器。

可以将谐振器构造为使得由磁场存储的能量被主要约束在结构内且由电场存储的能量主要在谐振器周围的区域中。则主要由谐振电近场来调解能量交换。可以将这些类型的谐振器称为电谐振器。

请注意,由谐振器存储的总电能和磁能必须是相等的,但是其局部化可以是相当不同的。在某些情况下,可以使用在距谐振器一定距离处指定的平均电场能与平均磁场能的比来表征或描述谐振器。

电磁谐振器可以包括电感元件、分布电感或具有电感l的电感的组合、以及电容元件、分布电容、或具有电容c的电容的组合。在图6a中示出了电磁谐振器102的最小电路模型。谐振器可以包括电感元件108和电容元件104。被提供诸如存储在电容器104中的电场能的初始能量,系统将随着电容器放电而振荡,将能量转移至存储在电感器108中的磁场能中,电感器108又将能量转移回至存储在电容器104中的电场能。

可以将图6(b)(c)(d)所示的谐振器102称为磁谐振器。对于居住环境中的无线能量转移应用而言,磁谐振器可能是优选的,因为包括动物、植物和人的大多数日常材料是非磁性的(即μr≈1),因此其与磁场的交互是最小的,并且主要是由于由磁场的时变而感生的涡流(其为二阶效应)。由于安全原因,并且由于其降低了与可能改变系统性能的无关环境对象和材料的交互的可能,此特性是重要的。

图6d示出与示例性磁谐振器102b相关联的某些电场和磁场线的简化图。磁谐振器102b可以包括充当电感元件108和电容元件104(在导体环路的末端处)的导体环路。请注意,本图描绘了被存储在磁场中的谐振器周围区域中的大部分能量和被存储在电场中的谐振器中(电容器极板之间)的大部分能量。由于边缘场、自由电荷和时变磁场而引起的某些电场可以被存储在谐振器周围的区域中,但是可以将磁谐振器设计为使电场局限于尽可能地接近于谐振器或在谐振器本身内。

电磁谐振器102的电感器108和电容器104可以是体电路元件,或者电感和电容可以是分布式的,并且可以由在结构中对导体进行形成、成形和定位的方式而产生。例如,如图6(b)(c)(d)所示,可以通过将导体成形为封闭表面面积来实现电感器108。可以将此类谐振器102称为电容加载环路电感器。请注意,我们可以使用术语“环路”或“线圈”来泛指导电结构(导线、管、条带等),其以任何匝数封闭任何形状和尺寸的表面。在图6b中,封闭的表面区域是圆形的,但是该表面可以是多种其它形状和尺寸中的任何一个,并且可以被设计为实现某些系统性能规格。作为指示电感如何随着物理尺寸缩放的示例,用于被布置为形成圆形单匝环路的一段圆形导体的电感近似为

其中,μ0是自由空间的磁导率,x是封闭的圆形表面区域的半径,并且a是用来形成电感器环路的导体的半径。可以分析性或数值性地计算环路的更精确电感值。

可以分析性或数值性地计算用于被布置为形成其它封闭表面形状、面积、尺寸等并具有任何匝数的其它横截面导体的电感,或可以通过测量来确定该电感。可以使用电感器元件、分布式电感、网络、阵列、电感器和电感的串联和并联组合等来实现电感。电感可以是固定的或可变的,并且可以用来改变阻抗匹配以及谐振频率工作条件。

存在多种方式来实现为达到谐振器结构的期望谐振频率所需的电容。可以如图6b所示地形成和利用电容器极板110,或者如图6c所示,可以在多环路导体114的相邻绕组之间分布并实现电容。可以使用电容器元件、分布式电容、网络、阵列、电容的串联和并联组合等来实现电容。电容可以是固定的或可变的,并且可以用来改变阻抗匹配以及谐振频率工作条件。

应理解的是电磁谐振器102中的电感和电容可以是集总的、分布式的或集总和分布式电感和电容的组合,并且可以通过本文所述的各种元件、技术和效果的组合来实现电磁谐振器。

电磁谐振器102可以包括电感器、电感、电容器、电容以及诸如电阻器、二极管、开关、放大器、二极管、晶体管、变压器、导体、连接器等附加电路元件。

电磁谐振器的谐振频率

电磁谐振器102可以具有由其物理性质确定的特性、自然或谐振频率。此谐振频率是谐振器存储的能量在电场存储的能量we(we=q2/2c,其中,q是电容器c上的电荷)与谐振器的磁场存储的能量wb(wb=li2/2,其中,i是通过电感器l的电流)之间振荡的频率。在系统中不存在任何损耗的情况下,将连续地在电容器104中的电场与电感器108中的磁场之间交换能量。交换此能量的频率可以称为谐振器的特性频率、自然频率或谐振频率,并且由ω给出,

可以通过调谐谐振器的电感l和/或电容c来改变谐振器的谐振频率。可以将谐振频率设计为在由fcc指定的所谓ism(工业、科学和医疗)频率下操作。可以将谐振器频率选择为满足某些场极限规格、比吸收率(sar)极限规格、电磁兼容性(emc)规格、电磁干扰(emi)规格、组件尺寸、成本或性能规格等。

电磁谐振器的品质因数

图6所示的谐振器102中的能量可以衰减,或者由于包括吸收性损耗(也称为欧姆或电阻损耗)和/或辐射性损耗在内的固有损耗而被损耗。表征能量衰减的谐振器的品质因数或q与这些损耗成反比。吸收性损耗可以是由用来形成电感器的导体的有限电导率以及谐振器中的其它元件、组件、连接器等中的损耗引起的。可以将由低损耗材料形成的电感器称为“高q电感元件”,并且可以将具有低损耗的元件、组件、连接器等称为具有“高电阻q”。通常,可以将谐振器的总吸收性损耗计算为构成谐振器的各种元件和组件的电阻性损耗的适当串联和/或并联组合。也就是说,在不存在任何显著的辐射性或组件/连接损耗的情况下,可以由qabs来给出谐振器的q,

其中,ω是谐振频率,l是谐振器的总电感,并且例如可以由rabs=lρ/a给出用于用来形成电感器的导体的电阻(l是导线的长度,ρ是导体材料的电阻率,并且a是电流在导线中流动的横截面面积)。对于交流电而言,电流在其上流动的横截面面积可以由于趋肤效应而小于导体的物理横截面面积。因此,高q磁谐振器可以由具有高导电性、相对大的表面面积和/或具有具体设计的轮廓(例如利兹线)的导体组成以使接近效应最小化并减小ac电阻。

磁谐振器结构可以包括由高导电性导线、涂层线、利兹线、带、条或板、管、涂料、凝胶、迹线等组成的高q电感元件。磁谐振器可以是自谐振的,或者其可以包括诸如电容器、电感器、开关、二极管、晶体管、变压器等的外部耦合元件。磁谐振器可以包括分布式和集总电容和电感。通常,将由谐振器的所有单独组件的q来确定谐振器的q。

由于q与电感l成比例,所以可以将谐振器设计为在某些其它约束内增加l。例如,增加l的一种方式是使用多于一匝的导体的来形成谐振器中的电感器。设计技术和权衡可以取决于应用,并且在高q磁谐振器的设计中可以选择多种结构、导体、组件和谐振频率。

在不存在显著吸收损耗的情况下,可以主要由辐射损耗来确定谐振器的q,并且由qrad=ωl/rrad来给出,其中,rrad是谐振器的辐射损耗,并且可以取决于谐振器相对于操作的频率ω或波长λ的尺寸。对于上文讨论的磁谐振器而言,辐射损耗可以随着rrad~(x/λ)4(磁偶极子辐射的特性)而缩放,其中,x是谐振器的特性尺寸,诸如图6b所示的电感元件的半径,并且这里λ=c/f,其中,c是光速且f是如上文所定义的。磁谐振器的尺寸可以比操作的波长小得多,因此辐射损耗可以非常小。可以将此类结构称为子波长谐振器。辐射可以是用于非辐射无线能量转移系统的损耗机制,并且可以将设计选择为减小rrad或使其最小化。请注意,对于非辐射无线能量转移方案而言,高qrad可能是期望的。

还请注意,用于非辐射无线能量转移的谐振器的设计不同于出于通信或远场能量传输的目的设计的天线。具体地,可以使用电容加载导电环路作为谐振天线(例如,在蜂窝电话中),但是对于那些在远场区中操作的,其中辐射q被故意地设计成小的以使得天线在辐射能量下是高效的。此类设计不适合于在本申请中公开的高效近场无线能量转移技术。

包括辐射和吸收损耗两者的谐振器的品质因数是q=ωl/(rabs+rrad)。请注意,对于特定谐振器而言可以存在最大q值,并且可以出于对谐振器的尺寸、用来构造谐振器的材料和元件、工作频率、连接机构等的特殊考虑来设计谐振器,以便实现高q谐振器。图7示出可以用于mhz频率处的无线功率传输的示例性磁谐振器(在这种情况下,为由具有4cm的外径(od)的铜管制成的具有60cm的直径的线圈)的q的绘图。吸收性q(虚线)702随着频率增加,而辐射性q(点线)704随着频率减小,因此,促使总的q在特定频率处达到峰值708。请注意,此示例性谐振器的q在大频率范围内是大于100的。可以将磁谐振器设计为在一定的频率范围内具有高q,并且可以将系统工作频率设置为该范围内的任何频率。

当在损耗率方面来描述谐振器时,如前所述,可以使用固有衰变率2γ,来定义q。固有衰变率是未耦合和未驱动谐振器损失能量的速率。对于上述磁谐振器而言,可以由γ=(rabs+rrad)/2l来给出固有损耗,并且由q=ω/2γ来给出谐振器的品质因数q。

请注意,可以将仅与特定损耗机制有关的品质因数表示为qmechanism(如果未指定谐振器)或q1,mechanism(如果指定了谐振器(例如谐振器1))。例如,q1,rad是用于谐振器1的品质因数,与其辐射损耗有关。

电磁谐振器近场

在这里公开的近场无线能量转移系统中使用的高q电磁谐振器可以是子波长对象。也就是说,谐振器的物理尺寸可以比对应于谐振频率的波长小得多。子波长磁谐振器可以将谐振器周围的区域中的大部分能量存储在其磁近场中,并且还可以将这些场描述为固定不动或不传播的,因为其不远离谐振器进行辐射。通常由波长来设置谐振器周围区域中的近场的范围,因此对于子波长谐振器而言,近场的范围可以延伸超过谐振器本身很多。可以将其中场特性从近场特性变成远场特性的限制表面称为“辐射焦散曲面(radiationcaustic)”。

更加远离谐振器时,近场的强度减小。虽然谐振器近场的场强度随远离谐振器而衰减,但是场仍可以与进入谐振器的一般附近区域的对象相交互。场进行交互的程度取决于多种因素,其中的某些是可以控制和设计的,而某些不可以。当耦合谐振器之间的距离使得一个谐振器在另一个的辐射焦散表面内时,可以实现本文所述的无线能量转移方案。

电磁谐振器的近场分布可以类似于一般与偶极子谐振器或振荡器相关联的那些场分布。可以将此类场分布描述为全向的,意味着场的幅值在离开对象的所有方向上是非零的。

电磁谐振器的特性尺寸

足够q的空间分离和/或偏移的磁谐振器可以在比在现有技术中所见的大得多的距离上实现高效的无线能量转移,即使谐振器结构的尺寸和形状是不同的。还可以操作此类谐振器以实现在较短范围距离上的比前述技术可实现的更高效的能量转移。我们将此类谐振器描述为能够实现中程能量转移。

可以将中程距离定义为比转移中涉及的谐振器中的最小的一个的特性尺寸大的距离,其中,测量从一个谐振器结构的中心到空间分离的第二谐振器结构的中心的距离。在此定义中,当由其电感元件限制的区域未相交时,二维谐振器是空间分离的,并且当其体积未相交时,三维谐振器是空间分离的。当由二维谐振器限制的区域在三维谐振器的体积之外时,前者与后者被空间分离。

图8示出其特性尺寸被标记的某些示例性谐振器。应理解的是可以在导体的尺寸和由磁谐振器中的电感元件限制或封闭的面积及形成电谐振器的电容元件的导体的长度方面定义谐振器102的特性尺寸802。然后,谐振器102的特性尺寸802xchar可以等于能够分别拟合在磁或电谐振器的电感或电容元件周围的最小球体的半径,并且谐振器结构的中心是该球体的中心。谐振器102的特性厚度804tchar可以是从其所在的平坦表面测量的磁或电容谐振器各自的电感或电容元件的最高点的最小可能高度。谐振器102的特性宽度808wchar可以是最小可能圆圈的半径,磁或电谐振器各自的电感或电容元件可以在沿着直线行进的同时通过该最小可能圆圈。例如,圆柱形谐振器的特性宽度808可以是圆柱的半径。

在本发明的无线能量转移技术中,可以在大的距离范围内高效地交换能量,但是本技术以在中程距离上并在具有不同物理尺寸、组件和取向的谐振器之间交换有用能量以便对设备进行供电或再充电的能力而著名。请注意,虽然在这些情况下k可能是小的,但是可以通过使用高q谐振器来实现高u而实现强耦合和高效的能量转移,也就是说,可以使用q的增加来至少部分地克服k的减小,以保持有用的能量转移效率。

还请注意,虽然可以将单个谐振器的近场描述为全向的,但两个谐振器之间的能量交换的效率可以取决于谐振器的相对位置和取向。也就是说,可以针对谐振器的特定相对取向使能量交换的效率最大化。可以在k或κ的计算中捕捉转移效率对两个无补偿谐振器的相对位置和取向的灵敏度。虽然可以在相互之间偏移和/或旋转的谐振器之间实现耦合,但交换的效率可以取决于定位的细节和在操作期间实现的任何反馈、调谐和补偿技术。

高q磁谐振器

在子波长电容加载环路磁谐振器的近场区中(x<<λ),与由n匝导线(其半径大于趋肤深度)组成的圆形导电环路电感器相关联的电阻约为和rrad=π/6·ηon2(ωx/c)4,其中,ρ是导体材料的电阻率且ηo≈120πω是自由空间的阻抗。用于此类n匝环路的电感l约为先前给出的单匝环路的电感的n2倍。此类谐振器的品质因数q=ωl/(rabs+rrad)对于由系统参数(图4)确定的特定频率而言是最高的。如前所述,在较低频率处,主要由吸收损耗来确定q,并且在较高频率处,主要由辐射损耗来确定q。

请注意,上文给出的公式是近似的,并且意在说明rabs、rrad和l对结构的物理参数的函数依赖关系。对于谐振器结构的精确设计而言,将与严格准静态极限(例如沿着导体的非均匀电流/电荷分布)的偏差考虑在内的这些参数的更准确数值计算可能是有用的。

请注意,可以通过使用低损耗导体来形成电感元件而使吸收性损耗最小化。例如,可以通过使用诸如电感管、条、带、机器加工对象、板等的大表面面积导体、通过使用诸如利兹线、编织线、任何横截面的导线和具有低接近损耗的其它导体的特别设计导体(在这种情况下上述频率缩放性质可也是不同的)以及通过使用诸如高纯度铜和银的低电阻率材料来使导体的损耗最小化。在较高工作频率处使用导电管作为导体的一个优点是其可以比类似直径的实心导体更便宜且更轻,并且可以具有类似的电阻,因为大部分电流由于趋肤效应而沿着导体的外表面行进。

为了获得由铜线或铜管制成并适合于在微波区中操作的可实现的谐振器设计的粗略估计,可以计算用于由各种横截面的铜线(ρ=1.69·10-8ωm)的一个圆形电感元件(n=1)组成的谐振器的最佳q和谐振频率。然后,对于具有特性尺寸x=1cm和导体直径a=1mm的电感元件(例如适合于蜂窝电话)而言,当f=380mhz时,品质因数在q=1225处达到峰值。对于x=30cm和a=2mm,可能适合于膝上型计算机或家用机器人的电感元件尺寸而言,在f=17mhz处,q=1103。对于例如可能位于天花板中的较大源电感元件而言,x=1m且a=4mm,在f=5mhz处,q可以高达q=1315。请注意,许多实际示例在λ/x≈50-80处提供q≈1000-1500的预期品质因数。比上述的更多种类的线圈形状、尺寸、材料和工作频率的测量显示,使用一般可获得的材料,可以针对多种磁谐振器结构实现q>100。

如上所述,可以由κ来给出用于具有特性尺寸x1和x2且在其中心之间分离距离d的两个谐振器之间的能量转移的速率。为了给出定义参数如何缩放的示例,在三(3)个距离处,考虑来自上文的蜂窝电话、膝上型计算机和天花板谐振器示例;d/x=10、8、6。在这里考虑的示例中,源和设备谐振器是相同的尺寸(x1=x2)和形状,并且如图1(b)所示地取向。在蜂窝电话的示例中,分别地,ω/2κ=3033、1553、655。在膝上型计算机示例中,分别地,ω/2κ=7131、3651、1540,并且对于天花板谐振器示例而言,ω/2κ=6481、3318、1400。相应的耦合损耗比在其中电感元件q达到峰值的频率处达到峰值,并且,对于上述的三个电感元件尺寸和距离而言,κ/г=0.4、0.79、1.97和0.15、0.3、0.72和0.2、0.4、0.94。使用不同尺寸的电感元件的示例是分开距离d=3m(例如房间高度)的x1=1m电感器(例如天花板中的源)和x2=30cm电感器(例如,地板上的家用机器人)。在本示例中,对于近似14%的效率而言,在f=6.4mhz的最佳工作频率处,强耦合质量因数(figureofmerit),这里,最佳系统工作频率在单独谐振器q的峰值之间。

可以形成在高q磁谐振器中使用的电感元件。我们已经示范了基于被形成为封闭表面的电感元件的铜导体的多种高q磁谐振器。可以使用以多种形状布置的多种导体(封闭任何尺寸或形状的区域)来形成电感元件,并且它们可以是单匝或多匝元件。在图9中示出示例性电感元件900a-b的图。可以将电感元件形成为封闭圆形、矩形、正方形、三角形、具有圆角的形状、遵循特定结构和设备的轮廓的形状、遵循、填充或利用结构或设备内的专用空间的形状等。可以针对尺寸、成本、重量、外观、性能等使设计最优化。

这些导体可以被弯曲或形成为期望的尺寸、形状和匝数。然而,可能难以使用手动技术来准确地再现导体形状和尺寸。另外,可能难以在电感元件的相邻匝中的导体段之间保持均匀或期望的中心间距。例如,准确或均匀的间距在确定结构的自电容以及任何接近效应感生的ac电阻的增加方面可能是重要的。

可以使用模具(mold)来复制用于高q谐振器设计的电感器元件。另外,可以使用模具来准确地将导体成形为任何种类的形状而不在导体中产生扭结、扣子或其它潜在的有害效果。可以使用模具来形成电感器元件,并且然后可以从这些模板(form)中去除电感器元件。一旦被去除,就可以将这些电感元件构建成可以容纳高q磁谐振器的外壳或设备。所形成的元件还可以或替代地保持在用来形成它们的模具中。

可以使用标准cnc(计算机数控)打槽(routing)或磨铣工具或用于成块地切割或形成凹槽的任何其它已知技术来形成模具。还可以或替代地使用机器加工技术、注塑成型技术、铸造技术、浇铸技术、真空技术、热成形技术、原位切割技术、压缩成形技术等来形成模具。

可以从模具去除所形成的元件,或者其可以保持在模具中。可以用内部的电感元件来修改模具。可以对模具进行覆盖、机器加工、附着、涂漆等。可以将模具和导体组合集成到另一外壳、结构或设备中。切割到模具中的凹槽可以是任何尺寸,并且可以被设计以将导电管、导线、条、带、块等形成为期望的电感器形状和尺寸。

在磁谐振器中使用的电感元件可以包含不止一个环路,并且可以向内或向外或向上或向下或沿着某些方向组合螺旋。通常,磁谐振器可以具有多种形状、尺寸和匝数,并且其可以由多种导电材料组成。

磁谐振器可以是独立式的,或者其可以被封闭在外壳、容器、套筒或壳体中。磁谐振器可以包括用来制造电感元件的模板。这些不同的模板和外壳可以由几乎任何种类的材料组成。对于某些应用而言,诸如特氟隆、rexolite、苯乙烯等低损耗材料可能是优选的。这些外壳可以包含保持电感元件的固定装置。

磁谐振器可以由铜线或铜管的自谐振线圈组成。由自谐振导线线圈组成的磁谐振器可以包括长度为l的导线和半径为a的横截面,被缠绕成半径x、高度h和匝数n的螺旋形线圈,其可以例如被表征为

可以将磁谐振器结构配置为使得x约为30cm,h约为20cm,a约为3mm且n约为5.25,并且在操作期间,被耦合到磁谐振器的电源可以以谐振频率f驱动谐振器,其中f约为10.6mhz。在x约为30cm,h约为20cm,a约为1cm且n约为4的情况下,可以以频率f驱动谐振器,其中f约为13.4mhz。在x约为10cm,h约为3cm,a约为2cm且n约为6的情况下,可以以频率f驱动谐振器,其中f约为21.4mhz。

可以使用印刷电路板迹线来设计高q电感元件。与机械地形成的电感元件相比,印刷电路板迹线可以具有多种优点,包括可以使用已确定的印刷电路板制造技术将其准确地再现并容易地集成,可以使用自定义设计的导体迹线来减小其ac电阻,并且可以显著地降低对其进行大量生产的成本。

可以在诸如fr-4(环氧树脂e-型玻璃)、多功能环氧树脂、高性能环氧树脂、双马来酰亚胺三嗪树脂/环氧树脂、聚酰亚胺、氰酸盐酯、聚四氟乙烯(teflon)、fr-2、fr-3、cem-1、cem-2、rogers、resolute等任何pcb材料上使用标准pcb技术来制造高q电感元件。可以在具有较低损耗角正切的印刷电路板材料上形成导体迹线。

导体迹线可以由铜、银、金、铝、镍等组成,并且其可以由油漆、油墨或其它固化材料组成。电路板可以是柔性的,并且其可以是可挠式电路。可以通过化学沉积、蚀刻、平版印刷、喷雾沉积、切割等来形成导电迹线。可以应用导电迹线来形成期望的图案,并且其可以使用晶体和结构生长技术来形成。

可以将导电迹线的维度以及包含导电迹线的层的数目、那些迹线的位置、尺寸和形状以及用于将其互连的架构设计为实现某些系统规格或使其最优化,诸如谐振器q、q(p)、谐振器尺寸、谐振器材料和制造成本、u、u(p)等。

作为示例,如图10(a)所示,使用矩形铜迹线图案在四层印刷电路板上制造三匝高q电感元件1001a。用黑色示出铜迹线并用白色示出pcb。本示例中的铜迹线的宽度和厚度分别约为1cm(400mils)和43μm(1.7mils)。单层上的导电迹线的匝之间的边缘间距约为0.75cm(300mils),并且每个板层厚度约为100μm(4mils)。在板的每个层上重复图10(a)所示的图案,并且并联地连接导体。3环路结构的外部尺寸约为30cm乘20cm。此pcb环路的测量电感为5.3μh。使用此电感器元件和可调谐电容器的磁谐振器在6.78mhz的其设计谐振频率处具有550的品质因数q。可以通过改变磁谐振器中的电感和电容值来调谐谐振频率。

作为另一示例,如图10(b)所示,使用矩形铜迹线图案在四层印刷电路板上制造两匝电感器1001b。用黑色示出铜迹线并用白色示出pcb。本示例中的铜迹线的宽度和高度分别约为0.75cm(300mils)和43μm(1.7mils)。单层上的导电迹线的匝之间的边缘间距约为0.635cm(250mils),并且每个板层厚度约为100μm(4mils)。在板的每个层上重复图10(b)所示的图案,并且并联地连接导体。双环结构的外部尺寸约为7.62cm乘26.7cm。此pcb环路的测量电感为1.3μh。以约0.635cm(250mils)的垂直间隔将两个板堆叠在一起并将两个板串联地连接一起产生具有约3.4μh的电感的pcb电感器。使用此堆叠电感器环路和可调谐电容器的磁谐振器在6.78mhz的其设计谐振频率处具有390的品质因数q。可以通过改变磁谐振器中的电感和电容值来调谐谐振频率。

可以使用任何尺寸、形状、厚度等的磁性材料和具有大范围的磁导率和损耗值的材料来形成电感元件。这些磁性材料可以是实心块,其可以封闭空心体积,其可以由许多被平铺或堆叠在一起的小片的磁性材料形成,并且可以将其与由高度导电的材料制成的导电片材或外壳集成。可以绕磁性材料缠绕导线以产生磁近场。可以将这些导线绕结构的一个或不止一个轴缠绕。可以将多个导线绕磁性材料缠绕且并联地或串联地或经由开关来组合以形成自定义近场图案。

磁谐振器可以包括绕3f3铁氧体材料的19.2cm×10cm×5mm平铺的块缠绕的15匝利兹线。可以沿着任何方向或方向的组合将利兹线绕铁氧体材料缠绕以实现期望的谐振器性能。导线的匝数、匝之间的间距、导线的类型、磁性材料的尺寸和形状及磁性材料的类型全部是可以针对不同的应用方案改变或最优化的设计参数。

使用磁性材料结构的高q磁谐振器

可以使用组装的磁性材料来形成开放磁路(虽然是具有约为整个结构的尺寸的空隙的一个),以实现磁谐振器结构。在这些结构中,将高导电性材料绕由磁性材料制成的结构缠绕以形成磁谐振器的电感元件。可以将电容元件连接到高导电性材料,然后如上所述地确定谐振频率。这些磁谐振器在二维谐振器结构的平面中(而不是像在电容加载电感器环路谐振器的情况中一样与之垂直)具有其偶极矩。

在图11(a)中示出单个平面谐振器结构的图。平面谐振器结构由磁性材料1121的芯(core)构成,诸如具有绕芯1121缠绕的导电材料1122的一个或多个环路的铁氧体。可以使用该结构作为转移功率的源谐振器和捕捉能量的设备谐振器。当被用作源时,可以将导体的末端耦合到电源。流过导体环路的交流电流激发交变磁场。当使用该结构来接收功率时,可以将导体的末端耦合到功率消耗装置或负载。改变磁场在绕芯磁性材料缠绕的导体的一个或多个环路中感生电动势。这些类型的结构的偶极矩在结构的平面中,并且例如沿着如图11(a)中的结构的y轴定向。当基本上被放置在同一平面(即图11的x、y平面)中时,两个此类结构具有强耦合。图11(a)的结构在当谐振器沿着其y轴在同一平面中对准时具有最适宜的取向。

对于某些应用而言,所述平面谐振器的几何结构和耦合取向可能是优选的。平面或平坦谐振器形状可能更容易被集成到相对平坦和平面的许多电子设备中。可以在不要求设备的几何结构变化的情况下将平面谐振器集成到设备的整个背面或侧面。由于许多设备的平坦形状,在被放置在平面上时设备的自然位置是平放于与其所被放置的表面平行的其最大维度上。被集成到平坦设备中的平面谐振器自然地平行于表面的平面,并且相对于被放置在平坦表面上的其它设备的谐振器或平面谐振器源而言处于适宜的耦合取向。

如所述的,平面谐振器的几何结构可以允许更容易的集成到设备中。其小断面(lowprofile)可以允许将谐振器集成到设备的整个侧面中或作为其整个侧面的一部分。当设备的整个侧面被谐振器覆盖时,磁通可以在不被可以是设备或设备电路的一部分的有损耗材料所阻碍的情况下流过谐振器芯。

平面谐振器结构的芯可以具有多种形状和厚度,并且其可以是平坦或平面的,使得最小尺寸不超过结构的最大尺寸的30%。芯可以具有复杂的几何结构,并且可以具有缺口、凹口、脊等。可以使用几何增强来减少对取向的耦合依赖性,并且它们可以被用来促进到设备、封装、包装、外壳、盖、表皮等的集成。在图11(b)中示出芯几何结构的两个示例性变化。例如,可以将平面芯1131成形为使得末端比结构的中间宽很多以产生用于导体绕组的缺口。芯材料可以具有变化的厚度,其中末端比中间粗且宽。芯材料1132可以具有各种深度、宽度和形状的任何数目的凹口或切口1133以容纳导体环路、外壳、封装等。

还可以由被集成到其中的设备的尺寸和特性来规定芯的形状和尺寸。芯材料可以弯曲以遵循设备的轮廓,或者可以要求非对称的凹口或切口以允许有用于设备各部分的余隙。芯结构可以是单片整体的磁性材料,或者可以由被布置在一起的多个瓦(tile)、块或片组成以形成较大结构。结构的不同的层、瓦、块或片可以是类似的材料,或者可以是不同的材料。可以期望在结构的不同位置上使用具有不同磁导率的材料。具有不同磁导率的芯结构可以对引导磁通、改善耦合并影响系统的有效区域的形状或范围有用。

可以将平面谐振器结构的导体绕该芯缠绕至少一次。在某些情况下,可以优选的是缠绕至少三圈。导体可以是任何良导体,包括导线、利兹线、导电管、片、条、凝胶、墨、迹线等。

还可以通过使用阻挡、屏蔽或引导磁场的材料来进一步增强、改变或修改源的有效区域的尺寸、形状或维度。为了在源周围产生非对称有效区域,可以用磁屏蔽来覆盖源的侧面以减小沿特定方向的磁场的强度。该屏蔽可以是能够用来远离特定方向引导磁场的导体或导体与磁性材料的分层组合。由导体和磁性材料层组成的结构可以用来减少可能由于源的屏蔽而发生的能量损耗。

可以将所述多个平面谐振器集成或组合成一个平面谐振器结构。可以将一个或多个导体绕芯结构缠绕,使得由两个导体形成的环路不是共轴的。此类结构的示例在图12中示出,其中,两个导体1201、1202被以正交角绕平面矩形芯1203缠绕。芯可以是矩形的,或者其可以是具有多个延伸部分或突出部分的各种几何结构。突出部分可以对导体的缠绕有用,减小芯的重量、尺寸或质量,或者可以用来增强谐振器的方向性或全向性。在图13中用内部结构1310示出具有四个突出部分的多缠绕平面谐振器,其中,四个导体1301、1302、1303、1304被绕芯缠绕。芯可以包含具有一个或多个导体环路的延伸部分1305、1306、1307、1308。可以绕芯缠绕单个导体以形成不共轴的环路。例如,可以用一个连续的导体片或者使用其中使用单个导体来实现所有共轴环路的两个导体来形成图13的四个导体环路。

可以通过用不相同参数来驱动某些导体环路而生成包括多个导体环路的谐振器周围的不均匀或不对称场分布。可以由具有不同频率、电压、功率水平、占空比等的电源来驱动具有多个导体环路的源谐振器的某些导体环路,其全部可以用来影响由每个导体产生的磁场的强度。

可以将平面谐振器结构与电容加载电感器谐振器线圈组合以提供全面的全向有效区域,包括在源之上和之下,同时保持平坦谐振器结构。如图13所示,可以在与平面谐振器结构1310共同的平面中放置包括一个或多个导体环路的附加谐振器环路线圈1309。外部谐振器线圈提供基本上在源之上和之下的有效区域。谐振器线圈可以布置有任何数目的平面谐振器结构和本文所述的布置。

可以将平面谐振器结构封闭在可透磁封装中或集成到其它设备中。单个公共平面内的谐振器的平面轮廓允许到平坦设备中的封装和集成。在图14中示出举例说明谐振器的应用的图示。包括一个或多个平面谐振器1414的平坦源1411(每个具有一个或多个导体环路)可以向与其它平面谐振器1415、1416集成并被放置在源的有效区域1417内的设备1412、1413转移功率。设备可以包括多个平面谐振器,使得无论设备相对于源的取向如何,源的有效区域不变。除对于旋转不对准(rotationalmisalignment)的不变性之外,可以在基本上不影响有效区域的情况下将包括平面谐振器的平坦设备完全翻转,因为平面谐振器仍在源的平面中。

在图15中示出举例说明使用平面谐振器结构的功率转移系统的可能使用的另一图示。放置在表面1525之上的平面源1521可以产生覆盖基本表面区域的有效区域,其产生“赋能(energized)表面”区域。诸如计算机1524、移动电话1522、游戏机以及被耦合到其各自平面设备谐振器的其它电子装置1523的设备可以在被放置在源的有效区域内(其可以在表面之上的任何地方)时从源接收能量。可以在没有严格的放置或对准约束的情况下将具有不同尺寸的多个设备放置在有效区域中并在从源充电或供电的同时正常地使用。可以将源放置在桌子、柜台、书桌、柜等的表面下面,允许其在对桌子、柜台、书桌、柜等的顶面赋能的同时被完全隐藏,在表面上产生比源大得多的有效区域。

源可以包括显示器或其它视觉、听觉或振动指示器以示出充电设备的方向或什么设备正在被充电、充电的错误或问题、功率水平、充电时间等。

可以将源谐振器和电路集成到任何数目的其它设备中。可以将源集成到诸如时钟、键盘、监视器、相框等设备中。例如,可以使用与平面谐振器和适当功率和控制电路集成的键盘作为用于被放置在键盘周围的设备(诸如计算机鼠标、网络照相机、移动电话等)的源,而不占用任何附加书桌空间。

虽然已经在移动设备的背景下描述了平面谐振器结构,但是本领域的技术人员应清楚的是用于具有延伸超过其物理尺寸的有效区域的无线功率转移的平坦平面源具有许多其它消费者和工业应用。所述结构和构造可以对其中通常基本上在相同的平面和对准中对电子或电气设备和电源进行定位、设置或操纵的许多应用有用。某些可能的应用情形包括墙壁、地板、天花板或任何其它基本上平面的表面上的设备。

可以将平坦源谐振器集成到相框中或悬挂在墙壁上,从而在墙壁的平面内提供有效区域,其中,可以在没有导线的情况下安装诸如数字相框、电视、灯等其它电子设备并进行供电。可以将平面谐振器集成到地板中,导致能够在上面放置设备以接收功率的赋能地板或地板上的有效区域。可以将音频扬声器、灯、加热器等放置在有效区域内并无线地接收功率。

平面谐振器可以具有耦合到导体的附加组件。可以将诸如电容器、电感器、电阻器、二极管等的组件耦合到导体并可以用来调整或调谐用于谐振器的谐振频率和阻抗匹配。

可以例如用100或更高的品质因数q和甚至1000或更高的q来产生上文所述和图11(a)所示的类型的平面谐振器结构。如图11(c)所示,可以在比谐振器的特性尺寸大的距离上无线地将能量从一个平面谐振器结构转移到另一个。

除利用磁性材料来实现具有与磁谐振器中的电感元件类似的性质之外,还可以使用良导体材料和磁性材料的组合来实现此类电感结构。图16(a)示出磁谐振器结构1602,其可以包括由被至少一层磁性材料围绕并被磁性材料块1604链接的高导电率材料(其内部可以与外面产生的ac电磁场屏蔽开来)制成的一个或多个外壳。

结构可以包括在一侧被一层磁性材料覆盖的高导电率材料片。可以替代地将该分层结构共形地应用于电子设备,使得设备的各部分可以被高导电率和磁性材料层覆盖,同时可以使需要被容易地接近的其它部分(诸如按钮或屏幕)不被覆盖。该结构还可以或替代地仅包括磁性材料片的层或块体。因此,可以将磁谐振器结合到现有设备中,而不显著地与其现有功能相干扰且几乎不需要大范围的重新设计。此外,可以将良导体和/或磁性材料层制成足够薄的(一毫米左右或更小),使得其将几乎不增加成品设备的额外重量和体积。可以使用如所图16的结构中心上的正方形环路所示的应用于绕结构缠绕的一段导体的振荡电流来激励与此结构相关联的电磁场。

结构的品质因数

可以用约1000或更高的品质因数q来产生上述类型的结构。如果跟与对象相关联的总磁能相比,磁性材料内的磁能的部分是小的,则即使磁性材料中的损耗是高的,此高q也是可能的。对于由导电材料和磁性材料层组成的结构而言,可以通过如前所述的磁性材料的存在来减少导电材料中的损耗。在其中磁性材料层的厚度约为系统的最大尺寸的1/100(例如,磁性材料约为1mm厚,而结构的面积约为10cm×10cm)且相对磁导率约为1000的结构中,可以使得包含在磁性材料内的磁能的部分仅为与对象或谐振器相关联的总磁能的百分之几。为了看看那如何发生,请注意,用于包含在体积中的磁能的表达式是um=∫vdrb(r)2/(2μrμ0),只要b(而不是h)是跨越磁性材料-空气界面保持的主要场(在开放磁路中通常情况如此),与在空气中相比,可以显著地减小包含在高μr区中的磁能的分数。

如果用frac来表示磁性材料中的磁能的分数,并且材料的损耗角正切是tanδ,则谐振器的q是q=1/(fracxtanδ),假设磁性材料是唯一的损耗源。因此,甚至对于高达0.1的损耗角正切而言,对于这些类型的谐振器结构也可以实现约1000的q。

如果用绕其缠绕的n匝导线来驱动该结构,则如果n是足够高的,则可以忽视激励电感器环路中的损耗。图17示出用于这些结构及损耗机制和电感随着绕由导电和磁性材料制成的结构缠绕的匝数n的缩放的等效电路1700示意图。如果能够忽略接近效应(通过使用适当的绕组,或被设计为使接近效应最小化的导线,诸如利兹线等),则由于环路导体中的导线而引起的电阻1702随着环路的长度线性地缩放,环路的长度又与匝数成比例。另一方面,这些特殊结构的等效电阻1708和等效电感1704两者与结构内部的磁场的平方成比例。由于此磁场与n成比例,所以等效电阻1708和等效电感1704两者与n2成比例。因此,对于足够大的n而言,导线的电阻1702比磁性结构的等效电阻1708小得多,并且谐振器的q渐进于qmax=ωlμ/rμ。

图16(a)示出由结构1604的中心处的缩窄段周围的正方形电流环路驱动的铜和磁性材料结构1602的图和由此结构产生的磁场流线1608。此示例性结构包括被铜封闭并随后被具有性质μ′r=1,400、μ″r=5和σ=0.5s/m的2mm磁性材料层完全覆盖的两个20cm×8cm×2cm空心区域。这两个平行六面体间隔开4cm,并被相同磁性材料的2cm×4cm×2cm块连接。激励环路被绕此块的中心缠绕。在300khz的频率处,此结构具有计算的890的q。可以将导体和磁性材料结构成形为使某些系统参数最优化。例如,被激励环路封闭的结构的尺寸可以是小的,以减小激励环路的电阻,或者其可以是大的,以减轻与大磁场相关联的磁性材料中的损耗。请注意,与由磁性材料组成的相同结构相关联的磁流线和q将仅类似于这里所示的层导体和磁性材料设计。

电磁谐振器与其它对象交互

对于电磁谐振器而言,扰动固有q值的非固有损耗机制可以包括附近无关对象的材料内部的吸收损耗和与来自附近无关材料的谐振场的散射有关的辐射损耗。可以使吸收损耗与在感兴趣的频率范围内具有非零但有限的电导率σ(或等价地电介质电容率的非零且有限的虚部)的材料相关联,使得电磁场能够穿透它并在其中感生电流,这随后通过电阻损耗而耗散能量。如果对象至少部分地包括有损耗材料,则可以将其描述为有损耗的。

考虑包括电导率σ和磁导率μ的均质各向同性材料的对象。由趋肤深度来给出此对象内部的电磁场的穿透深度可以根据pd=∫vdrσ|e|2=∫vdr|j|2/σ来确定在对象内部耗散的功率pd,其中,我们利用欧姆定律j=σe,并且其中,e是电场且j是电流密度。

如果在感兴趣的频率范围内,组成对象的材料的电导率σ足够低,使得可以认为材料的趋肤深度δ是长的(即,δ比对象的特性尺寸长,或者δ比对象的有损耗部分的特性尺寸长),则电磁场e和h(其中,h是磁场)可以显著地穿透至对象中。然后,这些有限值的场可以产生随着pd~σvol<|e|2>缩放的耗散功率,其中,在正在考虑的体积中,vol是有损耗的对象的体积且<|e|2>是电场平方的空间平均值。因此,在电导率下限处,耗散功率与电导率成比例地缩放并在不导电(纯电介质)材料的极限处归零。

如果在感兴趣的频率范围内,组成对象的材料的电导率σ足够高,使得可以认为材料的趋肤深度是短的,则电磁场e和h可以仅向对象中穿透短的距离(即,其停留在材料的‘表皮’附近,其中,δ小于对象的有损耗部分的特性厚度)。在这种情况下,在材料内部感生的电流可以与材料表面非常接近地集中,近似在趋肤深度内,并且可以用表面电流密度(主要由入射电磁场的形状确定,并且只要导体的厚度比趋肤深度大得多,则独立于第一阶的频率和电导率)k(x,y)(其中,x和y是将表面参数化的坐标)与呈指数地向表面中衰减的函数:exp(-z/δ)/δ(其中,z表示局部地垂直于表面的坐标)的乘积来近似其幅值:j(x,y,z)=k(x,y)exp(-z/δ)/δ。然后,可以用下式来估计耗散功率pd,

因此,在高电导率极限处,耗散功率与电导率的平方根成反比地缩放,并在理想导电的材料的极限处归零。

如果在感兴趣的频率范围内,组成对象的材料的电导率σ是有限的,则材料的趋肤深度δ可以向对象中穿透一定的距离,并且在对象内可能耗散一定量的功率,还取决于对象的尺寸和电磁场的强度。可以将此描述广义化为还描述包括具有不同性质和电导率的多个不同材料的对象的一般情况,诸如在对象内部具有电导率的任意不均质和各向异性分布的对象。

请注意,上述损耗机制的幅值可以取决于无关对象相对于谐振器场的位置和取向以及无关对象的材料组成。例如,高电导率材料可以使谐振器的谐振频率移位,并将其与其它谐振对象解调谐(detune)。可以通过向谐振器施加修正其频率的反馈机制来固定此频移,诸如通过谐振器的电感和/或电容变化。可以使用可变电容器和电感器来实现这些变化,在某些情况下通过谐振器中的组件的几何结构的变化来实现。还可以使用下述其它新型调谐机制来改变谐振器频率。

在外部损耗高的情况下,被扰动q可以是低的,并且可以采取步骤来限制此类无关对象和材料内的谐振器能量的吸收。由于耗散功率对电磁场强度的函数依赖关系,可以通过将系统设计为使得用在源谐振器处较短且在设备谐振器处较长的渐逝谐振场尾来实现期望耦合来使系统性能最优化,使得存在其它对象情况下的源的被扰动q最优化(或者如果需要使设备的被扰动q最优化,则反之亦然。)

请注意,诸如人、动物、植物、建筑材料等许多常见的无关材料和对象可以具有低电导率,并因此可以几乎对这里公开的无线能量转移方案没有影响。与我们描述的磁谐振器设计有关的重要事实是可以将其电场主要约束在谐振器结构本身内,因此其应可以在在中程距离上提供无线功率交换的同时在用于人类安全的一般接受方针内操作。

具有减少的交互的电磁谐振器

用于近场无线功率传输的一个感兴趣的频率范围在10khz与100mhz之间。在此频率范围内,例如多个类型的木材和塑料的多种普通非金属材料可以具有相对低的电导率,使得仅少量的功率可以在其内部被耗散。另外,具有低损耗角正切tanδ(其中tanδ=ε″/ε′,并且ε″和ε′分别是电容率的虚部和实部)的材料也可以使仅少量的功率在其内部被耗散。诸如铜、银、金等具有相对高的电导率的金属材料也可以几乎不具有在其中被耗散的功率,因为如前文所讨论的,电磁场不能显著地穿透这些材料。这些非常低和非常高电导率的材料和低损耗角正切材料和对象可以对磁谐振器的损耗具有可忽略的影响。

然而,在感兴趣的频率范围内,存在诸如某些电子电路和某些低电导率金属的材料和对象,其可以具有中度(通常非均质且各向异性)的电导率和/或中至高的损耗角正切,并且其可以具有相对高的耗散损耗。在其内部可以耗散相对较大量的功率。这些材料和对象可以耗散足够的能量以将q(p)减少显著的量,并且可以称为“有损耗对象”。

减少有损耗材料对谐振器的q(p)的影响的一种方式是使用高电导率材料来对谐振器场进行成形,使得其避开有损耗对象。可以通过将高电导率材料设想为使场偏转或重新成形的材料来理解使用高电导率材料来对电磁场进行调整以使得它们避开其附近的有损耗对象的过程。此构想在质量上是正确的,只要导体的厚度大于趋肤深度,因为用于良导体的表面处的电磁场的边界条件迫使电场接近于完全垂直于导体平面且磁场接近于完全与导体平面相切。因此,垂直磁场或相切电场将从导电表面“偏转开”。此外,甚至可以迫使相切磁场或垂直电场在一侧和/或特别是导电表面的位置在幅值上减小,其取决于场的源和导电表面的相对位置。

作为示例,图18示出频率f=6.78mhz的外部、最初均匀的磁场中的有损耗电介质材料1804之上和之下的两个高电导率表面1802的有限元法(fem)模拟。系统是绕着r=0轴方位角对称的。在此模拟中,有损耗电介质材料1804被夹在两个导体1802(被示为近似z=±0.01m处的白色线)之间。在电介质圆盘之上和之下不存在导电表面的情况下,磁场(用描绘的磁场线表示)仍将是基本上均匀的(场线笔直并与z轴平行),指示磁场将笔直地通过有损耗电介质材料。在这种情况下,功率将已在有损耗电介质圆盘中耗散。然而,在存在导电表面的情况下,此模拟显示磁场被重新成形。迫使磁场与导体的表面相切,并因此在那些导电表面1802周围偏转,使可能在导电表面后面或之间的有损耗电介质材料1804中耗散的功率量最小化。如本文所使用的,电学对称的轴指的是任何轴,绕着该轴,固定或时变电场或磁场在如本文公开的能量交换期间基本上是对称的。

即使使用在电介质圆盘之上或之下的仅一个导电表面,也观察到类似的效果。如果电介质圆盘是薄的,则电场在表面处基本上为零且连续且平滑地接近它这一事实意味着电场在接近于表面的任何地方(即在电介质圆盘内)是非常低的。用于使谐振器场远离有损耗对象偏转的单个表面实施方式对于其中不允许覆盖有损耗材料或表面的两侧的应用(例如lcd屏幕)而言可能是优选的。请注意,在存在有损耗材料的情况下,甚至与几个趋肤深度的导电材料的非常薄的表面可以足以(6.78mhz处的纯铜中的趋肤深度是~20μm,并且在250khz处是~100μm)显著地改善谐振器的q(p)。

有损耗无关材料和对象可以是其中将集成高q谐振器的设备的部分。可以用许多技术来减少这些有损耗材料和对象中的能量耗散,包括:

通过将有损耗材料和对象定位为远离谐振器,或者处于相对于谐振器的特殊位置和取向。

通过使用高电导率材料或结构来在谐振器附近部分地或完全覆盖有损耗材料和对象。

通过将高电导率材料的闭合表面(诸如片材或网)放置在有损耗对象周围以完全覆盖有损耗对象并将谐振器场成形为使得其避开有损耗对象。

通过将高电导率材料的表面(诸如片材或网)放置在有损耗对象的仅一部分周围,诸如沿着对象或材料的顶部、底部、沿着侧边等。

通过将高电导率材料的甚至单个表面(诸如片材或网)放置在有损耗对象之上或之下或一个侧面上以减小有损耗对象的位置处的场的强度。

图19示出形成磁谐振器102的电容加载环路电感器和被放置在环路电感器内部的完全围绕有损耗对象1804的高电导率材料1802的盘状表面。请注意,某些有损耗对象可以是诸如电子电路的组件,其可能需要与外界环境交互、通信或相连并因此不能被完全地电磁隔离。用高电导率材料部分地覆盖有损耗材料仍可以在使得有损耗材料或对象适当地起作用的同时减少额外损耗。

图20示出被用作谐振器102的电容加载环路电感器和被放置在电感器环路内部的围绕损耗对象1804的仅一部分的高电导率材料1802的表面。

通过将高电导率材料的单个表面放置在有损耗对象或材料之上、之下或侧面上等,可以减少但不可以完全地消除额外损耗。在图21中示出示例,其中,电容加载环路电感器被用作谐振器102,并且高电导率材料1802的表面被放置在有损耗对象1804下面的电感器环路内部以减小有损耗对象位置处的场的强度。由于成本、重量、组装复杂化、气流、视觉可达性、实体近用等的考虑,仅覆盖材料或对象的一侧可能是优选的。

可以使用高电导率材料的单个表面来避开不能或不应都被从两侧覆盖的对象(例如lcd或等离子体屏幕)。可以使用光学透明的导体来避开此类有损耗对象。作为光学透明导体的替代或除光学透明导体之外,可以替代地将高电导率光学不透明材料放置在有损耗对象的仅一部分上。单面覆盖相对于多面覆盖实施方式的适合性和其中固有的设计权衡可以取决于无线能量转移情形的细节和有损耗材料和对象的性质。

下面,我们描述使用高电导率表面来改善在无线能量转移系统中使用的集成磁谐振器的q不灵敏度θ(p)的示例。图22示出无线投影仪2200。无线投影仪可以包括如所示地布置的设备谐振器102c、投影仪2202、无线网络/视频适配器2204和功率转换电路2208。设备谐振器102c可以包括被布置为封闭表面的三匝导体环路,和电容器网络2210。可以将导体环路设置为使得设备谐振器102c在其工作谐振频率下具有高q(例如,>100)。在完全无线的投影仪2200中的集成之前,此设备谐振器102c在6.78mhz的设计工作谐振频率下具有约477的q。在集成并将无线网络/视频适配器卡2204放置在谐振器环路电感器的中心上时,谐振器q(integrated)被减小至约347。从q至q(integrated)的减小中的至少某些归因于扰动无线网络/视频适配器卡中的损耗。如上所述,与磁谐振器102c相关联的电磁场可以在无线网络/视频适配器卡2204中和其上感生电流,该电流可以在组成该卡的有损耗材料中的电阻性损耗中被耗散。我们观察到根据放置在谐振器附近的对象和材料的组成、位置和取向,可以不同地影响谐振器的q(integrated)。

在完全无线的投影仪示例中,用薄铜袋(覆盖无线网络/视频适配器卡的顶部和底部的折叠铜片,但不是通信天线)来覆盖网络/视频适配器卡将磁谐振器的q(integrated)改善为约444的q(integrated+copperpocket)。换言之,使用铜袋来使谐振器场偏离有损耗材料,可以消除大部分由于由无关网络/视频适配器卡引起的扰动所造成的q(integrated)的减小。

在另一完全无线的投影仪示例中,用放置在卡下面的单个铜片来覆盖网络/视频适配器卡提供约等于q(integrated+copperpocket)的q(integrated+coppersheet)。在该示例中,可以用被用来使谐振器场远离有损耗适配器卡的单个高电导率片材来保持系统的高被扰动q。

使有损耗材料和对象(其为包括高q电磁谐振器的设备的一部分)定位或定向在由谐振器产生的场相对弱的位置可能是有利的,使得几乎没有功率在这些对象中被耗散,因此q不灵敏度θ(p)可以是大的。如更早地示出的,不同电导率的材料可以不同地对电场对比磁场进行不同的响应。因此,根据无关对象的电导率,定位技术可以专用于一个或另一个场。

图23示出在10mhz处谐振的沿着包含圆形环路电感器的直径的线的电场2312和磁场2314和沿着用于半径30cm的导线的电容加载圆形环路电感器的环路电感器的轴的电场2318和磁场2320的幅值。可以看到谐振近场的幅值在接近导线处达到其最大值并在远离环路2312、2314处衰减。在环路电感器2318、2320的平面中,场在环路的中心处达到局部最小值。因此,给定设备的有限尺寸,可能的是场在设备的极值处最弱,并且可能的是场幅值在设备内的某些地方具有局部最小值。此论证适用于任何其它类型的电磁谐振器102和任何类型的设备。在图24a和24b中示出示例,其中,电容加载电感器环路形成磁谐振器102,并且无关有损耗对象1804位于电磁场具有最小幅值的位置处。

在示范示例中,使用被布置为封闭正方形表面(具有圆角)的三匝导体环路和电容器网络来形成磁谐振器。谐振器的q在6.78mhz的设计工作谐振频率下为约619。此谐振器的扰动q取决于扰动对象(在这种情况下为口袋式投影仪)相对于谐振器的放置。当扰动投影仪被放置在电感器环路内部和其中心处或电感器线匝之上时,q(projector)为约96,比在扰动投影仪被放置在谐振器外面时低(在这种情况下,q(projector)为约513)。这些测量结果支持显示电感器环路内部的场可以比在其外部的那些场大的分析,因此放置在此类环路电感器内部的有损耗对象与有损耗对象被放置在环路电感器外部时相比可以为系统提供较低的扰动q。根据谐振器设计和有损耗对象的材料组成和取向,图24b所示的布置可以提供比图24a所示的布置高的q不灵敏度θ(projector)。

可以将高q谐振器集成在设备内部。高电介质电容率、磁导率或电导率的无关材料和对象可以是高q谐振器将被集成到其中的设备的一部分。对于在高q电磁谐振器附近的这些无关材料和对象而言,根据其相对于谐振器的尺寸、位置和取向,谐振器场分布可变形并显著地偏离谐振器的原始未扰动场分布。谐振器的未扰动场的此类变形可以显著地将q减小至较低的q(p),即使无关对象和材料是无损耗的。

将高电导率对象(其为包括高q电磁谐振器的设备的一部分)放置在使得这些对象的表面的取向尽可能地垂直于由未扰动谐振器产生的电场线并平行于由未扰动谐振器产生的磁场线的取向、因此以可能的最小量使谐振场分布变形可能是有利的。可以被设置为垂直于磁谐振器环路的平面的其它常见对象包括屏幕(lcd、等离子体等)、电池、外壳、连接器、辐射天线等。谐振器的q不灵敏度θ(p)可以比在对象被设置在相对于谐振器场的不同取向的情况下大得多。

不属于包括高q谐振器的集成设备的一部分的有损耗无关材料和对象可位于或被带到谐振器附近,例如在设备的使用期间。在某些情况下,使用高电导率材料来调整谐振器场,使得其避开有损耗无关对象所位于或被引入的区域以减少这些材料和对象中的功率耗散并增加q不灵敏度θ(p)可能是有利的。在图25中示出示例,其中,使用电容加载环路电感器和电容器作为谐振器102,并且高电导率材料1802的表面被放置在电感器环路之上以减小谐振器之上的区域中的场的幅值,有损耗无关对象1804可以位于或被引入该区域。

请注意,被带到谐振器的附近以使场重新成形的高电导率表面也可以引起q(cond.surface)<q。被扰动q的减小可以是由于有损耗导体内部的能量耗散或与匹配导体表面处的场边界条件相关联的未扰动谐振器场的变形而引起的。因此,虽然可以使用高电导率表面来减少由于无关有损耗对象内部的耗散而引起的额外损耗,但在某些情况下,尤其是在其中这是通过显著地使电磁场重新成形来实现的某些情况下,使用此类高电导率表面使得场避开有损耗对象可以有效地得到q(p+cond.surface)<q(p)而不是期望的结果q(p+cond.surface)>q(p)。

如上所述,在存在感生损耗的对象的情况下,如果与磁谐振器相关联的电磁场被重新成形以避开感生损耗的对象,则可以改善磁谐振器的被扰动品质因数。使未扰动谐振器场重新成形的另一个方式是使用高磁导率材料来完全地或部分地封闭或覆盖感生损耗的对象,从而减少磁场与感生损耗的对象的交互。

先前已例如在electrodynamics3rded.,jackson,pp.201~203中描述了磁场屏蔽。其中,示出了将其内部与外部磁场屏蔽开来的可透磁材料的球形壳。例如,如果内径a、外径b和相对磁导率μr的壳放置在最初均匀的磁场h0中,则壳内部的场将具有恒定的幅值9μrh0/[(2μr+1)(μr+2)-2(a/b)3(μr-1)2],如果μr>>1,则其趋向于9h0/2μr(1-(a/b)3)。此结果显示入射磁场(但不一定是入射电场)在该壳内部可以被大大地衰减,即使壳是相当薄的,条件是磁导率足够高。在某些情况下,使用高磁导率材料来部分地或完全覆盖有损耗材料和对象、使得其被谐振器磁场避开并因此几乎没有功率在这些材料和对象中被耗散可能是有利的。在这种方法中,q不灵敏度θ(p)可以比在材料和对象未被覆盖的情况下大,可能大于1。

可期望保持电场和磁场两者远离感生损耗的对象。如上所述,以这种方式使场成形的一种方法是使用高电导率表面来完全地或部分地封闭或覆盖感生损耗的对象。可以在高电导率表面上或周围放置一层可透磁材料,也称为磁性材料(具有显著磁导率的任何材料或元材料)。该附加磁性材料层可以呈现供已偏转磁场遵循的较低磁阻路径(与自由空间相比),并且可以部分地将其下面的电导体与入射磁通屏蔽开来。此设置可以减少由于高电导率表面中的感生电流而引起的损耗。在某些情况下,由磁性材料呈现的较低磁阻可以改善结构的被扰动q。

图26(a)示出被暴露于沿着z轴的初始均匀、外加磁场(灰色磁通线)的薄导电2604(铜)圆盘(直径为20cm,高度为2cm)的轴向对称fem模拟。对称轴在r=0处。所示的磁流线源于z=-∞,其中,这些磁流线以1cm的间隔间隔开r=3cm至r=10cm。轴刻度以米为单位。例如,设想着此导电圆柱将感生损耗的对象封闭在由图19所示的无线能量转移系统中的磁谐振器所限定的区域内。

此高电导率外壳可以增加有损耗对象的扰动q,并因此增加系统的总被扰动q,但是被扰动q由于导电表面中的感生损耗和电磁场分布的变化而可能仍小于未扰动q。可以通过沿着高电导率外壳的一个或多个外表面包括一层磁性材料来至少部分地恢复与高电导率外壳相关联的被扰动q的减小。图26b示出来自图26a的薄导电2604a(铜)圆盘(直径为20cm,高度为2cm)的轴向对称fem模拟,但是具有被直接放置在高电导率外壳的外表面上的附加磁性材料层。请注意,磁性材料的存在可以为磁场提供较低磁阻路径,从而至少部分地屏蔽底层导体并减少由于导体中感生的涡流而引起的损耗。

图27描绘了对图26所示的系统的修改(在轴对称视图中),其中,可能不是所有的有损耗材料2708都被高电导率表面2706覆盖。在某些情况下,诸如由于成本、重量、组装复杂度、气流、视觉可达性、实体近用等的考虑,仅覆盖材料或对象的一侧可能是有用的。在图27所示的示例性布置中,有损耗材料2708的仅一个表面被覆盖,并且谐振器电感器环路被放置在高电导率表面的相对侧。

使用数学模型来模拟被放置在由磁谐振器限定的区域内的由铜制成且形状类似于20cm直径乘2cm高的圆柱形圆盘的高电导率外壳,所述磁谐振器的电感元件是具有环路半径r=11cm且导线半径a=1mm的单匝导线环路。用于施加的6.78mhz电磁场的模拟表明此高电导率外壳的扰动品质因数δq(enclosure)是1,870。当高电导率外壳被修改为包括具有实相对磁导率μ′r=40和虚相对磁导率μ″r=10-2的0.25cm厚的磁性材料层时,模拟显示扰动品质因数被增加至δq(enclosure+magneticmaterial)=5,060。

如果高电导率外壳填充由谐振器的环路电感器2704限定的区域的较大部分,则由于添加磁性材料2702的薄层而引起的性能改善甚至可以更显著。在上述示例中,如果减小电感器环路2704的半径,使得其距离高电导率外壳的表面仅3mm,则可以通过在外壳外部添加一层磁性材料2702的薄层来将扰动品质因数从670(仅导电外壳)改善至2,730(具有磁性材料薄层的导电外壳)。

可以使用例如屏蔽或分布式电容器(例如,其效率高(yieldhigh))将谐振器结构设计为具有高度受限的电场,即使当谐振器非常接近于通常将感生损耗的材料时。

耦合电磁谐振器

可以由强耦合质量因数来确定两个谐振器之间的能量转移的效率,在磁谐振器实施方式中,可以用使两个谐振器之间的耦合因数与谐振器中的每一个中的电感元件的电感l1和l2和其之间的互感m相关。请注意,此表达式假设存在通过电偶极子耦合的可忽略的耦合。对于其中由具有n匝、分开距离d并如图1(b)所示地取向的圆形导电环路来形成电感器环路的电容加载电感器环路谐振器而言,互感是m=π/4·μon1n2(x1x2)2/d3,其中,x1、n1和x2、n2分别是第一和第二谐振器的导体环路的特性尺寸和匝数。请注意,这是准静态结果,因此假设谐振器的尺寸比波长小得多,并且谐振器的距离比波长小得多,而且其距离是其尺寸的至少几倍。对于在准静态极限处和中程距离处操作的这些圆形谐振器而言,如上所述,当谐振器的品质因数大到足以补偿中程距离处的小k时,可以建立中程距离处的谐振器之间的强耦合(大u)。

对于电磁谐振器而言,如果两个谐振器包括导电部分,则耦合机制可以是由于从另一个谐振器产生的电场和磁场而在一个谐振器上感生电流。耦合因数可以与跨越第二谐振器的高q电感元件的封闭区域的一个谐振器中的高q电感元件产生的磁场的通量成比例。

具有减少的交互的耦合电磁谐振器

如前文所述,可以使用高电导率材料表面来使谐振器场成形,使得其避开谐振器附近的有损耗对象p,从而减少总额外损耗并保持谐振器的高q不灵敏度θ(p+cond..surface)。然而,此类表面可能在谐振器之间导致被扰动耦合因数k(p+cond.surface),其小于被扰动耦合因数k(p)并取决于高电导率材料相对于谐振器的尺寸、位置和取向。例如,如果高电导率材料被放置在由无线能量转移系统中的磁谐振器中的至少一个的电感元件限定的平面中和区域内,则可以阻挡通过谐振器的区域的部分磁通(调节耦合),并且可以减小k。

再次考虑图19的示例。在不存在高电导率圆盘外壳的情况下,一定量的外部磁通量可以穿过环路的限定区域。在存在高电导率圆盘外壳的情况下,此磁通量中的某些可能被偏转或阻挡,并且可能不再穿过环路的该区域,因此导致较小的被扰动耦合因数k12(p+cond.surfaces)。然而,由于偏转磁场线可能紧密地遵循高电导率表面的边缘,所以通过限定圆盘的环路的通量的减少可能小于圆盘的面的面积与环路的面积的比。

可以单独地或与磁性材料组合地使用高电导率材料结构来使被扰动品质因数、被扰动耦合因数或被扰动效率最优化。

考虑图21的示例。使有损耗对象具有等于电容加载电感器环路谐振器的尺寸的尺寸,由此填充其区域a2102。可以将高电导率表面1802放置在有损耗对象1804下面。让此谐振器1在两个耦合谐振器1和2的系统中,并且让我们考虑随着导电表面的面积as2104的增加u12(object+cond.surface)与u12相比如何缩放。在有损耗对象1804下面没有导电表面1802的情况下,k不灵敏度β12(object)可以约为1,但是q不灵敏度θ1(object)可以是小的,因此u不灵敏度ξ12(object)可以是小的。

在有损耗对象下面的高电导率表面覆盖电感器环路谐振器的整个面积时(as=a),k12(object+cond.surface)可以接近于零,因为几乎不允许通量穿过电感器环路,因此u12(object+cond.surface)可以接近于零。对于高电导率表面的中间尺寸而言,非固有损耗的抑制和相关联的q不灵敏度θ1(object+cond.surface)与θ1(object)相比可以是足够大的,而耦合的减少可能不是显著的,并且相关联的k不灵敏度β12(object+cond.surface)可能不比β12(object)小得多,使得与u12(object)相比,可以增加总u12(object+cond.surface)。在无线能量转移系统中经由高电导率表面来避开无关有损耗对象的最佳程度可以取决于系统配置和应用的细节。

我们描述了使用高电导率材料来完全地或部分地封闭或覆盖高q谐振器附近的感生损耗的对象作为实现用于系统的高被扰动q的一种潜在方法。然而,单独地使用良导体来覆盖对象可以如上所述地减少谐振器的耦合,从而降低无线功率转移的效率。随着导电表面的面积接近于磁谐振器的面积,例如,被扰动耦合因数k(p)可以接近于零,使得导电表面的使用与高效无线功率转移不相容。

解决上述问题的一种方法是在高电导率材料周围放置一层磁性材料,因为附加的这层可透磁材料可以呈现供已偏转磁场遵循的较低磁阻路径(与自由空间相比),并且可以部分地将其下面的电导体与入射的磁通量屏蔽开来。在某些情况下,由磁性材料呈现的较低磁阻路径可以改善谐振器到其它谐振器的电磁耦合。可以通过沿着导电材料的一个或多个外表面包括一层磁性材料来至少部分地恢复与使用导电材料来调整谐振器场使得其避开高q磁谐振器中和周围的有损耗对象相关联的被扰动耦合因数的减小。磁性材料可以相对于其初始未扰动值增加被扰动耦合因数。

请注意,图26中的模拟结果显示与单独的导电结构相比,分层磁性材料和导电结构可以使入射磁场较小偏转。如果具有仅比图26(a)和图26(b)所示的圆盘略大的半径的磁谐振器圆环限定圆盘,则很明显,与图26(a)中所示出的情况相比,在图26(b)所示的情况下更多的磁通线将被捕获,因此对于图26(b)所示的情况而言,k(disk)将较大。因此,在导电材料上包括一层磁性材料可以改善总体系统性能。可以执行系统分析以确定这些材料是否应被部分地、全部地或最低限度地集成到谐振器中。

如上所述,图27描绘了可以适合于在不是所有有损耗材料2708都可以被导体和/或磁性材料结构覆盖时使用的分层导体2706和磁性材料2702结构。先前示出了对于具有由具有11cm的电感器环路半径和a=1mm的导线半径的谐振器限定的20cm直径和2cm高度的铜导体圆盘而言,针对铜圆柱计算的扰动q是1.870。如果谐振器和导电圆盘壳被放置在均匀磁场中(沿着电感器环路的对称轴对准),我们计算了铜导体具有0.34的相关耦合因数不灵敏度。为了比较,我们对相同的布置进行建模,但是包括具有实相对磁导率μr′=40和虚相对磁导率μr″=10-2的0.25cm厚的磁性材料层。使用上述相同的模型和参数,我们发现通过向导体的表面添加磁性材料,耦合因数不灵敏度被改善至0.64。

可以将磁性材料放置在被磁谐振器限定的区域内以增加无线能量转移系统中的耦合。考虑被放置在最初均匀磁场中的具有相对磁导率μr的磁性材料的实心球。在本示例中,由磁性材料提供的较低磁阻路径可以促使磁场集中在该球的体积中。我们发现通过添加磁性材料,通过由球的中纬线限定的区域的磁通量被增加到3μr/(μr+2)倍。如果μr>>1,则此增强因数可以接近于3。

还可以显示包括由磁谐振器中的电感元件限定的磁性球体的系统的偶极矩将使其磁偶极子增强到相同的倍数。因此,具有高磁导率的磁性球体实际上使谐振器的偶极子磁耦合增至三倍。如果我们使用具有a的内径和b的外径的磁性材料的球形壳体,可以保持耦合中大部分的该增加,即使此壳体在由高度导电材料制成的块体或外壳之上。在这种情况下,通过中维线的通量的增强是

对于μr=1,000且(a/b)=0.99而言,此增强因数仍是2.73,因此甚至用薄层磁性材料,也可以显著地改善该耦合。

如上所述,可以使用包含磁性材料的结构来实现磁谐振器。图16(a)示出了由在其中心处的阻塞点周围的正方形电流环路驱动的铜和磁性材料结构1600的三维模型。图16(b)示出具有与图16(a)所示的一个相同的性质的两个相同结构1600a—b之间的由磁场流线指示的交互。由于对称,并且为了降低计算复杂性,仅对系统的一半进行建模。如果我们固定了两个对象之间的相对取向并改变其中心距离(所示的图像处于50cm的相对间隔),我们发现在300khz处,耦合效率随着结构之间的间隔从30cm变成60cm而从87%变成55%。所示的每个示例性结构1600a—b包括被4cm×4cm×2cm磁性材料块接合并完全被2mm的相同磁性材料层(被假设为具有μr=1,400+j5)覆盖的由铜制成的两个20cm×8cm×2cm平行六面体。忽略驱动环路中的电阻性损耗。每个结构具有计算的815的q。

电磁谐振器和阻抗匹配

用于低损耗电感元件的阻抗匹配架构

出于本讨论的目的,电感元件可以是有或没有(有间隙或无间隙)由磁性材料制成的芯的任何导电材料的任何线圈或环路结构(‘环路’),其还可以被电感地或以任何其它无接触方式耦合到其它系统。元件是电感的,因为其阻抗(包括环路的阻抗和任何被潜在地耦合的系统的所谓‘反射’阻抗这二者)具有正电抗x和电阻r。

考虑电感元件可以被连接到的诸如驱动电路或被驱动负载或传输线的外部电路。外部电路(例如驱动电路)可以向电感元件递送功率,并且电感元件可以向外部电路(例如被驱动负载)递送功率。在期望频率处在电感元件与外部电路之间递送的功率的效率和量可以取决于相对于外部电路的性质而言的电感元件的阻抗。可以使用阻抗匹配网络和外部电路控制技术在期望频率f处调节外部电路与电感元件之间的功率递送。

外部电路可以是被配置为形成a、b、c、d、de、e、f类等的放大器的驱动电路,并且可以在驱动具有特定阻抗zo*的谐振网络时以最大效率递送功率(即,以驱动电路内的最小损耗),其中,zo可以是复数,并且*表示复数共轭。外部电路可以是被配置为形成a、b、c、d、de、e、f等类的整流器的被驱动负载,并且可以在其被具有特定阻抗的谐振网络驱动时以最大的效率接收功率(即以被驱动负载内的最小损耗),其中,zo可以是复数。外部电路可以是具有特性阻抗zo的传输线,并且可以在被连接到阻抗时以最大效率(即以零反射)交换功率。我们将把外部电路的特性阻抗zo称为可以被与之相连以便以最大效率进行功率交换的阻抗的复数共轭。

通常,电感元件的阻抗r+jx可以与相差悬殊。例如,如果电感元件具有低损耗(高x/r),其电阻r可以比外部电路的特性阻抗z0的实部低得多。此外,电感元件本身可以不是谐振网络。连接到电感元件的阻抗匹配网络通常可以产生谐振网络,可以调节其阻抗。

因此,可以将阻抗匹配网络设计为使在外部电路与电感元件之间递送的功率的效率最大化(包括任何耦合系统的反射阻抗)。可以通过在期望频率处使阻抗匹配网络和电感元件的组合的阻抗与外部电路(或传输线)的特性阻抗匹配来使递送功率的效率最大化。

可以将阻抗匹配网络设计为在外部电路与电感元件之间递送指定功率量(包括任何耦合系统的反射阻抗)的。可以通过在期望的频率处调整阻抗匹配网络和电感元件的组合的阻抗与外部电路(或传输线)的阻抗的复数比来确定递送功率。

被连接到电感元件的阻抗匹配网络可以产生磁谐振器。对于诸如使用强耦合的磁谐振器的无线功率传输的某些应用而言,谐振器可能期望高q。因此,可以将电感元件选择为具有低损耗的(高x/r)。

由于匹配电路通常可以在谐振器内部包括附加损耗源,所以还可以将匹配电路的组件选择为具有低损耗。此外,在高功率应用中和/或由于高谐振器q,大的电流在谐振器电路的一部分中行进,并且跨越谐振器内的某些电路元件存在大的电压。此类电流和电压可以超过用于特定电路元件的指定容差,并且对于特定组件而言可能太高而不能承受。在某些情况下,可能难以找到或实现具有足以实现用于某些应用的高q和高功率谐振器的尺寸、成本和性能(损耗和电流/电压额定值)规格的组件(例如,诸如可调谐电容器)。我们公开了可以在降低对低损耗和/或高电流/电压额定值的组件要求的同时保持用于磁谐振器的高q的匹配电路的设计、方法、实施方式和技术。

可以设计使对匹配电路的某些元件的损耗和电流额定值要求最小化的匹配电路拓扑结构。可以将使低损耗电感元件与阻抗z0匹配的电路的拓扑结构选择为使得其组件中的一些在与外部电路串联的相关联的高q谐振器外部。可以降低对用于这些组件的低串联损耗或高电流额定值的要求。减轻电路元件上的低串联损耗和/或高电流额定值要求在元件需要可变和/或具有大的电压额定值和/或低并联损耗时特别有用。

可以设计使对匹配电路的某些元件的电压额定值要求最小化的匹配电路拓扑结构。可以选择将低损耗电感元件与阻抗z0匹配的电路的拓扑结构为使得其组件中的一些在与z0并联的相关联高q谐振器外部。可以降低对用于这些组件的低并联损耗或高电压额定值的要求。减轻电路元件上的低并联损耗和/或高电压要求在元件需要可变和/或具有大的电流额定值和/或低串联损耗时特别有用。

可以选择将低损耗电感元件与外部特性阻抗z0匹配的电路的拓扑结构为使得在将谐振器耦合到外部阻抗时保持相关联谐振模式的场图和因此其高q。否则,可能发生到期望谐振模式的低效耦合(可能由于到其它非期望谐振模式的耦合),导致谐振器q的有效降低。

对于其中低损耗电感元件或外部电路可能表现出变化的应用而言,可能需要动态地调整匹配电路以在期望频率f处使电感元件与外部电路阻抗z0匹配。由于通常可以存在两个调谐目标,其在期望频率f处匹配或控制阻抗水平z0的实部和虚部,所以在匹配电路中可以存在两个可变元素。对于电感元件而言,匹配电路可能需要包括至少一个可变电容元件。

可以由使用两个可变电容器或两个可变电容器的网络的拓扑结构来匹配低损耗电感元件。例如,可变电容器可以是可调谐蝶式电容器,其具有例如用于连接到电源或负载的地线或其它引线的中心端子和至少一个其它端子,跨越该端子,能够改变或调谐可调谐蝶式电容器的电容,或者可以是具有用户可配置、可变电容的任何其它电容器。

可以由使用一个可变电容器或可变电容器的网络和一个可变电感器或可变电感器的网络的拓扑结构来匹配低损耗电感元件。

可以通过使用一个可变电容器或可变电容器的网络和一个可变互感或可变互感的网络的拓扑结构来匹配低损耗电感元件,所述可变互感将电感元件变压器耦合到外部电路或其它系统。

在某些情况下,可能难以找到或实现具有足以实现高q、高功率和潜在地高速度、可调谐谐振器设计的尺寸、成本和性能规格的可调谐集总元件。可以将使可变电感元件与外部电路匹配的电路的拓扑结构设计为使得通过改变施加于外部电路中的晶体管、二极管、开关等的驱动信号的频率、振幅、相位、波形、占空因数等来对外部电路赋予某些可变性。

可以仅部分地补偿或根本不补偿在谐振频率处的电感元件的电阻r和电感l的变化。因此,可以由被设计到其它系统组件或规格中的容差来保持适当的系统性能。使用较少可调谐组件或不那么有能力的可调谐组件实现的部分调整可能是足够的。

可以设计在使其可调谐元件上的电压/电流额定值要求最小化并实现更细(即更精确,具有较高的分辨率)的总体可调谐性的同时在高功率条件下实现阻抗匹配电路的期望可变性的匹配电路架构。使可变电感元件与阻抗z0匹配的电路的拓扑结构可以包括固定和可变元件的适当组合和放置,使得可以降低对可变组件的电压/电流要求,并且可以用更细的调谐分辨率来覆盖期望的调谐范围。可以降低不可变的组件上的电压/电流要求。

可以使用公开的阻抗匹配架构和技术来实现以下各项:

使从功率驱动发电机递送到源低损耗电感元件(和与之无线地耦合的任何其它系统)的功率最大化,或者使其之间的阻抗失配最小化。

使从设备低损耗电感元件(和与之无线地耦合的任何其它系统)递送到功率驱动负载的功率最大化,或者使其之间的阻抗失配最小化。

从功率驱动发电机向源低损耗电感元件(和与之无线地耦合的任何其它系统)递送受控量的功率,或者在其之间实现一定的阻抗关系。

从设备低损耗电感元件(和被与之无线地耦合的任何其它系统)向功率驱动负载递送受控量的功率,或者在其之间实现一定的阻抗关系。

用于模分布保持的拓扑结构(高q)

可以将谐振器结构设计为无线地(间接地)或用硬接线连接(直接地)连接到发电机或负载。

考虑诸如由图28(a)中的框图所示的一般间接耦合匹配拓扑结构。在那里,标记为(r,l)并由用于电感器的电路符号表示的电感元件2802可以是在本公开中或在本文提供的参考文献中讨论的任何电感元件,并且其中,阻抗匹配电路2402包括部分a和b或由部分a和b组成。b可以是经由无线连接(电感或电容耦合机制)将阻抗2804、z0连接到电路的其余部分(a和电感元件的组合(a+(r,l)))的匹配电路的一部分。

a和电感元件2802的组合可以形成具有相关联的电流和电荷分布的谐振器102,该谐振器102可以单独地支持高q谐振器电磁模。外部电路z0和b与谐振器a+(r,l)之间的有线连接的缺失可以保证高q谐振器电磁模及其电流/电荷分布可以采取其固有(隔离)分布的形式,只要无线耦合的程度不太大即可。也就是说,使用间接耦合匹配拓扑结构,可以自动地保持电磁模、电流/电荷分布和由此的谐振器的高q。

在其中在外部电路与电感器环路之间使用电感耦合的情况下,可以将此匹配拓扑结构称为间接耦合或变压器耦合或电感耦合。在参考的science文章中描述的中程距离内的无线能量转移的论证中,使用此类耦合类型来将电源耦合到源谐振器并将设备谐振器耦合到灯泡。

接下来考虑其中电感元件可以包括电感元件和任何间接耦合的系统的示例。在这种情况下,如上文公开的,并且再次由于外部电路或耦合系统与谐振器之间的有线连接的缺失,耦合系统在对不太大程度的间接耦合的良好近似的情况下可以不影响谐振器的谐振器电磁模分布和电流/电荷分布。因此,如本文定义的,间接耦合匹配电路对于作为谐振器的一部分的任何一般电感元件而言以及无线地耦合到其它系统的电感元件而言可以同样起作用。遍及本公开,我们公开的匹配拓扑结构指的是用于此类一般电感元件的匹配拓扑结构,也就是说,其中,可以将任何附加系统间接地耦合到低损耗电感元件,并且应理解的是那些附加系统不会大大地影响谐振器的谐振器电磁模分布和电流/电荷分布。

基于上述讨论,在任何数目的耦合源谐振器、设备谐振器和中间谐振器的无线功率传输系统中,谐振器之间的无线磁性(电感)耦合不影响每一个谐振器的电磁模分布和电流/电荷分布。因此,当这些谐振器具有高(未加载和未扰动)q时,在存在无线耦合的情况下可以保持它们的(未加载和未扰动)q。(请注意,在存在到另一谐振器的无线耦合的情况下可以减小谐振器的加载q,但是我们可能对保持未加载q感兴趣,其仅涉及损耗机制而不涉及耦合/加载机制)。

考虑诸如图28(b)所示的匹配拓扑结构。图28(b)所示的电容器可以表示电容器电路或网络。可以使用所示的电容器来形成谐振器102并调整源和设备谐振器的频率和/或阻抗。可以使用标记为“端子连接”2808的端口将此谐振器102直接耦合到阻抗z0。图28(c)示出一般化直接耦合匹配拓扑结构,其中,阻抗匹配电路2602包括部分a、b和c或由其组成。这里,可以将a、b和c中的电路元件视为谐振器102的一部分以及阻抗匹配2402(和频率调谐)拓扑结构的一部分。b和c可以是经由每个单线连接是将阻抗z02804(或网络端子)连接到电路的其余部分(a和电感元件)的匹配电路2402的部分。请注意,b和c可以是空的(短路)。如果我们将部分b和c(即那些单线连接)断开连接或开路,则a和电感元件(r,l)的组合可以形成谐振器。

高q谐振器电磁模可以使得沿着电感元件的电压分布的分布具有节点,即其中电压为零的位置。一个节点可以近似地在电感元件的长度的中心处,诸如用来形成电感元件的导体的中心(有或没有磁性材料),并且至少一个其它节点可以在a内。电压分布可以近似地相对于其电压节点沿着电感元件是反对称的。可以通过将匹配拓扑结构(a、b、c)和/或端子电压(v1、v2)设计为使得可以在电感元件上近似地保持此高q谐振器电磁模分布来保持高q。可以通过保持电感元件的电压节点(近似地在中心处)近似地在电感元件上保持此高q谐振器电磁模分布。本文提供了实现这些设计目标的示例。

a、b和c可以是任意的(即不具有任何特殊对称),并且可以选择v1和v2为使得电感元件两端的电压是对称的(中心电感处的电压节点)。可以使用简单的匹配电路但潜在地复杂的端子电压来实现这些结果,因为在两个端子上可能要求依赖拓扑结构的共模信号(v1+v2)/2。

考虑连接谐振器的所有电压节点的‘轴’,其中,再次地,一个节点近似地在电感元件的长度的中心处且其它的在a内。(请注意,‘轴’实际上是电路拓扑结构内的一组点(电压节点)且可能不一定对应于实际物理结构的直线轴。‘轴’在物理结构具有对称性的情况下可以与物理轴对准。)如果在两个点中的每一个与'轴'上的点(即谐振器的电压节点点)之间看到的阻抗是相同的,则谐振器的两个点相对于‘轴’是电气对称的。

b和c可以是相同的(c=b),并且如图28(d)所示,可以将两个端子连接到相对于上文定义并由相反的电压(v2=-v1)驱动的‘轴’而言电气对称的谐振器(a+(r,l))的任何两个点。谐振器102的两个电气对称点可以是电感器环路上的两个电气对称点。谐振器的两个电气对称点可以是a内部的两个电气对称点。如果两个电气对称点(相等的部分b和c中的每一个被连接到该点)在a内部,则可能需要将a设计为使得这些电气对称点可作为电路内的连接点接入。可以将此拓扑结构称为‘平衡驱动’拓扑结构。这些平衡驱动示例可以具有优点,即例如由于外部电路或电力网处的扰动,可以自动地拒绝可以出现在地线上的任何共模信号(并且其可以不到达谐振器)。在某些平衡驱动示例中,此拓扑结构可能要求比其它拓扑结构更多的组件。

在其它示例中,可以将c选择为短路,并且相应的端子被连接到地(v=0)和谐振器的电气对称(零电压)‘轴’上的任何点,并且b被连接到不在电气对称‘轴’上的谐振器的任何其它点,如图28(e)所示。电气对称‘轴’上的接地点可以是电感元件上的电压节点,近似地在其导体长度的中心处。电气对称‘轴’上的接地点可以在电路a内部。在电气对称‘轴’上的接地点在a内部的情况下,可能需要将a设计为在电气对称‘轴’上包括可电气接入的一个此类点,即可以进行连接的地方。

可以将此拓扑结构称为‘不平衡驱动’拓扑结构。可以近似地保持沿着电感元件的电磁模的近似反对称的电压分布,即使谐振器可能未被完全对称地驱动。原因是高q和大的相关联r对比z0不匹配需要使得与可以在谐振器(a+(r,l))内部流动的大得多的电流相比,小电流可以穿过b和地。在这种情况下,谐振器模上的扰动可以是弱的,并且电压节点的位置可以近似地保持在电感元件的中心位置处。这些不平衡驱动示例可以具有优点,即可以使用简单的匹配电路来将其实现,并且不存在对v1端子处的驱动电压的限制。在某些不平衡驱动示例中,可能要求附加设计以减少可能出现在接地端子处的共模信号。

可以将如图28(c)所示的一般包括部分a、b和c或由其组成的直接耦合阻抗匹配电路设计为使得电路的导线和组件不扰动电感元件和/或谐振器的电磁模的电场和磁场分布并因此保持高谐振器q。可以使电路的导线和金属组件取向为垂直于电磁模的电场线。可以将电路的导线和组件放置在其中电磁模的电场和磁场弱的区域中。

用于减轻元件上的低串联损耗和高电流额定值要求的拓扑结构

如果可以认为被用来使低损耗电感元件的小电阻r与外部电路的较大特性阻抗z0匹配的匹配电路是无损耗的,则并且流过端子的电流比流过电感元件的电流小得多。因此,与端子(诸如在直接耦合的b、c(图28(c))中)直接串联地连接的元件可以不载送高电流。然后,即使匹配电路具有有损耗元件,出现在与端子串联的元件中的电阻性损耗可以不导致谐振器的高q的显著减小。也就是说,那些串联元件中的电阻性损耗可以不显著地降低从z0到电感元件或相反的功率传输的效率。因此,对于这些组件而言,可能不需要用对低串联损耗和/或高电流额定值的严格要求。通常,此类降低的要求可以得到可以被设计到高q和/或高功率阻抗匹配和谐振器拓扑结构中的组件的更广泛选择。这些降低的要求在扩展可以在这些高q和/或高功率阻抗匹配电路中使用的可变和/或高电压和/或低并联损耗组件的种类方面尤其有帮助。

用于减轻元件上的低并联损耗和高电压额定值要求的拓扑结构

如果如上所述用来使低损耗电感元件的小电阻r与外部电路的较大特性阻抗z0匹配的匹配电路是无损耗的,则使用前述分析,

并且,对于低损耗(高x/r)电感元件而言,端子两端的电压通常可以比电感元件两端的电压小得多。因此,被直接并联到端子的元件可能不需要耐受高电压。然后,即使匹配电路具有有损耗元件,出现在与端子并联的元件中的电阻性损耗可以不导致谐振器的高q的显著减小。也就是说,那些并联元件中的电阻性损耗可以不显著地减小从z0到电感元件或相反的功率传输的效率。因此,对于这些组件而言,可能不需要用对低并联损耗和/或高电压额定值的严格要求。通常,此类降低的要求可以得到可以被设计到高q和/或高功率阻抗匹配和谐振器拓扑结构中的组件的更广泛选择。这些降低的要求在扩展可以在这些高q和/或高功率阻抗匹配和谐振器电路中使用的可变和/或高电流和/或低串联损耗组件的种类方面尤其有帮助。

请注意,上述设计原理可以不同地减小各种元件上的电流和电压,因为其以不同的方式建议使用与z0串联的网络(诸如直接耦合的b、c)或使用与z0并联的网络。用于给定应用的优选拓扑结构可以取决于低串联损耗/高电流额定值或低并联损耗/高电压额定值元件的可用性。

用于实现细可调谐性并减轻可变元件上的高额定值要求的固定和可变元件的组

电路拓扑结构

获得具有令人满意的低损耗和高电压或电流额定值的可变电路元件可能很难或花费太大。在本公开中,我们描述了可以结合固定和可变元件的组合、使得可以向电路中的固定元件(其更有可能具有适当的电压和电流额定值)分配大的电压或电流并减轻电路中的可变元件上的电压和电流额定值要求的阻抗匹配拓扑结构。

可变电路元件可以具有比给定阻抗匹配应用所要求的那些更大的调谐范围,并且,在那些情况下,仅使用此类大范围元件可能难以获得细的调谐分辨率。在本公开中,我们描述了结合固定和可变元件两者、使得可以用相同的可变元件来实现更细的调谐分辨率的阻抗匹配拓扑结构。

因此,使用固定和可变元件两者的组合的拓扑结构可以同时产生两种优点:电路中的灵敏调谐组件两端的减小的电压或从中通过的电流及更细的调谐分辨率。请注意,可以使最大可实现调谐范围与电路设计中的可调谐组件两端的电压或从中通过的电流的最大减小相关。

元件拓扑结构

可以由使用被串联地或并联地连接的固定和可变组件的组合来实现可变组件的额定值要求的降低和更细的调谐分辨率的拓扑结构来实现单个可变电路元件(与上文所讨论的元件的网络相反)。这可以通过以下事实用数学方式来证明:

如果x|total|=x|fixed|+x|variable|,

则δx|total|/x|total|=δx|variable|/(x|fixed|+x|variable|),

并且xvariable/xtotal=xvariable/(xfixed+xvariable),

其中,x|subscript|是任何元件值(例如电容、电感),x是电压或电流,“+sign”表示元件的适当组合(串联加法或并联加法)。请注意,用于x|subscript|的下标格式被选择为容易将其与由圆形电感元件封闭的区域的半径区别开(例如,x、x1等)。

此外,通过使用不同类型的可变元件,此原理可用来实现某种类型的可变电气元件(例如,电容或电感),如果不同类型的可变元件被适当地与其它固定元件组合。

总之,可以应用拓扑结构最优化算法,其判定具有要求的可调谐范围的固定和可变元件的要求数目、位置、放置、类型和值作为最优化约束并判定可变元件上的电流和/或电压的最小化作为最优化目标。

示例

在以下示意图中,我们示出了用于低损耗电感元件的阻抗匹配和用于低损耗电感元件的谐振器设计的不同的特定拓扑结构实施方式。另外,我们对每个拓扑结构指出:使用上述原理中的哪些、给出可以用来实现匹配的可变元件的值的等式、可以匹配的复阻抗的范围(使用不等式和史密斯图描述)。对于这些示例而言,我们假设z0是实数,但是对具有非零虚部的特性阻抗的扩展是简单的,因为其仅仅暗示着匹配网络的组件的要求值的小调整。我们将使用量上的下标n暗示到z0的归一化(除以z0)的惯例。

图29示出变压器耦合阻抗匹配电路的两个示例,其中,两个可调谐元件是电容器和两个电感元件之间的互感。如果我们分别定义了用于图29(a)的x2=ωl2和用于图29(b)的x2=ωl2-1/ωc2,和x≡ωl,则可调谐元件的要求值是:

对于图29(b)的拓扑结构而言,特别简单的设计可以是选择x2=0。在这种情况下,这些拓扑结构可以匹配满足以下不等式的阻抗:rn>0,xn>0,

其由图29(c)的史密斯图上的粗线封闭的区域来示出。

给定预先选择好的固定的m,可以使用上述提到的具有可调谐c2的匹配拓扑结构替代。

图30示出直接耦合阻抗匹配电路的六个示例(a)~(f)(其中,两个可调谐元件是电容器)和直接耦合阻抗匹配电路的六个示例(h)~(m)(其中,两个可调谐元件是一个电容器和一个电感器)。对于图30(a)、(b)、(c)、(h)、(i)、(j)的拓扑结构,在两个端子处可能需要共模信号以保持在电感元件的中心处的谐振器的电压节点并因此保持高q。请注意,可以将这些示例描述为图28(c)所示的一般拓扑结构的实施方式。对于图30(d)、(e)、(f)、(k)、(l)、(m)的对称拓扑结构而言,可能需要反对称地驱动两个端子(平衡驱动)以保持在电感元件的中心处的谐振器的电压节点并因此保持高q。请注意,可以将这些示例描述为图28(d)所示的一般拓扑结构的实施方式。将认识到的是本文所使用的电容器的网络通常可以指的是包括一个或多个电容器的任何电路拓扑结构,包括但不限于在此特别公开的使用电容器任何电路或任何其它等效或不同的电路结构(一个或多个),除非明确地规定了或从上下文可清楚另一意义。

让我们分别定义用于图30(a)、(d)、(h)、(k)的z=r+jωl、用于图30(b)、(e)、(i)、(l)的z=r+jωl+1/jωc3和用于图30(c)、(f)、(j)、(m)的z=(r+jωl)||(1/jωc3),其中,符号“||”意指“...的并联组合”,r≡re{z},x≡im{z}。针对图30(a)~(f),可以由下式来给出可调谐元件的要求值:

并且这些拓扑结构可以匹配满足以下不等式的阻抗:

其由图30(g)的史密斯图上的粗线封闭的区域来示出。

针对图30(h)~(m),可以由下式来给出可调谐元件的要求值:

图31示出直接耦合阻抗匹配电路的三个示例(a)~(c)(其中,两个可调谐元件是电容器)和直接耦合阻抗匹配电路的三个示例(e)~(g)(其中,两个可调谐元件是一个电容器和一个电感器)。对于图31(a)、(b)、(c)、(e)、(f)、(g)的拓扑结构而言,接地端子被连接在两个相等值的电容器2c1之间(即在主谐振器的对称轴上),以保持在电感元件的中心处的谐振器的电压节点并因此保持高q。请注意,可以将这些示例描述为图28(e)所示的一般拓扑结构的实施方式。

让我们分别定义用于图31(a)、(e)的z=r+jωl、用于图31(b)、(f)的z=r+jωl+1/jωc3和用于图31(c)、(g)的z=(r+jωl)||(1/jωc3),并且然后r≡re{z},x≡im{z}。然后,针对图31(a)~(c),可以由下式来给出可调谐元件的要求值:

并且这些拓扑结构可以匹配满足以下不等式的阻抗:

其由图31(d)的史密斯图上的粗线封闭的区域来示出。

针对图31(e)~(g),可以由下式来给出可调谐元件的要求值:

图32示出直接耦合阻抗匹配电路的三个示例(a)~(c)(其中,两个可调谐元件是电容器)和直接耦合阻抗匹配电路的三个示例(e)~(g)(其中,两个可调谐元件是一个电容器和一个电感器)。对于图32(a)、(b)、(c)、(e)、(f)、(g)的拓扑结构,可以在电感元件的中心处连接接地端子以保持在该点处的谐振器的电压节点并因此保持高q。请注意,可以将这些示例描述为图28(e)所示的一般拓扑结构的实施方式。

让我们分别定义用于图32(a)的z=r+jωl、用于图32(b)的z=r+jωl+1/jωc3和用于图32(c)的z=(r+jωl)||(1/jωc3),然后r≡re{z},x≡im{z}。然后,针对图32(a)~(c),可以由下式来给出可调谐元件的要求值:

其中,由m′=-kl′来定义k,其中,l’是每一半电感器环路的电感,并且m’是两半之间的互感,这些拓扑结构可以匹配满足以下不等式的阻抗:

其由图32(d)的史密斯图上的粗线封闭的区域来示出。

针对图32(e)~(g),可以由下式来给出可调谐元件的要求值:

在图30、31、32的电路中,电容器c2或电感器l2(或者两个电容器2c2或两个电感器l2/2)与端子串联连接,并且可以不需要具有非常低的串联损耗或耐受大的电流。

图33示出直接耦合阻抗匹配电路的六个示例(a)~(f)(其中,两个可调谐元件是电容器)和直接耦合阻抗匹配电路的六个示例(h)~(m)(其中,两个可调谐元件是一个电容器和一个电感器)。对于图33(a)、(b)、(c)、(h)、(i)、(j)的拓扑结构,在两个端子处可能需要共模信号以保持在电感元件的中心处的谐振器的电压节点并且因此保持高q。请注意,可以将这些示例描述为图28(c)所示的一般拓扑结构的实施方式,其中,b和c是短路且a是不平衡的。对于图33(d)、(e)、(f)、(k)、(l)、(m)的对称拓扑结构而言,可能需要反对称地驱动两个端子(平衡驱动)以保持在电感元件的中心处的谐振器的电压节点并且因此保持高q。请注意,可以将这些示例描述为图28(d)所示的一般拓扑结构的实施方式,其中,b和c是短路且a是平衡的。

让我们分别定义用于图33(a)、(d)、(h)、(k)的z=r+jωl、用于图33(b)、(e)、(i)、(l)的z=r+jωl+1/jωc3和用于图33(c)、(f)、(j)、(m)的z=(r+jωl)||(1/jωc3),并且然后r≡re{z},x≡im{z}。然后,针对图33(a)~(f),可以由下式来给出可调谐元件的要求值:

并且这些拓扑结构可以匹配满足以下不等式的阻抗:

其用由图33(g)的史密斯图上的粗线封闭的区域来示出。

针对图35(h)~(m),可以由下式来给出可调谐元件的要求值:

图34示出直接耦合阻抗匹配电路的三个示例(a)~(c)(其中,两个可调谐元件是电容器)和直接耦合阻抗匹配电路的三个示例(e)~(g)(其中,两个可调谐元件是一个电容器和一个电感器)。对于图34(a)、(b)、(c)、(e)、(f)、(g)的拓扑结构而言,接地端子被连接在两个相等值的电容器2c2之间(即在主谐振器的对称轴上),以保持在电感元件的中心处的谐振器的电压节点并因此保持高q。请注意,可以将这些示例描述为图28(e)所示的一般拓扑结构的实施方式。

让我们分别定义用于图34(a)、(e)的z=r+jωl、用于图34(b)、(f)的z=r+jωl+1/jωc3和用于图34(c)、(g)的z=(r+jωl)||(1/jωc3),然后r≡re{z},x≡im{z}。针对图34(a)~(c),可以由下式来给出可调谐元件的要求值:

并且这些拓扑结构可以匹配满足以下不等式的阻抗:

其由图34(d)的史密斯图上的粗线封闭的区域来示出。

针对图34(e)~(g),可以由下式来给出可调谐元件的要求值:

图35示出直接耦合阻抗匹配电路的三个示例,其中,两个可调谐元件是电容器。对于图35的拓扑结构而言,可以在电感元件的中心处连接接地端子以保持在该点处的谐振器的电压节点并因此保持高q。请注意,可以将这些示例描述为图28(e)所示的一般拓扑结构的实施方式。

让我们分别定义用于图35(a)的z=r+jωl、用于图35(b)的z=r+jωl+1/jωc3和用于图35(c)的z=(r+jωl)||(1/jωc3),然后r≡re{z},x≡im{z}。然后,可以由下式给出可调谐元件的要求值:

其中,由m′=-kl′来定义和k,其中,l’是每一半电感元件的电感,并且m’是两半之间的互感。这些拓扑结构可以匹配满足以下不等式的阻抗:

其中

由针对k=0的图35(d)、针对k=0.05的图35(e)和针对k=1的图35(f)所示的三个史密斯图上的粗线封闭的区域来示出。请注意,对于0<k<1而言,此拓扑结构能够匹配史密斯图的两个不连接区域。

在图33、34、35的电路中,电容器c2或电感器l2(或两个电容器2c2中的一个或两个电感器2l2中的一个)被与端子并联,因此可以不需要具有高电压额定值。就两个电容器2c2或两个电感器2l2来说,两者可能不需要具有高电压额定值,因为近似相同的电流从其中流过,因此它们在其两端经历近似相同的电压。

对于使用电容器c3示出的图30~35的拓扑结构而言,电容器c3的使用可以导致频率和阻抗的更细调谐。对于图30~35的拓扑结构而言,与电感元件串联的固定电容器c3的使用可以保证大部分的高电感元件电压将在此固定电容器c3两端,因此,潜在地减轻了对阻抗匹配电路的其它元件(其中的某些可以是可变的)的电压额定值要求。此类拓扑结构是否是优选的取决于适当固定的、可调谐组件的可用性、成本和规格。

在所有上述示例中,可以使用成组电容器或被偏压并控制以作为系综来调谐其值的变抗器或二极管组或阵列来实现没有公共端子的一对等值可变电容器。可以使用可调谐蝶式电容器或任何其它可调谐或可变电容器或被偏压并控制以作为系综来调谐其电容值的变抗器或二极管组或阵列来实现具有一个公共端子的一对等值可变电容器。

在选择阻抗匹配网络时可以考虑的另一标准是网络对与期望工作频率不同的频率的响应。在电感元件被耦合到的外部电路中生成的信号在期望频率下可以不是单调的(monochromatic),而是具有期望频率的周期性的,例如开关放大器的驱动信号或开关整流器的反射信号。在某些此类情况下,可能期望抑制进入电感元件的高阶谐波的量(例如,以减少来自此元件的这些谐波的辐射)。然后,阻抗匹配网络的选择可以是充分地抑制进入电感元件的此类谐波的量的一个。

阻抗匹配网络可以使得当外部周期信号是可以被视为起到电压源信号(诸如具有串联谐振负载的d类放大器的驱动信号)的作用的信号时,外部电路在比基波高的频率下经历的阻抗是高的,使得在较高的频率下几乎没有电流流过电感元件。在图30~35的拓扑结构之间,使用电感器l2的那些则可以是优选的,因为此电感器在高频处呈现出高阻抗。

阻抗匹配网络可以使得当外部周期信号是可以被视为起到电流源信号的作用的信号时,外部电路在比基波高的频率下经历的阻抗是低的,使得在较高频率处在电感元件两端几乎不感生电压。在图30~35的拓扑结构之间,使用电容器c2的那些则是优选的,因为此电容器在高频处呈现出低阻抗。

图36示出使用一个可变电容器和其余固定电容器的网络的可变电容的四个示例。使用这些网络拓扑结构,可以实现总电容器值的细可调谐性。此外,图36(a)、(c)、(d)的拓扑结构可以用来减小可变电容器两端的电压,因为大部分电压可以被分配在固定电容器两端。

图37示出使用一个可变电感器和固定电容器的网络的可变电容的两个示例。特别地,这些网络可以提供用于可变电抗的实施方式,并且在感兴趣的频率下,可以使用可变电感器的值,使得每个网络符合于净负可变电抗,其可以有效地是可变电容。

诸如可调谐电容器和可调谐电感器的可调谐元件可以是可机械地调谐的、可电气地调谐的、可热调谐的等。可调谐元件可以是可变电容器或电感器、变抗器、二极管、肖特基二极管、反向偏置pn二极管、变抗器阵列、二极管阵列、肖特基二极管阵列等。二极管可以是si二极管、gan二极管、sic二极管等。gan和sic二极管对于高功率应用而言可能特别具有吸引力。可调谐元件可以是电开关电容器组、电开关机械可调谐电容器组、电开关变抗器阵列组、电开关变压器耦合电感器组等。可调谐元件可以是上列元件的组合。

如上所述,耦合的高q磁谐振器之间的功率传输的效率可能受到谐振器在谐振频率处多紧密地匹配和其阻抗多好地与系统中的电源和功率消耗装置匹配的影响。由于包括系统中的无关对象或其它谐振器的相对位置或那些相对位置的变化的多种外界因素可以改变高q磁谐振器的谐振频率和/或输入阻抗,所以可能要求可调谐阻抗网络在各种环境或操作情形中保持足够的功率传输水平。

所示的电容器的电容值可以被调整以调整磁谐振器的谐振频率和/或阻抗。可以电气地、机械地、热学地或用任何其它已知方法来调整电容器。可以手动地或自动地、诸如响应于反馈信号对其进行调整。可以对其进行调整以实现电源与功率消耗装置之间的某些功率传输效率或其它工作特性。

可以调整谐振器中的电感器和电感元件的电感值以调整磁谐振器的频率和/或阻抗。可以使用包括诸如可调谐电容器、电感器和开关之类的可调谐组件的耦合电路来调整电感。可以使用变压器耦合调谐电路来调整电感。可以通过开启和关闭电感元件中的导体的不同区段和/或使用铁磁调谐和/或动铁调谐等来调整电感。

可以将谐振器的谐振频率调整为或者可以允许其变成更低或更高的频率。可以将谐振器的输入阻抗调整为或者允许其变成更低或更高的阻抗值。可以将由源递送和/或由设备接收到的功率的量调整为或者允许其变成更低或更高的功率水平。可以将被递送到源和/或由设备从设备谐振器接收到的功率的量调整为或者可以允许其变成更低或更高的功率水平。可以根据系统中的功率消耗装置和根据谐振器附近的对象或材料来调整谐振器输入阻抗、谐振频率和功率水平。可以手动地或自动地调整谐振器输入阻抗、频率和功率水平,并且可以响应于反馈或控制信号或算法而进行调整。

可以将电路元件直接地(亦即通过物理电接触)连接到谐振器,例如连接到形成电感元件和/或端子连接器的导体的末端。可以将电路元件焊接到、熔接到、卷曲至、粘合至、夹紧至或紧密地定位于导体,或者使用多种电气组件、连接器或连接技术来将其附着。可以直接地或间接地或电感地将电源和功率消耗装置连接到磁谐振器。可以通过端子连接向谐振器供应电信号或从谐振器获取电信号。

本领域的技术人员应理解的是在本文所述的原理的实际实施方式中,可能存在实际组件(电容器、电感器、电阻器等)的值与经由上述等式计算的值、实际信号(电压、电流等)的值与通过对称性或反对称性提出的值以及点(诸如接近于电感元件中心的接地端子的连接点或‘轴’点等)的真实几何位置的值与由对称性或反对称性提出的位置的相关联容差或可接受变化。

实施例

系统方框图

我们公开了用于可以在中程距离处无线地对设备供电或充电的无线功率传输系统的高q谐振器的实施例。高q谐振器无线功率传输系统还可以用在尺寸、形状、组成、布置等方面与系统中的任何源谐振器不同的磁谐振器无线地对设备供电或充电。

图1(a)(b)示出了两个示例性双谐振器系统的高级图示。这些示例性系统中的每个都具有单个源谐振器102s或104s和单个设备谐振器102d或104d。图38示出具有被突出显示的一些特征的系统的高级方框图。被无线地供电或充电的设备2310可以包括设备谐振器102d、设备功率和控制电路2304等,以及dc或ac或ac和dc两者的功率被转移到的一个或多个设备2308,或者由其组成。用于系统的能量或功率源可以包括源功率和控制电路2302、源谐振器102s等。从设备谐振器102d及功率和控制电路2304接收功率的一个或多个设备2308可以是如前所述的任何种类的设备2308。设备谐振器102d和电路2304在处于源谐振器102s附近时向一个或多个设备2308递送功率,其可以用来对所述一个或多个设备的电池重新充电、直接地对所述一个或多个设备供电或两者同时进行。

源和设备谐振器可以分离很多米,或者其可以相互非常接近,或者其可以在中间分离任何距离。源和设备谐振器可以横向地或轴向地相互偏离。源和设备谐振器可以直接地对准(无横向偏移),或者其可以偏移几米,或者是其之间的任何情况。可以使源和设备谐振器取向为使得由其电感元件封闭的表面面积近似地相互平行。可以使源和设备谐振器取向为使得由其电感元件封闭的表面面积近似地相互垂直,或者可以使其针对其之间的任何相对角(0至360度)取向。

源和设备谐振器可以是独立式的,或者可以将其封闭在外壳、容器、套筒或壳体中。这些不同的外壳可以由几乎任何种类的材料组成。对于某些应用而言,诸如特氟隆、rexolite、苯乙烯等低损耗角正切材料可能是优选的。可以将源和设备谐振器集成在电源和功率消耗装置中。例如,可以将源和设备谐振器集成到键盘、计算机鼠标、显示器、蜂窝电话等中,使得其在这些设备外面是不可见的。源和设备谐振器可以与系统中的电源和功率消耗装置分开,并且可以通过标准或定制导线、线缆、连接器或插头将其连接。

可以从包括计算机的usb端口的许多dc或ac电压、电流和功率源对源102s供电。可以从电力网、从墙壁插头、从电池、从电源、从引擎、从太阳能电池、从发电机、从另一源谐振器等对源102s供电。源功率和控制电路2302可以包括将源电子装置与电源隔离的电路和组件,使得任何反射功率或信号不会通过源输入端子被耦合到外面。源功率和控制电路2302可以包括功率因数修正电路,并且可以被配置为监视功率使用以便监视帐户、帐单、控制和类似功能。

系统可以是双向操作的。也就是说,在设备谐振器中生成或存储的能量或功率可以被反馈到包括电力网、电池、任何种类的储能单元等电源。源功率和控制电路可以包括功率因数修正电路,并且可以被配置为监视功率使用以便监视用于双向能量流动的帐户、帐单、控制和类似功能。无线能量转移系统可以实现或促进交通工具到电网(v2g)的应用。

源和设备可以具有允许工作点的调整以补偿变化的环境条件、扰动和负载条件(其能够影响源和设备谐振器的操作和能量交换的效率)的调谐能力。调谐能力还可以用来将功率递送复用到多个设备、从多个源到多个系统、到多个重发器或中继器等。可以手动地控制或自动地控制调谐能力,并且可以连续地、周期性地、间歇地或以预定的时间或间隔执行该调谐能力。

例如,可以将设备谐振器及设备功率和控制电路集成到设备的任何部分中,诸如电池舱或设备盖或套筒或母板上,并且可以集成在标准可再充电电池或其它储能元件旁边。设备谐振器可以包括设备场重新成形器,其可以将设备谐振器元件与设备功率和控制电子装置的任何组合与用于功率转移的电磁场屏蔽开来,并且其可以使谐振器场偏转远离有损耗设备谐振器元件以及设备功率和控制电子装置。磁性材料和/或高电导率场重新成形器可以用来增加谐振器的被扰动品质因数q并增加源和设备谐振器的被扰动耦合因数。

可以将源谐振器及源功率和控制电路集成到任何类型的家具、结构、垫子、地毯、相框(包括数字相框、电子框)、插件、电子设备、交通工具等中。源谐振器可以包括源场重新成形器,其可以将源谐振器元件与源功率和控制电子装置的任何组合与用于功率转移的电磁场屏蔽开来,并且其可以使谐振器场偏转远离有损耗源谐振器元件以及源功率和控制电子装置。磁性材料和/或高电导率场重新成形器可以用来增加谐振器的被扰动品质因数q并增加源和设备谐振器的被扰动耦合因数。

在图39中示出了无线供电设备的示例中的子系统的方框图。可以将功率和控制电路设计为变换来自设备谐振器102d的交流电功率并将其转换成适合于对设备供电或充电的稳定直流电功率。可以将功率和控制电路设计为将来自设备谐振器的一个频率处的交流电功率变换成适合于对设备供电或充电的不同频率处的交流电功率。功率和控制电路可以包括阻抗匹配电路2402d、整流电路2404、限压电路(未示出)、限流电路(未示出)、ac至dc转换器2408电路、dc至dc转换器2408电路、dc至ac转换器2408电路、ac至ac转换器2408电路、电池充电控制电路(未示出)等,或者由其组成。

可以将阻抗匹配2402d网络设计为在期望频率处使在设备谐振器102d与设备功率和控制电路2304之间递送的功率最大化。可以选择并连接阻抗匹配元件,使得保持谐振器的高q。根据操作条件,可以改变或调谐阻抗匹配电路2402d以控制从源向设备、从源向设备谐振器、在设备谐振器与设备功率和控制电路之间等递送的功率。可以在设备电路中的任何点处监视功率、电流和电压信号,并且可以使用反馈算法电路和技术来控制组件以实现期望的信号水平和系统操作。可以使用模拟或数字电路技术来实现反馈算法,并且电路可以包括微处理器、数字信号处理器、现场可编程门阵列处理器等。

图39的第三方框示出可以将来自设备谐振器的ac电压功率整流成dc电压的整流器电路2404。在此结构中,整流器2404的输出功率可以是到电压钳位电路的输入。电压钳位电路(未示出)可以限制到dc至dc转换器2408d或dc至ac转换器2408d的输入端处的最大电压。通常,可能期望使用具有大的输入电压动态范围的dc至dc/ac转换器,使得可以在足够的功率被递送到设备的同时容忍设备位置和操作的大的变化。例如,整流器的输出端处的电压水平可以随着设备的功率输入和负载特性的变化而波动并达到高水平。在设备执行不同的任务时,其可以具有变化的功率需求。变化的功率需求能够随着负载特性的变化在整流器的输出端处引起高电压。同样地,在使设备和设备谐振器更接近于和更加远离源时,递送到设备谐振器的功率可以改变,并引起整流器的输出端处的电压水平的变化。电压钳位电路可以防止来自整流器电路的电压输出超过在dc至dc/ac转换器的工作范围内的预定值。可以使用电压钳位电路来扩展无线能量转移系统的工作模式和范围。

设备的功率和控制电路的下一个方框是可以产生稳定的dc输出电压的dc至dc转换器2408d。dc至dc转换器可以是升压转换器、降压转换器、升压降压转换器、单端初级电感转换器(sepic)或符合特定应用的要求的任何其它dc-dc拓扑结构。如果设备要求ac功率,则可以用dc至ac转换器代替dc至dc转换器,或者在dc至dc转换器后面可以跟着dc至ac转换器。如果设备包含可再充电电池,则设备功率和控制电路的最后方框可以是可以管理电池供电设备中电池的充电和维护的电池充电控制单元。

设备功率和控制电路2304可以包含处理器2410d,诸如微控制器、数字信号处理器、现场可编程门阵列处理器、微处理器或任何其它类型的处理器。可以使用处理器来读取或检测功率和控制电路和设备谐振器的状态或工作点。处理器可以实现算法以解释并调整电路、元件、组件、子系统和谐振器的工作点。可以使用处理器来调整无线供电设备的阻抗匹配、谐振器、dc至dc转换器、dc至ac转换器、电池充电单元、整流器等。

处理器可以具有到其它设备或源的无线或有线数据通信链路,并且可以传送或接收可以用来调整系统的工作点的数据。可以在设备电路中的任何点处监视单个频率处或频率范围内的功率、电压和电流信号的任何组合。可以使用模拟或数字或组合模拟和数字技术来监视这些信号。可以在反馈环路中使用这些监视信号,或者可以以多种方式将其报告给用户,或者可以将其存储并在稍后的时间获取。这些信号可以用来向用户警告系统故障,以指示性能或向系统的用户提供音频、视觉、振动等反馈。

图40示出被配置为向单个或多个设备供应功率的示例性无线功率转移系统的源功率和控制电路2302的组件。可以从诸如家用插座的ac电压源2502、诸如电池的dc电压源、计算机的usb端口、太阳能电池、另一无线功率源等对示例性系统的源功率和控制电路2302供电。源功率和控制电路2302可以用交流电(诸如用大于10khz并小于100mhz的频率)来驱动源谐振器102s。源功率和控制电路2302可以用小于10ghz的频率的交流电来驱动源谐振器102s。源功率和控制电路2302可以包括dc至dc转换器2408s、ac至dc转换器2408s、或ac至dc转换器2408s和dc至dc2408s转换器两者、振荡器2508、功率放大器2504、阻抗匹配网络2402s等。

可以从多个ac至dc电压源2502对源功率和控制电路2302供电,并且其可以包含ac至dc和dc至dc转换器2408s以提供用于电路组件的所需电压水平以及用于可以用来驱动源谐振器的功率放大器的dc电压。可以调整dc电压,并且其可以用来控制功率放大器的输出功率水平。源可以包含功率因数修正电路。

振荡器2508输出可以用作到驱动源谐振器102s的功率放大器2504的输入。振荡器频率可以是可调谐的,并且可以改变振荡器信号的振幅作为控制来自功率放大器的输出功率水平的一种手段。可以由模拟电路、由数字电路或由模拟和数字电路的组合来控制振荡器信号的频率、振幅、相位、波形和占空比。控制电路可以包括处理器2410s,诸如微处理器、数字信号处理器、现场可编程门阵列处理器等。

可以使用源和设备调谐器的阻抗匹配块2402来调谐源和控制电路及源和设备谐振器。例如,可以针对由于无关对象或系统中的源与设备之间的距离变化而引起的源或设备谐振器的品质因数q的扰动来调整这些电路的调谐。还可以使用这些电路的调谐来感测工作环境,控制到一个或多个设备的功率流,控制到无线功率网络的功率,在检测到不安全或故障模式条件时减少功率等。

可以在源电路中的任何点处监视功率、电压和电流信号的任何组合。可以使用模拟或数字或组合模拟和数字技术来监视这些信号。可以在反馈电路中使用这些监视信号,或者可以以多种方式将其报告给用户,或者可以将其存储并在稍后的时间获取。这些信号可以用来向用户警告系统故障,以向用户警告超过的安全阈值,指示性能或向系统的用户提供音频、视觉、振动等反馈。

源功率和控制电路可以包含处理器。可以使用处理器来读取功率和控制电路及源谐振器的状态或工作点。处理器可以实现算法以解释并调整电路、元件、组件、子系统和谐振器的工作点。可以使用处理器来调整阻抗匹配、谐振器、dc至dc转换器、ac至dc转换器、振荡器、源的功率放大器等。可以使用系统的处理器和可调整组件来实现频率和/或时间功率递送复用方案。处理器可以具有到设备及其它源的无线或有线数据通信链路,并且可以传送或接收可以用来调整系统的工作点的数据。

虽然在这些方框图中示出了详细和特定的设计,但本领域的技术人员应清楚的是在示例性系统的精神内可以进行组件和构建块的许多不同修改和重新布置。出于说明的目的概述了电路的划分,并且本领域的技术人员应清楚的是还可以将每个块的组件进一步划分成更小的块或合并或共享。在等效示例中,功率和控制电路可以由单独的离散组件或较大的集成电路组成。例如,整流器电路可以由离散二极管组成,或者使用被集成在单个芯片上的二极管。根据诸如功率或尺寸或成本或应用的设计标准,可以在设计中替换许多其它电路和集成器件。可以将整个功率和控制电路或源或设备电路的任何部分集成到一个芯片中。

设备和/或源的阻抗匹配网络可以包括电容器或电容器的网络、电感器或电感器的网络、或电容器、电感器、二极管、开关、电阻器等的任何组合。阻抗匹配网络的组件可以是可调整和可变的,并且可以被控制以影响系统的效率和工作点。可以通过控制谐振器的连接点、调整磁性材料的磁导率、控制偏压场、调整激励的频率等来执行阻抗匹配。阻抗匹配可以使用或包括任何数目的变抗器、变抗器阵列、开关元件、电容器组、开关和可调谐元件、反偏压二极管、空隙电容器、压缩电容器、bzt电调谐电容器、mems可调谐电容器、电压可变电介质、变压器耦合调谐电路等或其组合。可变组件可以被机械地调谐、热学地调谐、电气地调谐、压电地调谐等。阻抗匹配的元件可以是硅器件、氮化镓器件、碳化硅器件等。可以将元件选择为耐受高电流、高电压、高功率或电流、电压和功率的任何组合。可以将元件选择为高q元件。

可以通过对设备供电的usb端口在外部设备上执行源的匹配和调谐计算。设备可以是计算机、pda或其它计算平台。

示范系统使用被耦合到设备谐振器的源谐振器来无线地对多个电子消耗设备进行供电/再充电,所述电子消耗设备包括但不限于笔记本计算机、dvd播放器、投影仪、蜂窝电话、显示器、电视、投影仪、数字相框、灯、tv/dvd播放器、便携式音乐播放器、断路器、手持式工具、个人数字助手、外部电池充电器、鼠标、键盘、照相机、有源负载等。可以同时地从单个设备谐振器对多种设备供电。设备谐振器可以同时作为源谐振器进行操作。被提供给设备谐振器的功率可以在被转移到其预定设备谐振器之前穿过附加谐振器。

监视、反馈和控制

所谓的端口参数测量电路可以测量或监视系统中的某些功率、电压和电流信号,并且处理器或控制电路可以基于那些测量来调整某些设定或工作参数。除这些端口参数测量结果之外,还可以访问通过系统的电压和电流信号的幅值和相位及功率信号的幅值以测量或监视系统性能。遍及本公开提到的被测量信号可以是端口参数信号以及电压信号、电流信号、功率信号等的任何组合。可以使用模拟或数字信号来测量这些参数,可以对其进行采样和处理,并且可以使用许多已知模拟和数字处理技术对其进行数字化或转换。被测量或监视信号可以在反馈电路或系统中用来控制谐振器和/或系统的操作。通常,我们可以将这些被监视或测量信号称为参考信号或端口参数测量或信号,虽然有时也将其称为错误信号、监视器信号、反馈信号等。我们将把用来控制电路元件的信号(例如,用来驱动电压控制电容器的电压)称为控制信号。

在某些情况下,可以调整电路元件以实现用于源和设备谐振器的指定的或预定的阻抗值。在其它情况下,可以调整阻抗以在设备谐振器被连接到一个或多个功率消耗装置时实现用于源和设备谐振器的期望阻抗值。在其它情况下,可以调整阻抗以减少谐振频率的变化、由于源和/或设备谐振器的移动而引起的阻抗或功率水平的变化或谐振器附近的环境的变化(诸如交互材料或对象的移动)。在其它情况下,可以将源和设备谐振器的阻抗调整为不同的阻抗值。

耦合谐振器可以由不同的材料制成,并且可以包括不同的电路、组件和结构设计,或者其可以是相同的。耦合谐振器可以包括性能监视和测量电路、信号处理和控制电路或测量和控制电路的组合。某些或所有的高q磁谐振器可以包括可调谐阻抗电路。某些或所有的高q磁谐振器可以包括自动控制的可调谐阻抗电路。

图41示出具有被配置为测量谐振器的某些参数的端口参数测量电路3802的磁谐振器。端口参数测量电路可以测量结构的输入阻抗或反射功率。端口参数测量电路可以被包括在源和/或设备谐振器设计中,并且可以用来测量两个端口电路参数,诸如s参数(散射参数)、z参数(阻抗参数)、y参数(导纳参数)、t参数(传输参数)、h参数(混合参数)、abcd参数(链、级联或传输参数)等。这些参数可以用来在施加各种类型的信号时描述线性电力网的电气性能。

在不同的工作或耦合方案中可以使用不同的参数来表征电力网络。例如,可以使用s参数来测量匹配和不匹配负载。另外,可以在多种点处监视磁谐振器内和/或源和设备本身内的电压和电流信号的幅值和相位以提供系统性能信息。可以经由灯、读数、喇叭、噪声、振动等用户接口将此信息呈现给系统的用户,或者可以将其作为数字信号呈现,或者可以将其提供给系统中的处理器并在系统的自动控制中使用。可以记录、存储此信息,或者其可以被高级监视和控制系统使用。

图42示出其中可以用电压控制电容器3902或电容器网络来实现可调谐阻抗网络的磁谐振器的电路图。可以由诸如可编程电压源3908等之类的电路和/或计算机处理器来调整、调谐或控制此类实施方式。例如,可以响应于由端口参数测量电路3802获取并由测量分析和控制算法子系统3904处理的数据来调整电压控制电容器。可以从端口参数测量电路或被设计为测量与期望系统工作点的偏差度的其它监视电路导出参考信号。所测量的参考信号可以包括系统中的单个或多个点处和单个频率或多个频率处的电压、电流、复阻抗、反射系数、功率水平等。

可以将参考信号提供给测量结果分析和控制算法子系统模块,其可以生成控制信号以改变可调谐阻抗匹配网络中的各种组件的值。控制信号可以改变磁谐振器的谐振频率和/或输入阻抗或由源供应的功率水平或由设备吸取的功率水平以实现电源/发电机与功率消耗装置/负载之间的期望的功率交换。

可以使用调整算法来调整磁谐振器的频率和/或阻抗。所述算法可以接受关于与用于系统的期望工作点的偏差度的参考信号并输出与该偏差有关的控制系统的可变或可调谐元件的修正或控制信号以使得系统朝着一个或多个期望的工作点返回。可以在谐振器正在无线功率传输系统中交换功率的同时获取用于磁谐振器的参考信号,或者可以在系统操作期间将其从电路中切换出来。可以连续地、周期性地、在越限时、数字地、使用模拟方法等来施加或执行对系统的修正。

图43示出了端到端无线功率传输系统。源和设备两者可以包括端口测量电路3802和处理器2410。标记为“耦合器/开关”4002的方框指示可以由定向耦合器或开关将端口测量电路3802连接到谐振器102,使得能够与功率转移功能相结合地或分开地进行源和设备谐振器的测量、调整和控制。

端口参数测量和/或处理电路可以与系统中的某些、任何或所有谐振器处于一起。端口参数测量电路可以利用功率传输信号的一部分或者可以利用一定频率范围内的激励信号来测量源/设备谐振器响应(即系统中的任何两个端口之间的传输和反射),并且可以包含振幅和/或相位信息。可以用扫频单频信号或多频信号来实现此类测量。可以由包括数模转换器(dac)、模数转换器(adc)、放大器、信号发生芯片、无源组件等的一个或多个处理器和标准输入/输出(i/o)电路来生成用来测量和监视谐振器和无线功率传输系统的信号。可以使用诸如网络分析器之类的测试设备或使用自定义电路来实现测量。可以由adc将所测量的参考信号数字化并使用在计算机、微处理器、dsp芯片、asic等上运行的自定义算法来进行处理。可以在模拟控制环路中处理所测量的参考信号。

测量电路可以测量两个端口参数的任何集合,诸如s参数、y参数、z参数、h参数、g参数、t参数、abcd参数等。可以使用测量电路来表征驱动和谐振器电路中的各种点处的电流和电压信号,系统的相对两端处的源和设备谐振器的阻抗和/或导纳(即朝着设备向源谐振器匹配网络中看(图43中的“端口1”)且反之亦然)。

该设备可以测量相关信号和/或端口参数,解释测量数据,并调整其匹配网络以独立于源的动作使向耦合系统中看的阻抗最优化。源可以测量相关端口参数,解释测量数据,并调整其匹配网络以独立于设备的动作使向耦合系统中看的阻抗最优化。

图43示出了无线功率传输系统中的源和设备的方框图。可以将系统配置为执行控制算法,该控制算法主动地调整源和设备调谐器中的任一者或两者中的调谐/匹配网络以使耦合系统中的性能最优化。端口测量电路3802s可以测量源中的信号并将那些信号传送到处理器2410。处理器2410可以在性能最优化或稳定化算法中使用所测量的信号并基于那些算法的输出来生成控制信号。可以将控制信号施加于调谐/阻抗匹配电路2402s中的可变电路元件以调整源的工作特性,诸如谐振器中的功率和到设备的耦合。可以将控制信号施加于电源或发电机以开启或关闭电源,增加或降低功率水平,调制供应信号等。

在源与设备之间交换的功率可以取决于多种因素。这些因素可以包括源和设备的有效阻抗、源和设备的q、源和设备的谐振频率、源和设备之间的距离、源和设备附近的材料和对象的交互等。端口测量电路和处理算法可以同时地工作以在动态和稳态工作条件下调整谐振器参数以使功率转移最大化,保持功率转移恒定,可控制地调整功率转移等。

系统实现中的某些、所有或没有源和设备可以包括端口测量电路3802s和处理2410能力。图44示出其中仅源102s包含端口测量电路3802和处理器2410s的端到端无线功率传输系统。在这种情况下,设备谐振器102d工作特性可以是固定的,或者可以由模拟控制电路来调整,并且不需要由处理器生成的控制信号。

图45示出端到端无线功率传输系统。源和设备这二者可以包括端口测量电路3802,但是在图45的系统中,仅源包含处理器2410s。源和设备可以相互通信,并且某些系统参数的调整可以响应于已经在源与设备之间诸如通过无线通信电路4202无线传送的控制信号。无线通信信道4204可以与无线功率转移信道4208分离,或者其可以是相同的。也就是说,用于功率交换的谐振器102还可以用来交换信息。在某些情况下,可以通过调制源或设备电路的组件并感测端口参数或其它监视设备的变化来交换信息。

其中源仅包含处理器2410的实现可以对其中源能够处理所有调谐和调整“判定”并简单地将控制信号传送回设备(一个或多个)的多设备系统有益。此实现可以使得设备更小且更便宜,因为该实现可以消除对设备中的处理器的需要,或者降低其要求的功能。可以将来自每个设备处的每个端口测量的整个数据集的一部分送回到源微处理器以进行分析,并且可以将控制指令送回到设备。这些通信可以是无线通信。

图46示出端到端无线功率传输系统。在本示例中,源仅包含端口测量电路3802和处理器2410s。源和设备可以诸如经由无线通信电路4202相互通信,并且某些系统参数的调整可以响应于已经在源与设备之间无线地传送的控制信号。

图47示出可以使用处理器或计算机来自动地调整其频率和阻抗的耦合电磁谐振器102。可以用包含在被示为图47中的c1、c2和c3示出的电容器网络内的反向偏置二极管、肖特基二极管和/或变抗器元件来实现源和设备谐振器的谐振频率调谐和连续阻抗调整。已被构建且说明并在这里描述的电路拓扑结构是示例性的,并且并不意图以任何方式限制自动系统调谐和控制的讨论。可以与在本公开中讨论的测量和控制架构一起利用其它电路拓扑结构。

可以用网络分析器4402a~b或用上述其它手段来测量并用控制器(诸如用labview4404)来实现设备和源谐振器阻抗和谐振频率。测量电路或设备可以向计算机或处理器输出数据,所述计算机或处理器实现反馈算法并经由可编程dc电压源动态地调整频率和阻抗。

在一个布置中,用来实现可调谐电容的反向偏置二极管(肖特基、半导体结等)几乎不吸取dc电流,并且可以被具有大的串联输出电阻的放大器反向偏置。此实现可以使得能够在保持磁谐振器中的非常高的q的同时直接向谐振器电路中的可控电路元件施加dc控制信号。

如果所要求的dc偏置电压是不同的,则可以用如图47所示的隔直流电容器将c2偏置信号与c1和/或c3偏置信号隔离。可以使偏置放大器的输出旁路至电路地以将rf电压与偏置放大器隔离,并防止非基波rf电压被注入到谐振器中。可以替代地通过谐振器本身中的电感元件来施加用于某些电容器的反向偏置电压,因为电感元件在dc下充当短路。

端口参数测量电路可以与作为反馈或控制系统的一部分的处理器(包括任何要求的adc和dac)交换信号,所述反馈或控制系统用来自动地调整谐振频率、输入阻抗、由谐振器储存或捕捉的能量或由源递送到设备负载的功率。处理器还可以向在磁谐振器中或被附着于磁谐振器的调谐或调整电路发送控制信号。

当利用变抗器或二极管作为可调谐电容器时,在调谐/匹配电路中设置与在高反向偏压下操作的可调谐电容器并联和串联的固定电容器可能是有益的。此布置可以通过使可调谐电容器上的工作电压最优化来提供电路和系统稳定性及功率处理能力的改进。

可以使用变抗器或其它反向偏置二极管作为电压控制电容器。当要求比单个变抗器组件更高的电压一致性或与之不同的电容时,可以使用变抗器阵列。可以将变抗器布置为被串联地和并联地连接并被视作具有与阵列中的单独变抗器不同的特性的单个双端子组件的n乘m阵列。例如,可以使用相等变抗器的n乘n阵列(其中,每个行中的组件被并联地连接并且每个列中的组件被串联地连接)作为具有与阵列中的任何单个变抗器相同的电容但具有是阵列中的单个变抗器的n倍的电压一致性的双端子器件。根据阵列中的单独变抗器的参数的可变性和差异,可能需要由电阻器、电感器等组成的附加偏置电路。图48中示出了可以适合于磁谐振器应用的未偏置变抗器4502的四乘四阵列的示意图。

可以通过被设置为与可调谐(变抗器/二极管/电容器)元件并联和/或串联的固定值电容器(一个或多个)的谨慎选择来实现系统性能的进一步改善。切换到电路中或从电路切换出来的多个固定电容器可以能够补偿在测试、开发和可操作无线功率转移系统中可能遇到的谐振器q、阻抗、谐振频率、功率水平、耦合强度等的变化。可以使用开关电容器组及其它开关元件组来保证到系统设计所要求的工作频率和阻抗值的收敛。

可以针对图47所示的电路和系统元件来描述用于隔离和耦合磁谐振器的示例性控制算法。一个控制算法首先“孤立地”调整每个源和设备谐振器环路,也就是,系统中的其它谐振器被“短路”并从系统“去除”。实际上,可以通过使得谐振器在低得多的频率处谐振(诸如通过使c1和/或c3的值最大化)来使谐振器“短路”。此步骤有效地减少谐振器之间的耦合,从而在特定频率和阻抗下有效地将系统简化为单个谐振器。

孤立地调谐磁谐振器包括改变调谐和匹配电路中的可调谐元件,直至由端口参数测量电路测量的值处于其预定、计算或测量的相对值为止。可以基于期望的匹配阻抗、频率、强耦合参数等来选择由端口参数测量电路测量的量的期望值。对于下文讨论的示例性算法而言,端口参数测量电路测量一定频率范围内的s参数。用来表征谐振器的频率范围可以是所获得的系统性能信息与计算/测量速度之间的折衷。对于下文描述的算法而言,频率范围可以是工作谐振频率的近似+/-20%。

可以如下调谐每个隔离谐振器。首先,使不被调整的谐振器短路。接下来,使正被表征和调整的谐振器中的c1、c2和c3最小化。在大多数情况下,将存在与c1、c2和c3并联的固定电路元件,因此,此步骤不将电容值减小至零。接下来,开始增加c2直至谐振器阻抗在上述测量频率范围内的任何频率处与“目标”实阻抗匹配为止。初始“目标”阻抗可以小于用于耦合系统的预期工作阻抗。

可以调整c2,直至针对测量范围内的频率实现初始“目标”阻抗为止。然后,可以调整c1和/或c3,直至环路在期望工作频率处谐振为止。

可以根据上述算法来调整每个谐振器。在孤立地调谐每个谐振器之后,可以应用第二反馈算法以使用于在耦合系统中无线转移功率的谐振频率和/或输入阻抗最优化。

可以通过测量并处理来自图43所示的任一个和/或两个“端口”的输入阻抗的实部和虚部的值来确定对耦合系统中的每个谐振器中的c1和/或c2和/或c3的所要求调整。对于耦合谐振器而言,改变一个谐振器的输入阻抗可以改变另一谐振器的输入阻抗。控制和跟踪算法可以基于一个端口的测量结果来将该端口调整至期望的工作点,并且然后基于另一端口处的测量结果来调整该另一端口。可以重复这些步骤直至两侧收敛至期望的工作点为止。

可以在源和设备端口两者处测量s参数,并且可以进行以下系列的测量和调整。在随后的说明中,z0是输入阻抗且可以是目标阻抗。在某些情况下,z0是50欧姆或接近于50欧姆。z1和z2是可以是与z0相同的值或者可以不同于z0的中间阻抗值。re{value}意指值的实部且im{value}意指值的虚部。

下面阐述可以用来调整两个耦合谐振器的输入阻抗和谐振频率的算法:

1)如上所述地“孤立地”调整每个谐振器。

2)调整源c1/c3直至在下,re{s11}=(z1+/-εre)如下:

-如果re{s11@ωo}>(z1+εre),则减小c1/c3。如果re{s11@ωo}<(zo-εre),则增加c1/c3。

3)调整源c2直至在ωo下,im{s11}=(+/-εim)如下:

-如果im{s11@ωo}>εim,则减小c2。如果im{s11@ωo}<-εim,则增加c2。

4)调整设备c1/c3直至在ωo下,re{s22}=(z2+/-εre)如下:

-如果re{s22@ωo}>(z2+εre),则减小c1/c3。如果re{s22@ωo}<(zo-εre),则增加c1/c3。

5)调整设备c2直至在ωo下,im{s22}=0如下:

-如果im{s22@ωo}>εim,则减小c2。如果im{s22@ωo}<-εim,则增加c2。

我们已通过重复步骤1~4直至(re{s11},im{s11})和(re{s22},im{s22})两者在ωo下收敛到((z0+/-εre),(+/-εim))为止实现了工作系统,其中,z0是期望匹配阻抗且是期望工作频率。这里,εim表示ωo下的虚部与0的期望值的最大偏差,并且εre表示实部与z0的期望值的最大偏差。应理解的是可以调整εim和εre以便以系统性能(效率)的潜在代价来增加或减少到收敛的步骤数目。还应理解的是可以按照除上述之外的多种序列并以多种方式来执行步骤1~4(即,首先调整源虚部,然后是源实部;或者首先调整设备实部,然后是设备虚部等)。可以在步骤1~4期间调整中间阻抗z1和z2以减少收敛所需的步骤的数目。期望或目标阻抗值可以是复数,并且在时间方面或在不同的操作方案中可以改变。

可以按照任何次序、以任何组合和任何次数来执行步骤1~4。已经描述了上述算法,对步骤或所述实施方式的修改对于本领域的技术人员来说可以是显而易见的。以与能够替换地使用阻抗或导纳来分析线性电路以导出相同结果的相同方式,可以用任何等效线性网络端口参数测量(即,z参数、y参数、t参数、h参数、abcd参数等)或上述其它监视信号来实现上述算法。

由于由源和设备谐振器之间的互感m(耦合)的变化引起的“加载”电阻rs和rd的变化,可能需要重新调谐谐振器。电感元件本身的电感ls和ld的变化可以是由外部对象的影响引起的(如先前所讨论的),并且还可能要求补偿。可以用上述调整算法来缓解此类变化。

可以使用定向耦合器或开关来将端口参数测量电路连接到源谐振器和调谐/调整电路。端口参数测量电路可以在其在无线功率传输系统中交换功率的同时测量磁谐振器的性质,或者可以在系统操作期间将其从电路中切换出来。端口参数测量电路可以测量参数且处理器可以在启动时或在某些间隔或响应于某些系统工作参数的变化来控制磁谐振器的某些可调谐元件。

无线功率传输系统可以包括改变或调谐源和设备谐振器的阻抗和/或谐振频率的电路。请注意,虽然在源和设备谐振器两者中示出了调谐电路,但可以替代地仅在源或设备谐振器中包括该电路,或者可以仅在某些源和/或设备谐振器中包括该电路。还请注意虽然我们将该电路称为“调谐”谐振器的阻抗和/或谐振频率,但此调谐操作仅仅意味着正在改变诸如结构的电感或电容的各种电气参数。在某些情况下,可以改变这些参数以实现特定的预定值,在其它情况下,可以响应于控制算法将其改变或者稳定正在变化的目标性能值。在某些情况下,参数可以根据温度、区域中的其它源或设备、环境等而变。

应用

对于每个所列应用而言,本领域的技术人员应认识到存在可以将用来实现无线功率传输的谐振器结构与正在进行供电或被供电的对象连接或集成的多种方式。谐振器可以在物理上与源和设备对象分离。谐振器可以使用传统电感技术或通过用例如导线或线缆的直接电连接供应功率或从对象去除功率。所述电连接可以是从谐振器输出到对象上的ac或dc功率输入端口。所述电连接可以是从对象的输出功率端口到谐振器输入。

图49示出在物理上与电源分离的源谐振器4904和在物理上与设备4900(在此图示中为膝上型计算机)分离的设备谐振器4902。通过电连接,可以将功率供应给源谐振器,并且可以直接从设备谐振器获取功率。本领域的技术人员通过经引用结合的材料将理解的是上述谐振器的形状、尺寸、材料组成、布置、位置和取向是以非限制性示例的方式提供的,并且可以由针对多种应用公开的技术来支持任何和所有这些参数的广泛变化。

继续膝上型计算机的示例,并且在没有限制的情况下,可以将设备谐振器在物理上连接到其正在供电或充电的设备。例如,如图50a和图50b所示,可以将设备谐振器5002(a)集成到设备5000的外壳中或(b)可以由适配器来将其附着。谐振器5002可以是(图50b~d)或者可以不是(图50a)在设备上可见的。可以将谐振器附着于设备、集成到设备中、用插头插入设备中等等。

可以将源谐振器在物理上连接到向系统供应功率的源。如上文针对设备和设备谐振器所述,存在可以将谐振器附着于、连接到电源或与电源集成的多种方式。本领域的技术人员将理解的是存在可以在无线功率传输系统中集成谐振器的多种方式,并且源和设备可以利用相似或不同的集成技术。

再次继续技术膝上型计算机的示例,并且在没有限制的情况下,可以由无线功率传输系统来对膝上型计算机供电、充电或再充电。可以使用源谐振器来供应无线功率,并且可以使用设备谐振器来捕捉无线功率。可以如图50d所示将设备谐振器5002集成到屏幕(显示器)的边缘中,和/或如图50c所示集成到膝上型计算机的底座中。可以将源谐振器5002集成到膝上型计算机的底座中,并且可以将设备谐振器集成到屏幕的边缘中。还可以或替代地将谐振器附着于电源和/或膝上型计算机。还可以或替代地将源和设备谐振器在物理上与电源和膝上型计算机分离,并且可以用线缆进行电连接。还可以或替代地将源和设备谐振器在物理上与电源和膝上型计算机分离,并且可以使用传统电感技术来进行电耦合。本领域的技术人员将理解的是虽然先前的示例涉及到膝上型计算机的无线功率传输,但针对本申请公开的方法和系统可以适当地适合于与其它电气或电子设备一起使用。通常,源谐振器可以在源的外部并向设备谐振器供应功率,所述设备谐振器又为设备供应功率,或者可以将源谐振器连接到源并向设备谐振器供应功率,设备谐振器又向设备的一部分供应功率,或者源谐振器可以在源内部并向设备谐振器供应功率,设备谐振器又向设备的一部分供应功率,以及这些的任何组合。

本文公开的系统或方法可以向电气或电子设备提供功率,所述电气或电子设备诸如但不限于电话、蜂窝电话、无绳电话、智能电话、pda、音频设备、音乐播放器、mp3播放器、无线电、便携式无线电和播放器、无线头戴式受话器、无线耳机、计算机、膝上型计算机、无线键盘、无线鼠标、电视、显示器、平面屏幕显示器、计算机显示器、嵌入家具中的显示器、数字相框、电子书(例如kindle、电子墨书、杂志等)、遥控单元(也称为控制器、游戏控制器、命令器、表决器等,并用于多个电子设备的遥控,诸如电视、视频游戏、显示器、计算机、视听设备、灯等)、照明设备、冷却设备、空气循环设备、净化设备、个人助听器、电动工具、安全系统、警报、钟、闪光灯、警报器、传感器、扩音器、电子锁、电子键区、照明开关、其它电气开关等。这里,术语电子锁用来指示位于门上的以电子方式操作(例如,具有电子组合钥匙、磁卡、rfid卡等)的门锁而不是机械钥匙锁。此类锁常常是电池操作的,具有当电池耗尽时所可能停止工作、将用户锁在外面的可能性的风险。在用如本文所述的无线功率传输实施方式来对电池充电或完全替换的情况下可以避免这一点。

这里,术语照明开关(或其它电子开关)意图指示开启/关闭房间的另一部分中的设备(例如天花板的中心处的照明灯具)的房间的一个部分中的任何开关(例如,在房间的墙壁上)。为了用直接连接来安装此类开关,将必须一路铺设从设备到开关的导线。一旦此类开关被安装在特定地点处,则其可能非常难以移动。可替换地,可以设想‘无线开关’,其中,“无线”意指无线地传送开关(开/关)命令,但是此类开关传统上需要电池以进行操作。通常,在房子周围具有太多电池操作的开关可能是不切实际的,因为那么多电池将需要周期性地更换。因此,无线通信开关可能更方便,条件是无线地对其进行供电。例如,已经存在电池供电的通信无线门铃,但是其中,仍必须周期性地更换其中的电池。可以使得远程门铃按钮完全是无线的,其中,可能不会再次需要不断地更换电池。请注意,在这里,术语‘无绳’或‘无线’或‘通信无线’用来指示在设备与另一电气组件之间存在无绳或无线通信装置,诸如用于无绳电话的基站、用于无线键盘的计算机等。本领域的技术人员将认识到任何电气或电子设备可以包括无线通信装置,并且本文所述的系统和方法可以用来向设备添加无线功率传输。如本文所述,到电气或电子设备的功率可以是从外部或内部源谐振器递送来,到设备或设备的一部分。无线功率传输可以显著地减少对用于进入源谐振器附近区域的设备的电池进行充电和/或更换的需要并从而可以减少常常与电池相关联的停机时间、成本和处理问题。

本文所述的系统和方法可以在不需要有线功率或电池的情况下向灯提供功率。也就是说,本文所述的系统和方法可以在没有到任何电源的有线连接的情况下向灯提供功率,并且跨越中程距离(诸如跨越四分之一米、一米、三米等的距离)非辐射地向灯提供能量。本文所使用的‘灯’可以指的是光源本身,诸如白炽灯泡、荧光灯泡灯、卤素灯、气体放电灯、荧光灯、霓虹灯、高强度放电灯、钠蒸气灯、汞蒸气灯、电致发光灯、发光二极管(led)灯等;作为灯固定装置的一部分的灯,诸如台灯、落地灯、吊灯、轨道灯、凹陷灯固定装置等;与其它功能集成的灯固定装置,诸如灯具/吊扇固定装置和照明相框等。同样地,本文所述的系统和方法可以降低用于安装灯的复杂性,诸如通过最小化电气布线的安装,并允许用户以对有线功率源的最小注意力来放置或安装灯。例如,可以将灯放置在源谐振器附近的任何地方,其中,可以相对于灯的位置将源谐振器安装在多个不同的位置上,诸如在上面房间的地板上(例如,在吊灯的情况下,并且尤其是当上面房间是阁楼时);在隔壁房间的墙壁上、在下面房间的天花板上(例如,在落地灯的情况下);如本文所述的在房间内的组件中或在房间的基础设施中;等等。例如,常常将灯/吊扇组合安装在主卧室中,并且主卧室常常具有在其上面的阁楼。在这种情况下,用户可以更容易地将灯具/吊扇组合安装在主卧室中,诸如通过简单地将灯/吊扇组合安装到天花板,并将源线圈(用插头插入房屋有线ac电源)放置在安装的固定装置之上的阁楼中。在另一示例中,灯可以是外部灯,诸如泛光灯或安全灯以及安装在结构内部的源谐振器。安装照明的方式可以特别地对租用房子的用户有益,因为现在其可能能够在不需要安装新的电气布线的情况下安装灯和此类其它电气组件。还可以通过如本文所述的近场通信或由传统无线通信方法来传送对于灯的控制。

本文所述的系统和方法可以从源谐振器向被嵌入设备组件中或在设备组件外面的设备谐振器提供功率,使得设备组件可以是传统电气组件或固定装置。例如,可以用被集成到固定装置中的设备谐振器来设计或改装吊灯,或者吊灯可以是传统有线固定装置,并用插头插入装配有设备谐振器的单独电气装置。在示例中,电气机构可以是被设计为具有用于例如从被放置在上面房间(例如阁楼)的地板上的源谐振器接收无线功率的设备谐振器的无线分线盒,并且其包含从设备谐振器供电的许多传统电源插座(outlet)。安装在天花板上的无线分线盒现在可以向天花板上的传统有线电气组件提供功率(例如,吊灯、轨道灯、吊扇)。因此,现在可以在不需要将导线穿过建筑物的基础设施的情况下将吊灯安装到天花板。可以在多个应用中使用到传统电源插座分线盒的此类设备谐振器,包括被设计成用于建筑物的内部或外部、被制成便携式的、被制成用于交通工具等。无线功率可以被转移通过诸如木材、壁板、绝缘、玻璃、砖头、石头、混凝土等常见建筑物材料。降低的安装成本、可重配置性和增加的应用灵活性的益处相对于传统有线安装而言可以为用户提供显著的益处。用于传统电源插座分线盒的设备谐振器可以包括用于促进从设备谐振器到传统电源插座的功率转移的多个电气组件,诸如将实现高效的功率转移所需的特定频率转换成线电压的电源电子装置、可以将高频ac转换成可用电压和频率(ac和/或dc)的功率捕捉电子装置、使捕捉设备和功率输出同步并保证一致、安全且最大程度地高效的功率转移的控制等。

本文所述的系统和方法可以为在潮湿、严酷、受控等的环境中(其在外面且暴露于雨)、在游泳池/桑拿浴/淋浴中、在海洋应用中、在密闭组件中、在防爆间中、在外部标志上、挥发性环境中的严酷工业环境(例如来自挥发性蒸气或空气传播有机物,诸如在谷粮仓或面包店中)等操作的灯或电气组件提供优点。例如,安装在游泳池的水位下面的灯正常地难以用导线接起,并且需要是水封的,尽管需要外部导线。但是,使用本文公开的原理的游泳池灯可以被更容易地制成水封的,因为可以不需要外部导线。在另一示例中,诸如包含挥发性蒸气的防爆间可能不仅需要是密闭的,而且可能需要使所有电接点(其可以产生火花)被密封。再次地,本文公开的原理可以提供为此类应用供应密封电气组件的方便方式。

本文公开的系统和方法可以向游戏控制器应用提供功率,诸如向远程手持式游戏控制器。这些游戏控制器传统上可能已经单独地由电池来供电,其中,游戏控制器的使用和功率分布导致了电池、电池组、可再充电电池等的频繁更换,这对于在游戏控制器的一贯使用而言可能是不理想的,诸如在延长的玩游戏期间。可以将设备谐振器放置到游戏控制器中,并且可以将连接到电源的源谐振器放置在附近。此外,游戏控制器中的设备谐振器可以在没有电池的情况下直接向游戏控制器电子装置提供功率;向电池、电池组、可再充电电池等提供功率,其随后向游戏控制器电子装置提供功率;等等。游戏控制器可以利用多个电池组,其中每个电池组装配有设备谐振器,因此,无论是否用插头接通游戏控制器电源,在处于源谐振器附近时就可以不断地再充电。源谐振器可以位于用于游戏的主游戏控制器装置中,其中可以从ac‘房屋’电源向主游戏控制器装置和源谐振器供应功率;位于扩展装置形式的ac电源中,诸如在被集成到‘延长线’中的源谐振器中;位于游戏椅中,其是被用插头插入墙壁ac中、用插头插入主游戏控制器装置、由游戏椅中的电池组供电中的至少一种方式;等等。可以以本文所述的任何配置来设置并实现源谐振器。

本文公开的系统和方法可以将设备谐振器集成到电池组中,诸如可与其它电池组互换的电池组。例如,某些便携式设备可能以高速率耗尽电能,使得用户可能需要在手边具有多个可互换电池组以供使用,或者用户可能在源谐振器范围之外操作设备并需要额外的电池组以继续操作,诸如电动工具、便携式灯、遥控交通工具等。使用本文公开的原理不仅提供了设备谐振器使能的电池组在使用中且在范围内时被再充电的方式,而且提供了用于不在使用中且被放置在源谐振器的范围内的电池组的再充电的方式。这样,电池组可以在用户耗尽正被使用的电池组的电量时随时准备好被使用。例如,用户可能正在用无线电动工具进行工作,其中,当时需求可能大于直接从源谐振器供电所能够实现的。在这种情况下,尽管本文所述的系统和方法可以向处于范围内的使用中的电池组提供充电功率,电池组仍可能耗尽,因为功率使用可能已超过再充电速率。而且,在使用设备时,用户可能仅是移入和移出范围,或者完全在范围外。然而,用户可以将额外电池组放置在源谐振器附近,其已在未使用时被再充电,并且现在被充分地充电以供使用。在另一示例中,用户可能正在用远离源谐振器附近的电动工具进行工作,但是留下补充电池组在源谐振器的附近充电,诸如在具有便携式源谐振器或延长线源谐振器的房间中、在用户的交通工具中、在用户的工具箱中等等。这样,用户可能不用担心花费时间和/或记住将其电池组插上电源以供将来使用。用户可能只需用已充电的电池组来替换已使用的电池组并将已使用的一个放置在源谐振器附近以再充电。可以将设备谐振器构建到具有已知电池形状因数和覆盖区的外壳中,并且可以替换已知设备和应用中的传统化学电池。例如,可以将设备谐振器构建到具有相当于aa电池、aaa电池、d电池、9v电池、膝上型计算机电池、蜂窝电话电池等的机械尺寸的外壳中。除设备谐振器之外,该外壳可以包括较小的“纽扣电池”以存储电量并在时间或距离方面提供延长操作。除纽扣电池之外或作为其替代,可以将其它储能设备与设备谐振器或任何相关联的功率转换电路集成起来。这些新的能量组可以提供与传统电池所提供的类似的电压和电流水平,但是可以由设备谐振器、能量转换电子装置、小电池等组成。这些新的能量组可以比传统电池更持久,因为其可以被更容易地再充电,并且可以在其位于无线功率区中时不断地再充电。另外,此类能量组可以比传统电池更轻,使用和储存起来可以更安全,可以在更广的温度和湿度范围内操作,在被丢弃时对环境的损害更少等等。如本文所述,当在如本文所述的无线功率区中使用这些能量组时,其可以超过产品的寿命。

本文所述的系统和方法可以用来为视觉显示器供电,诸如膝上型计算机屏幕的情况,但是更一般地,将包括现在的电气和电子组件中利用的大量各种各样的显示器,诸如在电视、计算机监视器、台式计算机监视器、膝上型计算机显示器、数字相框、电子书、移动设备显示器(例如在电话、pda、游戏机、导航设备、dvd播放器上)等中。可以通过本文所述的无线功率传输系统中的一个或多个来供电的显示器还可以包括嵌入式显示器,诸如被嵌入电子组件(例如,音频设备、家用电器、汽车显示器、娱乐设备、现金出纳机、遥控器)中、家具中、建筑物基础设施中、交通工具中、物体的表面上(例如在交通工具、建筑物、衣物、标志、运输工具的表面上)等。显示器可以是非常小的,具有微小的谐振器件,诸如在如本文所述的智能卡中,或者是非常大的,诸如在广告牌中。使用本文公开的原理供电的显示器还可以是多种成像技术中的任何一个,诸如液晶显示器(lcd)、薄膜晶体管lcd、无源lcd、阴极射线管(crt)、等离子体显示器、投影仪显示器(例如,lcd、dlp、lcos)、表面传导电子发射显示器(sed)、有机发光二极管(oled)等。源线圈配置可以包括通过如本文所述的无线延长线附着于主电源,诸如建筑物电源、交通工具电源等;附着于组件电源,诸如电气组件的底座(例如,计算机的底座、tv的线缆箱);中间继电器源线圈等等。例如,将数字显示器悬挂在墙壁上可能是非常吸引人的,诸如无线的或通过便携式存储器件来接收其信息信号的数字相框的情况,但是由于需要不雅观的电源线可使得其不美观。然而,使用嵌入数字相框中的设备线圈(诸如被缠绕在框架部分内)可以允许在根本没有导线的情况下悬挂数字相框。然后可以将源谐振器放置在数字相框附近,诸如在墙壁另一面的隔壁房间中,通过诸如本文所述的无线延长线、通过房间中央源谐振器等直接用插头插入传统电源插座中。

本文所述的系统和方法可以提供电子装置的不同部分之间的无线功率传输。继续膝上型计算机的示例,并且在没有限制的情况下,膝上型计算机的屏幕可能要求来自膝上型计算机的底座的功率。在这种情况下,在传统上已经通过屏幕与底座之间的膝上型计算机的铰链连接部分从膝上型计算机的底座到屏幕直接电连接来传送电功率。当利用有线连接时,有线连接可能易磨坏并破损,膝上型计算机的设计功能可能受到要求的直接电连接的限制,膝上型计算机的设计美感可能受到要求的直接电连接的限制等等。然而,可以在底座与屏幕之间进行无线连接。在这种情况下,可以将设备谐振器放置在屏幕部分中以对显示器供电,并且可以由第二设备谐振器、由传统有线连接、由谐振器-电池-直接电连接的混合等来对底座供电。这样,不仅由于去除物理有线连接而可以改善功率连接的可靠性,而且,由于没有与铰链相关联的物理导线,可以允许设计师来改善膝上型计算机的铰链部分的功能和/或美学设计。在这里已经再次地使用膝上型计算机来举例说明本文公开的原理如何可以改善电气或电子设备的设计,并且不应以任何方式将其视为限制性的。例如,具有分离的物理部分的许多其它电气设备可以受益于本文所述的系统和方法,诸如在门上具有电气功能件的冰箱,包括制冰机,传感器系统、灯等;被接头分离的具有活动部分的机器人;汽车的动力系统和汽车门中的组件等等。本领域的技术人员将认识到经由设备谐振器从外部源谐振器向设备提供功率或经由设备谐振器从外部或内部源谐振器向设备的一部分提供功率的能力可跨越电气和电子设备的范围广泛地适用。

本文公开的系统和方法可以提供设备之间(诸如已充电设备与未充电设备之间)的电功率的共享。例如,已充电设备或器具可以充当源并向附近的设备或器具发送预定量的能量、拨入量的能量、请求和批准量的能量等。例如,用户可能具有蜂窝电话和数字式照相机,两者都能够通过嵌入式源和设备谐振器来传送和接收功率,并且发现设备中的一个(例如蜂窝电话)的电量是低的。用户然后可以从数字式照相机向蜂窝电话转移电量。这些设备中的源和设备谐振器可以利用相同物理谐振器进行传输和接收,利用单独的源和设备谐振器,可以将一个设备设计为接收并传送,并将另一个设计为仅接收,可以将一个设备设计为仅传送并将另一个设计为仅接收等等。

为了防止完全耗尽设备的电池,可以具有允许用户指定接收设备有权获得多少电源的设定。例如,对可用于外部设备的功率的量施加限制并有能力在电池功率降到低于阈值时关闭功率传输可能是有用的。

本文所述的系统和方法可以向与电气装置相关联的附近电气或电子组件提供无线功率转移,其中,源谐振器在电气装置中且设备谐振器在电子组件中。还可以将源谐振器连接到、用插头插入、附着到电气装置,诸如通过电气装置的通用接口(例如,usb接口、pc卡接口)、附加电源插座、万用附着点等。例如,源谐振器可以在书桌上的计算机的结构内部,或者被集成到某一对象、垫子等中,其被连接到计算机,诸如到计算机的usb接口之一中。在被嵌入对象、垫子等中并通过usb接口供电的源谐振器的示例中,可以在不需要集成到任何其它电子设备中的情况下容易地将源谐振器添加到用户的台式计算机,因此,方便地提供无线能量区,在该无线能量区周围可以对多个电气和/或电子设备供电。所述电气装置可以是计算机、照明灯具、专用源谐振器电气装置等,并且所述附近组件可以是计算机外围设备、外围电子组件、基础设施设备等的,诸如计算机键盘、计算机鼠标、传真机、打印机、扬声器系统、蜂窝电话、音频设备、对讲机、音乐播放器、pda、灯、电动削铅笔器、风扇、数字相框、计算器、电子游戏等。例如,计算机系统可以是具有利用‘无线键盘’和‘无线鼠标’的集成源谐振器的电气装置,其中,使用术语无线在这里意在表明每个设备与计算机之间存在无线通信装置,并且其中,每个设备仍必须包含单独的电池电源。结果,将需要周期性地更换电池,并且在大公司中,可能为支持人员造成用于电池更换、电池成本和电池的适当处理的相当大的负担。可替换地,本文所述的系统和方法可以提供从计算机的主体到这些外围设备中的每一个的无线功率传输,如本文所述,包括不仅到键盘和鼠标的功率,而且到诸如传真机、打印机、扬声器系统等的其它外围组件的功率。被集成到电气装置中的源谐振器可以提供到多个外围设备、用户设备等的无线功率传输,使得对用于源谐振器集成电气装置附近区域中的设备的电池进行充电和/或更换的需要显著减少。电气装置还可以为调整电气装置与无线供电设备之间的功率转移参数提供调谐或自动调谐软件、算法、装置等。例如,电气装置可以是用户桌面上的计算机,并且可以将源谐振器集成到计算机中或用插头插入计算机中(例如,通过usb连接),其中,计算机提供用于提供调谐算法的装置(例如,通过在计算机上运行的软件程序)。

本文公开的系统和方法可以提供到与机构基础设施组件相关联的附近电气或电子组件的无线功率转移,其中,源谐振器被安装在机构基础设施组件中或其上,并且设备谐振器在电子组件中。例如,机构基础设施组件可以是一件家具、固定墙壁、活动墙壁或分隔物、天花板、地板和被附着或集成到桌子或书桌中的源谐振器(例如,刚好在表面之下/之上、在侧面上、被集成到桌面或桌腿中)、放置在地板上的垫子(例如,在书桌下面、放置在书桌上)、车库地板上的垫子(例如,将对汽车和/或汽车中的设备充电)、在停车场/车库中(例如,在停车处附近的柱子上)、电视(例如用于对遥控器充电)、计算机监视器(例如将对无线键盘、无线鼠标、蜂窝电话供电/充电)、椅子(例如用于对电热毯、医疗设备、个人健康监视器供电)、图画、办公室家具、常见家用电器等。例如,机构基础设施组件可以是办公室隔间中的照明灯具,其中,源谐振器和照明器具内的灯这二者可以被直接连接到该机构的有线电源。然而,用现在在照明灯具中提供的源谐振器,被连接到设备谐振器或与设备谐振器集成的那些附近电气或电子组件将不需要具有任何附加有线连接。另外,如本文所述,可以减少对更换具有设备谐振器的设备的电池的需要。

使用本文所述的系统和方法来从中央位置(诸如从电气装置中的源谐振器、从机构基础设施组件等)向电气和电子设备供应功率可以使周围工作区域的电气布线基础设施最小化。例如,在企业办公空间中,通常存在需要由有线连接来供电的大量电气和电子设备。在利用本文所述的系统和方法的情况下,可以消除此布线的大部分,为企业节省安装成本,降低与具有电气布线的办公室墙壁相关联的物理限制,使对电源插座和电源板的需要最小化等等。本文所述的系统和方法可以通过减少与安装、重新安装(例如重配置办公空间)、维护等相关联的电气基础设施来为企业省钱。在另一示例中,本文公开的原理可以允许在房间当中无线地设置电源插座。在这里,可以将源放置在期望在其上放置电源插座的地板的位置之下的地下室的天花板上。可以将设备谐振器放置在正好在其上面的房间的地板上。由于相同的原因,在天花板的中心处安装新的照明灯具(或关于此方面的任何其它电气设备,例如照相机、传感器等)现在实质上是更容易的。

在另一示例中,本文所述的系统和方法可以“通过”墙壁来提供功率。例如,假设在一个房间中(例如,在墙壁上)具有电源插座,但是想要在隔壁房间中具有电源插座,不需要呼叫电气工人或钻通墙壁或在墙壁周围牵引导线等。于是可以将源谐振器放置在一个房间中的墙壁上,并且在墙壁的另一侧放置设备谐振器电源插座/拾波器(outlet/pickup)。这可以对平面屏幕tv或立体音响系统等供电(例如,一个人可能不想在起居室中具有爬上墙壁的丑陋的导线,但是不介意在隔壁房间中具有沿着墙壁走的类似导线,例如储藏室或壁橱,或有使看不到沿着墙壁铺设的导线的家具的房间)。本文所述的系统和方法可用来在不需要通过外墙钻孔或在其中安装导管的情况下从室内源向在家庭或建筑物外面的各种电气设备转移功率。在这种情况下,可以在没有美学或结构损坏或与通过墙壁和墙板钻孔相关联的风险的情况下在建筑物外面对设备无线地供电。另外,本文所述的系统和方法可以提供放置传感器以帮助为装配有外部设备谐振器的电气组件放置内部源谐振器。例如,家的主人可以在他们家的外面放置安全灯,其包括无线设备谐振器,并且现在需要适当地或最佳地将源谐振器放置于家的内部。在源和设备谐振器之间起作用的放置传感器可以通过诸如以视觉指示、音频指示、显示指示等来指示何时放置是好的或好到什么程度来使得该放置更好。在另一示例中,并且以相似的方式,本文所述的系统和方法可以提供设备在家庭或建筑物的屋顶上的安装,诸如无线电发射机和接收机、太阳能电池板等。在太阳能电池的情况中,可以将源谐振器与电池板相关联,并且可以在不需要通过屋顶钻孔的情况下向建筑物内部的配电板无线地转移功率。本文所述的系统和方法可以允许在不需要钻孔的情况下跨越交通工具的墙壁(诸如通过顶棚)来安装电或电气设备,诸如用于汽车、船舶、飞机、火车等。这样,可以在不钻孔的情况下保持交通工具的壁完整,因此保持交通工具的价值、保持水密性、消除对布线的需要等。例如,将警报器或灯安装到警车的顶棚减少了汽车将来的转售,但是用本文所述的系统和方法,可以在不需要钻孔的情况下将任何灯、喇叭、警报器等附着于顶棚。

本文所述的系统和方法可以用于从太阳能光伏(pv)电池板无线转移功率。具有无线功率转移能力的pv电池板可以具有多个益处,包括更简单的安装、更灵活、可靠和防风雨设计。可以使用无线功率转移来从pv电池板向设备、房屋、交通工具等转移功率。太阳能pv电池板可以具有允许pv电池板直接对被使能以接收无线功率的设备供电的无线源谐振器。例如,可以将pv电池板直接安装到交通工具、建筑物等的顶棚上。可以将由pv电池板捕捉的能量直接无线地转移至交通工具内部或建筑物屋顶下面的设备。具有谐振器的设备可以无线地从pv电池板接收功率。可以使用来自pv电池板的无线功率来向被耦合到房屋、交通工具等的有线电气系统的谐振器转移能量,从而在不要求外部pv电池板与内部电气系统之间的任何直接接触的情况下允许常规设备的传统配电和供电。

用无线功率转移,可以实现屋顶pv电池板的明显更简单的安装,因为可以无线地从电池板向房屋中的捕捉谐振器传送功率,从而消除所有室外布线、连接器和导管以及通过结构的屋顶或墙壁的任何孔。与太阳能电池一起使用的无线功率转移可以具有这样的益处,即其能够减少屋顶危险,因为其消除了对电气工人在屋顶上工作以将电池板、线和分线盒互连的需要。安装与无线功率转移集成的太阳能电池板可以要求不那么熟练的工人,因为需要进行较少的电接触。用无线功率转移,可以需要较少的现场具体设计,因为该技术为安装者提供了对每个太阳能pv电池板单独地进行最优化和定位的能力,从而显著地减少了对昂贵的工程和电池板布局服务的需要。可能需要谨慎地平衡每个电池板上的太阳能负载,并且不需要专用的dc布线布局和互连。

对于pv电池板的屋顶或墙上安装而言,可以将捕捉谐振器安装在屋顶的下侧,在墙壁内部,或者在太阳能pv电池板的一个底部或两个内的任何其它容易接近的内部空间。在图51中示出了示出可能的一般屋顶pv电池板安装的图。可以将各种pv太阳能收集器安装在屋顶的顶部,其中无线功率捕捉线圈被安装在屋顶下面的建筑物内。pv电池板中的谐振器线圈能够通过屋顶将其能量无线地转移至无线捕捉线圈。可以收集来自pv电池的捕捉能量并将其耦合到房屋的电气系统以对电气和电子设备供电或在产生比需要的更多功率时耦合到电力网。在不要求穿透建筑物的屋顶或墙壁的孔或导线的情况下从pv电池捕捉能量。每个pv面板可以具有被耦合到交通工具或建筑物内部上的相应谐振器的谐振器。多个电池板可以利用相互之间的无线功率转移来向被耦合到交通工具或房屋内部上的谐振器的一个或多个指定电池板转移或收集功率。电池板可以在其侧面或在其周界中具有无线功率谐振器,其能够耦合到位于其它类似电池板中的谐振器,允许从电池板向电池板转移功率。可以提供附加总线或连接结构,其从建筑物或交通工具外部上的多个电池板无线地耦合功率并将功率转移至建筑物或交通工具内部上的一个或多个谐振器。

例如,如图51所示,可以将源谐振器5102耦合到安装在建筑物的屋顶5104之上的pv电池5100。相应的捕捉谐振器5106被放置在建筑物内部。然后能够在不具有通过建筑物的直接孔和连接的情况下从外面的源谐振器5102向建筑物内部的设备谐振器5106转移由pv电池捕捉的太阳能。

具有无线功率转移的每个太阳能pv电池板可以具有其自己的逆变器,通过单独地对每个电池板的功率产生效率进行最优化来显著地改善这些太阳能系统的经济效益,支持单个安装中的电池板尺寸和类型的混合,包括单个电池板“按需付费”系统扩展。安装成本的降低可以使得对于安装而言单个电池板是经济的。消除了对电池板串设计和多个电池板的小心定位和定向的需要,并消除了系统的单点故障。

pv太阳能电池板中的无线功率转移可以实现更多的太阳能部署方案,因为防风雨的太阳能pv电池板消除了用于通过诸如汽车顶棚和船甲板的密封表面布线而钻孔的需要,并消除了将电池板安装在固定位置的要求。用无线功率转移,可以临时地部署pv电池板,然后移动或去除,而不留下对周围结构的永久性变更。可以在阳光充足的日子将其放置在院子中,并跟随者太阳来回移动,或者例如带到内部以进行清洁和储存。对于后院或移动太阳能pv应用而言,可以在地面上投掷具有无线能量捕捉器件的延长线或放置在太阳能单元附近。捕捉延长线能够相对于元件被完全密封并被电隔离,使得可以在任何室内或室外环境中使用它。

用无线功率转移,可能不需要导线或外部连接,或者pv太阳能电池板可以是完全防风雨的。能够预期显著改善在太阳能pv功率产生和传输电路中的电气组件的可靠性和寿命,因为防风雨外壳能够保护组件免受uv辐射、湿度、天气等的影响。用无线功率转移和防风雨外壳,可以使用不那么昂贵的组件,因为其将不再被直接暴露于外部因素和天气要素,并且其可以降低pv电池板的成本。

pv电池板与建筑物或交通工具内部的捕捉谐振器之间的功率转移可以是双向的。可以从房屋电力网向pv电池板传送能量以在电池板不具有足以执行某些此类任务的能量时提供功率。相反的功率流动可以用来从电池板熔化雪,或对将相对于太阳能量将电池板定位于更适宜的位置的电动机进行供电。一旦雪被熔化或电池板被重新定位且pv电池板能够产生其自己的能量,功率转移的方向就能够恢复正常,从pv电池板向建筑物、交通工具或设备递送功率。

具有无线功率转移的pv电池板可以包括安装时的自动调谐以保证到无线收集器的最大且高效的功率转移。不同安装中的屋顶材料的变化或pv电池板与无线功率收集器之间的距离变化可能影响无线功率转移的谐振器的性能或扰动其性质。为了降低安装复杂性,无线功率转移组件可以包括自动地调整其工作点以补偿由于材料或距离而引起的任何效应的调谐能力。可以调整频率、阻抗、电容、电感、占空比、电压水平等以保证高效且安全的功率转移。

本文所述的系统和方法可以用来临时地或在传统电源插座到无线功率区的扩展中提供无线功率区,诸如通过使用无线功率延长线。例如,可以将无线功率延长线配置为用于连接到传统电源插座的插头、诸如在传统功率延长线中的长导线和在另一端的谐振器源线圈(例如,代替扩展部分的传统插座的替代或除此之外)。还可以配置其中在沿着无线延长线的多个位置处存在源谐振器的无线延长线。然后,此配置可以替换其中存在无线功率配置设备的任何传统延长线,诸如向不存在方便的电源插座的位置(诸如其中不存在电源插座的起居室中的位置)提供无线功率、其中不存在有线功率基础设施的临时无线功率(例如施工现场)、到其中不存在电源插座的院子中(例如,对于被无线地供电以减少切断传统电线的机会的各方或庭院装饰设备)等。还可以使用无线延长线作为墙壁或结构内的落差(drop)以在该落差附近内提供无线功率区。例如,可以在新的或整修的房间的墙壁内敷设无线延长线以在不需要安装传统电气布线和电源插座的情况下提供无线功率区。

可以利用本文所述的系统和方法来在交通工具的活动部分或旋转组件、机器人、机械设备、风力涡轮机或具有活动部分的任何其它类型的旋转设备或结构(诸如机器人臂、建筑用运输工具、活动平台等)之间提供功率。传统上,可以由例如集电环或由旋转接头来提供此类系统中的功率。使用如本文所述的无线功率转移,可以显著地改善这些设备的设计简化、可靠性和寿命,因为能够在没有可能随着时间的推移磨损或损坏的任何物理连接或接触点的情况下在一定范围的距离内转移功率。特别地,源和设备线圈内的优选共轴和平行对准可以提供不会严重地受到两个线圈的相对旋转运动所调制的无线功率传输。

可以利用本文所述的系统和方法通过提供一系列的源-设备-源-设备谐振器来扩展超过单个源谐振器的范围的功率需要。例如,假设现有独立车库不具有电源且所有者现在想要安装新的供电服务。然而,所有者可能不想遍及车库敷设导线,或者不得不打入墙壁中以遍及该结构对电源插座进行布线。在这种情况下,所有者可以选择将源谐振器连接到新的供电服务,使得能够遍及车库的后面将无线功率供应至设备谐振器电源插座。然后,所有者可以安装设备-源‘中继器’以向在车库前面的设备谐振器电源插座供应无线功率。也就是说,功率中继器现在可以从主源谐振器接收无线功率,然后向第二源谐振器供应可用功率以向在车库前面的第二组设备谐振器供应功率。可以反复地重复此配置以扩展供应的无线功率的有效范围。

可以使用多个谐振器来扩展能量阻挡材料周围的功率需要。例如,可能期望将源谐振器集成到计算机或计算机监视器中,使得谐振器可以对放置在监视器或计算机的周围且尤其是前面的设备供电,诸如键盘、计算机鼠标、电话等。由于美学、空间约束等,可以将可以用于源谐振器的能量源仅定位于或连接到监视器或计算机的后面。在计算机或监视器的许多设计中,在设计和封装中使用包含电路的金属和金属组件,这可能限制和阻止从在监视器或计算机后面的源谐振器到监视器或计算机前面的功率转移。可以将附加重发器谐振器集成到监视器或计算机的底座或基座中,其耦合至监视器或计算机后面的源谐振器并允许到监视器或计算机前面的空间的功率转移。被集成到监视器或计算机的底座或基座中的中间谐振器不要求附加电源,其从源谐振器捕捉功率并将功率转移至监视器或计算机的阻挡或功率屏蔽金属组件周围的前面。

可以将本文所述的系统和方法构建到空间的结构部分中、放置在空间的结构部分上、从空间的结构部分悬挂、嵌入空间的结构部分中、集成到空间的结构部分中等,所述空间诸如为交通工具、办公室、家庭、房间、建筑物、室外结构、道路基础设施等。例如,可以将一个或多个源构建到、放置于、悬挂于、嵌入或集成到墙壁、天花板或顶棚嵌板、地板、分隔物、门口、楼梯、隔室、道路表面、人行道、坡道、围栏、外部结构等。可以将一个或多个源构建到结构内或周围的实体中,例如床、书桌、椅子、地毯、镜子、钟表、显示器、电视、电子设备、柜台、桌子、一件家具、一件艺术品、外壳、隔间、顶棚嵌板、地板或门板、挡泥板、树干、轮舱、支柱、横梁、支撑体或任何类似实体。例如,可以将源谐振器集成到用户的汽车的挡泥板中,以便可以从挡泥板源谐振器为装配有或被连接到设备谐振器的任何设备供应功率。这样,被带进或集成到汽车中的设备可以在处于汽车中的同时被不断地充电或供电。

本文所述的系统和方法可以通过诸如船、汽车、卡车、公交车、火车、飞机、卫星等交通工具的壁来提供功率。例如,用户可能不想通过交通工具的壁钻孔以便向在交通工具外面的电气设备提供功率。可以将源谐振器放置在交通工具内部,并且可以将设备谐振器放置在交通工具外面(例如,在窗户、墙壁或结构的相对侧)。这样,用户可以实现使外部设备到交通工具的放置、定位和附着最优化方面的更大灵活性(诸如不考虑供应或敷设到设备的电气连接)。另外,用无线地供应的电功率,可以将外部设备密封,使得其是水密的,使得其在电气设备被暴露于天气(例如雨)、或者甚至被淹没在水中的情况下是安全的。可以在多种应用中采用类似技术,诸如在对混合动力交通工具、导航和通信设备、施工设备、遥控或机器人设备等充电或供电时,其中由于暴露的导体而存在电学风险。本文所述的系统和方法可以通过真空室或其它封闭空间的墙壁来提供功率,诸如在半导体生长和处理、材料涂敷系统、养鱼池、危险物品搬运系统等中使用的那些。可以向转换级、机器人臂、旋转级、操纵和收集设备、清洁设备等提供功率。

本文所述的系统和方法可以向厨房环境提供无线功率,诸如向台面器具,包括混合器、咖啡壶、烤面包器、烤面包器烘箱、烤架、烘培盘、电煮锅、电热壶、电炒锅、松饼机、搅拌器、食物加工机、瓦罐锅、电热餐盘、电磁炉、灯、计算机、显示器等。本技术可以改善设备的移动性和/或定位灵活性,减少储存在和散布在整个台面上的电源线的数目,改善设备的可洗性等。例如,电煮锅传统上可以具有单独的部分,诸如可浸入水中以便清洗的一个和不可浸入水中的一个,因为其包括外部电连接(例如,线缆或用于可去除线缆的插座)。然而,用被集成到该单元中的设备谐振器,所有电连接可以是密封的,因此现在可以将整个设备浸没以进行清洁。另外,外部线缆的不存在可以消除对可用电气壁装电源插座的需要,并且不再需要跨越台面放置电源线或将电烤盘的位置局限于可用电气壁装电源插座的位置。

本文所述的系统和方法可以提供到装配有设备谐振器的设备的持续供电/充电,因为该设备不离开原谐振器的附近,诸如固定电气设备、个人计算机、内部通信系统、安全系统、家庭机器人、灯具、遥控单元、电视、无绳电话等。例如,可以经由无线功率对家庭机器人(例如roomba)供电/充电,因此在没有再充电的情况下任意地工作。这样,可以修改用于家庭机器人的电源设计以利用此持续的无线功率源,诸如将机器人设计为在不需要电池的情况下仅使用来自源谐振器的功率,使用来自源谐振器的功率来对机器人的电池再充电,使用来自源谐振器的功率对机器人的电池进行涓流充电,使用来自源谐振器的功率来对电容储能单元充电等。对于本文公开的任何和所有设备,可以启用、设计和实现电源和电源电路的类似最优化。

本文所述的系统和方法可以向电热毯、加热垫/片等提供无线功率。这些电热设备可以用于多种室内和室外用途。例如,可以从与附近交通工具、建筑物、电线杆、交通灯、便携式电源单元等相关联或被构建到其中的源谐振器对提供给诸如保安、警察、建筑工人等室外工作人员的手和脚取暖器远程地供电。

本文所述的系统和方法可以用来对包含设备谐振器且可以在信息设备处于包含源谐振器的信息源附近时被上电的便携式信息设备供电。例如,信息设备可以是在用户的口袋、钱夹、钱包、交通工具、自行车等中携带的卡(例如,信用卡、智能卡、电子卡等)。便携式信息设备可以在其在信息源附近时被上电,所述信息源随后向便携式信息设备传送信息,所述便携式信息设备可以包括电子逻辑、电子处理器、存储器、显示器、lcd显示器、led、rfid标签等。例如,便携式信息设备可以是具有在处于信息源附近时“开启”的显示器的信用卡,并且为用户提供诸如“您刚刚接收到用于您下一次购买可口可乐的扣除50%的赠券”的某些信息。信息设备可以存储诸如可以在后续购买时使用的赠券或折扣信息的信息。便携式信息设备可以被用户编程为包含任务、日历约会、备忘录、警报和提示等。信息设备可以接收现时价格信息并将先前选择和识别的项目的位置和价格的信息告知用户。

本文所述的系统和方法可以提供无线功率传输以直接地对传感器中的电池供电或充电,所述传感器诸如为环境传感器、安全传感器、农业传感器、电器传感器、食物腐败传感器、功率传感器等,其可以被安装到结构内部、结构外部、掩埋在地下、安装在墙壁中等。例如,此能力可以取代将旧的传感器掘出以在物理上更换电池或由于旧的传感器没有能力且不再可操作而掩埋新传感器的需要。可以通过使用便携式传感器源谐振器充电单元周期性地对这些传感器充电。例如,承载装配有源谐振器的电源(例如提供~kw的功率)的卡车可以在几分钟内向~mw传感器提供足够的功率以将传感器的操作持续时间延长超过一年。还可以直接对传感器供电,诸如对处于难以用导线将其连接但其仍处于源谐振器附近区域内的位置处的传感器供电,诸如在房屋外面的设备(安全照相机)、在墙壁另一面上、在门上的电动锁上等。在另一示例中,可以通过本文所述的系统和方法对原本可能需要为其提供有线功率连接的传感器供电。例如,接地故障中断器断路器将残余电流和过电流保护组合在一个设备中以便安装到维修面板中。然而,传统上必须独立地对传感器进行布线以便供电,并且这使安装变得复杂。然而,用本文所述的系统和方法,可以用设备谐振器对传感器供电,其中,在维护面板内提供单个源谐振器,由此简化维护面板内的安装和布线配置。另外,单个源谐振器可以对安装在被安装在维护面板内、遍布维护面板、安装到附加的附近维护面板等的源谐振器的任一侧上的设备谐振器供电。本文所述的系统和方法可以用来向与配电板、电气室、配电等相关联的任何电气组件提供无线功率,诸如在配电盘、配电板、断路器、变压器、备用电池、火警控制面板等中。通过使用本文所述的系统和方法,可以更容易地安装、维护和修改配电和保护组件和系统安装。

在另一示例中,由电池供电的传感器可以连续地运行而不需要更换电池,因为可以供应无线功率以周期性地或连续地对电池进行再充电或涓流充电。在此类应用中,甚至低水平的功率可以充分地对电池再充电或保持电池中的电量,显著地延长其寿命和扩展其有用性。在某些情况下,可以将电池寿命延长至比其供电的设备的寿命更长,使其本质上成为“用不完”电池。

本文所述的系统和方法可以用于对植入的医疗器件电池充电,诸如在人工心脏、起搏器、心脏泵、胰岛素泵、用于神经或针压止血/穴位刺激的植入线圈等中。例如,使导线粘在病人体外可能是不方便或不安全的,因为导线可以是可能的传染的恒定来源,并且通常对于病人来说是非常令人不愉快的。本文所述的系统和方法还可以用来从外部源对病人身体里或身体上的医疗器件充电或供电,诸如从具有源谐振器的病床或医院墙壁或天花板。此类医疗器件可能更容易附着、读取、使用和监视病人。本文所述的系统和方法可以缓解对将导线附着于病人和病人的床或床边的需要,使得病人来回移动和起身离开床更加方便,而没有无意中断开医疗器件的连接的风险。这可以例如有用地用于具有对其进行监视的多个传感器的病人,诸如用于测量脉搏、血压、葡萄糖等。对于利用电池的医疗和监视器件而言,可能需要相当频繁地更换电池,可能一周多次。这可以引起与人们忘记更换电池、未注意到设备或监视器由于电池耗尽而不工作、与电池盖和舱室的不适当清洁相关联的感染等相关联的风险。

本文所述的系统和方法可以降低医疗器件植入程序的风险和复杂性。现在,诸如心室辅助器件、起搏器、除颤器等许多可植入医疗器件由于其器件外形因素而要求手术植入,这可能在很大程度上受到被集成在器件中的长寿命电池的体积和形状的影响。在一方面,本文描述了对电池再充电以使得电池尺寸可以被大大地减小且可以诸如经由导管来植入整个器件的非侵入式方法。导管可植入器件可以包括集成捕捉或设备线圈。可以将导管可植入捕捉或设备线圈设计为使得其可以诸如在植入之后在内部进行布线。可以经由导管来部署捕捉或设备线圈作为卷起的柔性线圈(例如,卷起的例如两个卷轴,在内部用简单的扩展器(spreader)机构容易地展开)。电源线圈可以被穿戴在被裁减为适合将源放置在适当位置的背心或衣物中;可以被放置在椅垫或床垫里;可以被集成到床或家具中等。

本文所述的系统和方法可以使得病人能够具有‘传感器背心’、传感器补丁等,其可以包括可以在处于源谐振器附近时被供电或充电的设备谐振器和多个医学传感器中的至少一个。传统上,此类医疗监视机构可以具有要求的电池,因此使得背心、补丁等沉重且可能不切实际。但是,使用本文公开的原理,可以不要求电池(或较轻的可再充电电池),因此使得此类设备更加方便和实际,尤其是在可能没有带子的情况下(诸如在没有电池或具有明显更轻的电池的情况下用粘合剂)将此类医疗设备固定就位的情况下。医疗机构可以能够远程地读取传感器数据,目的是预见中风、心脏病发作等(例如提前几分钟)。当由在远离医疗机构的位置处(诸如在其家中)的人来使用背心时,则可以将背心与蜂窝电话或通信设备集成以在事故或医学事件的情况下呼叫救护车。本文所述的系统和方法在背心将被老年人使用时的情况下可能特别有用,其中,可能未按要求遵循传统的非无线再充电实践(例如,更换电池、在晚上插上电源等)。本文所述的系统和方法还可以用于对残障或残废人(其可能具有更换电池或对电池再充电方面的困难)使用或对其进行帮助的设备充电,或可靠地向其享用或依赖的设备供应功率。

本文所述的系统和方法可以用于假肢的充电和供电。假肢在取代原始肢体(诸如手臂、腿、手和脚)的功能方面已变得非常有能力。然而,电动假肢可能要求相当大的功率(诸如10~20w),其可以转换成相当大的电池。在这种情况下,截肢者可以在持续时间不是很长的轻电池和持续时间长得多但更加难以来回‘携带’的重电池之间进行选择。本文所述的系统和方法可以使得能够用设备谐振器对假肢供电,其中,源谐振器由用户携带并被附着于可以更容易地支撑重量的身体的一部分(例如,诸如腰周围的带子)或位于其中用户将花费大量的时间以保持设备被充电或供电的外部位置上,诸如在其书桌处、其汽车中、其床上等。

本文所述的系统和方法可以用于电动外骨骼的充电和供电,诸如在工业和军事应用中使用的那些,以及用于老年/体弱/生病的人。电动外骨骼可以向一个人提供“力量”的高达10至20倍的增加,使得那个人能够在没有太多疲劳的情况下在物理上反复地执行辛苦的任务。然而,外骨骼在某些使用情形中可能要求超过100w的功率,因此电池供电操作可能局限于30分钟或更少。本文所述的无线功率的递送可以为外骨骼的用户提供用于对外骨骼的结构运动供电和用于对遍及该结构分布的各种监视器和传感器供电的连续功率供应。例如,可以从本地源谐振器为具有(一个或多个)嵌入式设备谐振器的外骨骼提供功率。对于工业外骨骼而言,可以将源谐振器放置在机构的墙壁中。对于军用外骨骼而言,可以由装甲车来承载源谐振器。对于用来帮助老年人护理者的外骨骼而言,可以将(一个或多个)源谐振器安装或放置在一个人的家的(一个或多个)房间中。

本文所述的系统和方法可以用于便携式医疗设备的供电/充电,诸如供氧系统、通风机、除颤器、注药泵、监视器和救护车或移动医疗单元中的设备等。能够将病人从事故现场运送到医院,或者为了将病人从其床上移动至其它房间或区域,并带着与之附着并始终被供电的所有设备为病人的健康和最后的康复提供很大的益处。当然,能够理解因为其电池耗尽或因为必须在以任何方式运送或移动病人的同时将其拔出插头而停止工作的医疗设备引起的风险和问题。例如,在汽车事故现场的紧急医疗队可能需要在现场的病人的紧急护理中利用便携式医疗设备。此类便携式医疗设备必须被适当地维护,使得存在足够的电池寿命以在紧急状态的持续时间内对设备供电。然而,情况常常是设备未被适当地维护,使得电池未充满电,并且在某些情况下,所需的设备对于第一反应者不可用。本文所述的系统和方法可以以自动地且在没有人工干预的情况下提供电池和功率包的充电和维护的方式来向便携式医疗设备(和病人身体上的相关联传感器输入端)提供无线功率。此类系统还受益于不受被附着于在病人的治疗中使用的许多医疗监视器和设备的多种电源线妨碍的改善的病人移动性。

本文所述的系统和方法可以用于对个人助听器进行供电/充电。个人助听器需要小且轻以配置到人的耳朵中或周围。尺寸和重量约束限制能够使用的电池的尺寸。同样地,设备的尺寸和重量限制由于组件的精密而使得难以进行电池更换。设备的尺寸和卫生问题使得难以集成附加的充电端口以允许电池的再充电。本文所述的系统和方法可以被集成到助听器中并可以减小所需电池的尺寸,这可以允许有甚至更小的助听器。使用本文公开的原理,可以在不要求外部连接和充电端口的情况下对助听器的电池再充电。充电和设备电路和小型可再充电电池可以被集成到常规助听器电池的外形因素中,允许对现有助听器进行改装。可以在助听器被人使用和佩戴的同时对其进行再充电。可以将能量源集成到垫子或杯子中,允许在助听器被放置在此类结构中时进行再充电。可以将充电源集成到助听器干燥器盒中,允许在助听器正在干燥或被消毒的同时进行无线再充电。所述源和设备谐振器还可以用来将设备加热,减少或消除对附加加热元件的需要。可以使用由电池或ac适配器供电的便携式充电外壳作为储存和充电站。

用于上述医疗系统的源谐振器可以在某些或所有医疗设备的主体中,设备谐振器在病人的传感器和设备上;源谐振器可以在救护车中,设备谐振器在病人的传感器和某些或所有设备的主体上;主源谐振器可以在救护车中以便在医疗设备处于救护车中的同时向医疗设备上的设备谐振器转移无线功率,并且当设备远离救护车时,第二源谐振器可以在医疗设备的主体和病人传感器上的第二设备谐振器中等等。本文所述的系统和方法可以显著地改善医务人员能够将病人从一个位置运送到另一位置的容易性,其中,现在可以减少电线和更换相关电池或手动地对其充电的需要。

本文所述的系统和方法可以用于军用交通工具或机构内部的设备的充电,诸如坦克、装甲运输车、移动式掩体等。例如,当士兵在“行动”或任务之后返回交通工具中时,其通常可以开始对其电子设备充电。如果其电子设备装配有设备谐振器,并且在交通工具内部存在源谐振器(例如,集成在交通工具的座位中或顶棚上),则其设备将立即开始充电。事实上,相同交通工具可以向站在外面或在交通工具旁边行走的士兵/机器人(例如来自irobot的packbot)提供功率。此能力可能在以下方面是有用的:使与其他人的意外电池交换最小化(这可能是重要的问题,因为士兵趋向于仅信任其自己的电池);使得能够快速离开受到攻击的交通工具;对坦克内部的膝上型计算机或其它电子设备供电或充电,因为坦克内部的过多导线可能引起在降低在“有麻烦”和/或能见度降低的情况下快速地来回移动的能力方面的危险。本文所述的系统和方法可以提供与在军用环境中对便携式电力设备供电相关的显著改善。

本文所述的系统和方法可以向诸如高尔夫球车或其它类型的手推车、全地形车、电动自行车、小型摩托车、汽车、割草机、bobcats和通常用于施工和景观美化等的其它交通工具的移动交通工具提供无线供电和充电能力。本文所述的系统和方法可以向微型移动交通工具提供无线供电或充电能力,诸如微型直升机、无人驾驶机、遥控飞机、遥控船、遥控或机器人飞行器、遥控或机器人割草机或设备、炸弹检测机器人等。例如,在军用交通工具之上飞行以增加其视场的微型直升机在标准电池情况下可以飞行几分钟。如果这些微型直升飞机装备有设备谐振器,并且控制交通工具具有源谐振器,则微型直升飞机可能能够无限期地飞行。本文所述的系统和方法可以提供对电池进行再充电或更换以便在微型移动交通工具中使用的有效替换。另外,本文所述的系统和方法可以向甚至更小的设备提供功率/充电,诸如微型机电系统(mems)、纳米机器人、纳米器件等。另外,可以通过将源设备安装在移动交通工具或飞行设备中以使其能够充当野外或飞行中再充电器(其可以自己自发地定位于装配有设备谐振器的移动交通工具附近)来实现本文所述的系统和方法。

本文所述的系统和方法可以用来提供用于临时机构的电力网,诸如兵营、石油钻探布置、外景拍摄场所等,其中要求电功率,诸如用于发电机,并且其中通常在临时设备周围敷设电力线缆。当需要设立要求功率的临时机构时存在许多情况。本文所述的系统和方法可以使得能够实现快速地设立并拆掉这些设备的更高效的方式,并且可以减少必须遍及这些设备敷设以供应功率的导线的数目。例如,当特种部队移动至一个区域中时,他们可以支起帐篷并在驻地周围牵引许多导线以提供要求的电力。替代地,本文所述的系统和方法可以使得提供有电源和源谐振器的军用交通工具停泊在驻地的中心处,并将所有的功率提供给其中可以将设备谐振器集成到帐篷中的附近帐篷,或与每个帐篷或区域相关联的某件其它设备。可以使用一系列的源-设备-源-设备谐振器来将功率扩展到更远的帐篷。也就是说,距离交通工具最近的帐篷然后可以向其后面的帐篷提供功率。本文所述的系统和方法可以提供对可以设立和拆掉临时安装的效率的显著改善,由此提高相关联设备的移动性。

本文所述的系统和方法可以在交通工具中使用,诸如用于更换导线,安装新设备,对被带入交通工具中的设备供电,对交通工具的电池充电(例如,用于传统气体供电引擎,用于混合动力汽车,用于电车等),对被安装到交通工具内部或外部的设备供电,对在交通工具附近的设备供电等。例如,本文所述的系统和方法可以用来更换导线,诸如用来对遍布于交通工具的灯、风扇和传感器供电。作为示例,典型的汽车可以具有与之相关联的50kg的导线,并且本文所述的系统和方法的使用可以使得能够消除相当数量的此布线。诸如飞机或卫星的较大且更加重量敏感的交通工具的性能可以大大地受益于使必须遍布于交通工具敷设的线缆的数目减少。本文所述的系统和方法可以允许在不需要电线的情况下用电动和电气设备来适应交通工具的可去除或附加部分。例如,摩托车可以具有在骑车人正在进行长途旅行时充当临时行李箱容积的可去除侧箱。这些侧箱可以具有外部灯、内部灯、传感器、自动设备等,并且如果没有装配有本文所述的系统和方法,则可能要求电连接和配线。

交通工具内无线功率传输系统可以对在汽车中使用的一个或多个移动设备充电或供电:手持移动电话、蓝牙耳机、蓝牙免提扬声器电话、gps、mp3播放器、用于经由fm、蓝牙等通过汽车用立体声系统来流式传输mp3音频的无线音频收发机。交通工具内无线功率源可以利用以多个可能结构中的任何一个布置的源谐振器,包括对仪表板上的垫子充电、对安装在地板上或在座位与中央控制台之间的垫子充电、对装配在杯架中或仪表板上的“杯子”或插孔充电等。

无线功率传输源可以利用可再充电电池系统,使得所述电源电池每当交通工具电源被开启时被充电,使得当交通工具被关闭时,无线电源能够从电源电池吸取功率,并且能够继续无线地对仍在汽车中的移动设备充电或供电。

未来的带插头电动汽车、混合动力汽车等需要被充电,并且用户可能需要在其回家时或去充电站时插入电源充电。基于一次夜间再充电,用户可能能够在次日驾驶达到50英里。因此,在混合动力汽车的情况下,如果一个人在大多数日子驾驶路程小于50英里,则其将主要靠电力来驾驶。然而,如果其不必记住在晚上将汽车插上电源将是有益的。也就是说,简单地行驶到车库中并使汽车自己负责其自己的充电将是美好的。为此,可以将源谐振器构建到车库地板和/或车库侧壁中,并且可以将设备谐振器构建到汽车的底部(或侧面)中。甚至几kw的转移可能足以在夜间对汽车进行再充电。交通工具内设备谐振器可以测量磁场性质以提供反馈以帮助交通工具(或任何类似设备)到固定谐振源的对准。交通工具可以使用此位置反馈来自动地对其本身进行定位以实现最佳对准,因此实现最佳功率传输效率。另一方法可以是使用位置反馈来帮助人类操作员适当地对交通工具或设备进行定位,诸如通过在其被很好地定位时使led点亮,提供噪声等。在其中正在传送的功率的量可能对侵入有源场体积的人或动物造成安全威胁的情况下,源或接收器设备可以装配有能够感测到有源场体积的入侵且能够关掉源设备并警告人类操作员的有源照明幕或某个其它外部设备。另外,源设备可以装配有自动感测能力,使得其可以检测到其预期功率传输速率已被入侵元素中断,并且在这种情况下,关掉源设备并警告人类操作员。可以将诸如铰链门或可膨胀气囊的物理或机械结构作为物理障碍结合以防止不期望的入侵。还可以使用诸如光学、磁性、电容、电感等传感器来检测源和设备谐振器之间的外来结构或干扰。可以将源谐振器的形状成形为防止水和碎屑积聚。可以将源谐振器放置在锥形外壳中,或者其可以具有带有有角度顶部以允许水和碎屑滚落的外壳。系统的源可以使用交通工具的电池功率或其自己的电池功率来将其存在传送到源以发起功率传输。

可以将源谐振器安装在嵌入式或悬挂支柱上、墙壁上、支架上等以便耦合到安装在电动交通工具的减震器、盖、主体面板等上的设备谐振器。可以将源谐振器封闭或嵌入到诸如靠垫、垫子、波纹管、弹簧加载外壳等柔性外壳中,使得电动交通工具可以在不以任何方式损坏汽车的情况下与包含源线圈的结构进行接触。包含源的结构可以防止对象到达源和设备谐振器之间。由于无线功率转移可能对源和设备线圈之间的不对准相对不敏感,所以多种柔性源结构和停泊程序可能适合于此应用。

本文所述的系统和方法可以用来对电动、混合动力或内燃机交通工具的电池进行涓流充电。交通工具可能需要少量的功率以保持或补充电池功率。可以将功率无线地从源转移至可以被结合到交通工具的正面格板、顶棚、底部或其它部分的设备谐振器。可以将设备谐振器设计为符合交通工具的正面上或格板周围的徽标的形状,从而不妨碍气流通过辐射体。设备或源谐振器可以具有附加操作模式,其允许谐振器被用作能够用来融化交通工具上雪或冰的加热元件。

电动交通工具或混合式动力交通工具可能要求多个设备谐振器,从而增加交通工具接近源谐振器以便充电的容易性(即,设备谐振器的数目和变化位置越大,交通工具能够进站并与多种充电站对接的机会越大),增加能够在一段时间内递送的功率量(例如,可以要求附加设备谐振器以阻止由于将电流充电至可接受水平而引起的局部加热),帮助将交通工具停泊/停靠于充电站等。例如,交通工具可以具有具有反馈系统的多个谐振器(或单个谐振器),所述反馈系统向驾驶员或自动化停泊/停靠结构提供针对最优化充电条件的交通工具停泊的指导(即,交通工具的设备谐振器到充电站的源谐振器的最佳定位可以提供更大的功率转移效率)。自动化停泊/停靠设备可以允许基于交通工具被多好地耦合的交通工具的自动停泊。

功率传输系统可以用来对交通工具的设备和外围设备供电。可以在交通工具正在充电的同时或不在充电的同时向外围设备提供功率,或者可以向不需要充电的常规交通工具递送功率。例如,可以将功率无线地转移至常规非电动汽车以在被停泊的同时对空调、制冷单元、加热器、灯等供电以避免运行引擎,这对于避免在车库停车位或装载站台中耗尽积累是非常重要的。例如可以在公交车停泊的同时无线地向其转移功率以允许灯、外围设备、乘客设备等的供电,避免机载引擎或电源的使用。可以在飞机停在停机坪上或吊架中的同时无线地向其转移功率在不必使用机载引擎或电源的情况下对仪器、气候控制机构、除冰设备等供电。

交通工具上的无线功率传输可以用来实现交通工具至电网(v2g)的概念。交通工具至电网是基于利用电动交通工具和插电式混合电动交通工具(phev)作为分布式储能设备,在电力网被利用不足时的夜间充电,并且可用于在日间发生的峰值需求时段期间向电力网放电。可以以使得能够在不要求连接插头的情况下实现双向能量流动—使得能量从交通工具回流至电力网—的方式来实现交通工具和各基础设施上的无线功率传输系统。可以将停泊在工厂、办公室、停车场处的巨大的交通工具队视为智能电力网的“峰值功率容量”。车辆上的无线功率传输能够使此类v2g设想成为现实。通过简化将交通工具连接到电力网的过程(即,通过简单地将其停泊在无线充电使能停车场),一定数目的交通工具在电力网需要分接其功率时将是“可派遣的”变得更加可能。没有无线充电,电和phev所有者可能将在家里为其交通工具充电,并在工作时将其停在常规停车场中。谁想在工作时将其交通工具插上电,如果其不需要充电的话?用能够处理3kw的无线充电系统,100,000台交通工具能够向电力网返回300兆瓦—使用以成本效益基准负载发电能力在前一天晚上产生的能量。使其成为可行v2g能量源的是无声自动充电phev和电动交通工具的流线型人类工程学。

本文所述的系统和方法可以用来对交通工具上的传感器供电,诸如轮胎中的传感器以测量气压,或运行交通工具中的外围设备,诸如蜂窝电话、gps设备、导航设备、游戏机、音频或视频播放器、dvd播放器、无线路由器、通信设备、防盗设备、雷达设备等。例如,可以将本文所述的源谐振器构建到汽车的主舱中,以便向位于汽车主舱内部和外部的多种设备供应功率。在交通工具是摩托车等的情况下,可以将本文所述的设备集成到摩托车的主体中,诸如在座位下面,并且可以在用户的头盔中提供设备谐振器,诸如用于通信、娱乐、信令等,或者可以在用户的夹克中提供设备谐振器,诸如用于出于安全着想向驾驶员显示信号等。

本文所述的系统和方法可以与运输基础设施相结合地使用,诸如道路、火车、飞机、船等。例如,可以将源谐振器构建到道路、停车场、铁轨线等中。可以将源谐振器构建到交通灯、信号等中。例如,使用嵌入道路中的源谐振器和构建到交通工具中的设备谐振器,可以在交通工具沿着道路行驶时或在其被停在停车场中或道路的一侧时为其提供功率。本文所述的系统和方法可以提供在交通工具穿过道路网络或道路网络的一部分的同时为交通工具中的电气系统供电和/或充电的有效方式。这样,本文所述的系统和方法可以对自主交通工具、自动导向交通工具等的供电/充电有所贡献。本文所述的系统和方法可以向在交通工具通常空闲或停止的位置处的交通工具提供功率,诸如在交通灯或标志附近、在公路斜坡上或在停车场中。

本文所述的系统和方法可以在工业环境中使用,诸如在工厂内部以便对机器供电、对机器人供电/充电、对机器人臂上的无线传感器供电/充电、对工具供电/充电等。例如,使用本文所述的系统和方法来向机器人臂上的设备供应功率可以帮助消除跨越机器人臂的接头的直接导线连接。这样,可以减少此类直接导线连接的磨损,并增加机器人的可靠性。在这种情况下,设备谐振器可以在机器人臂上的外面,并且源谐振器可以在机器人的底座处,在机器人附近的中心位置处,集成到机器人正在提供服务的工业设施中等等。本文所述的系统和方法的使用可以帮助消除原本与工业设施内的配电相关联的布线,并因此有益于设施的总体可靠性。

本文所述的系统和方法可以用于地下应用,诸如钻孔、采矿、挖掘等。例如,与钻孔或挖掘相关联的电气组件和传感器可以利用本文所述的系统和方法来消除与挖掘机构、钻头等相关联的线缆敷设,由此消除挖掘点附近的线缆敷设或使其最小化。在另一示例中,可以使用本文所述的系统和方法来向采矿应用中的挖掘设备提供功率,其中,对设备的功率要求可能是高的且距离是大的,但是其中,没有人将经受相关的要求场。例如,挖掘区域可能具有谐振器供电挖掘设备,其具有高功率要求,并且可以相对距离源谐振器更远地进行挖掘。结果,源谐振器可能需要提供高场强度以满足这些要求,但是人员足够远地在这些高强度场之外。此高功率无人员方案可以适用于多个工业应用。

本文所述的系统和方法还可以使用近场非辐射谐振方案进行信息转移而不是功率转移(或除此之外)。例如,由近场非辐射谐振技术传送的信息可能对窃听不敏感,因此与传统无线通信方案相比可以提供增加的安全水平。另外,由近场非辐射谐振技术传送的信息可以不与em辐射谱相干扰,因此可以不是em干扰源,从而允许扩展频率范围内且完全在由任何管理组织设定的极限内的通信。可以在远程、不可接近或难以到达的位置之间提供通信服务,诸如在远程传感器之间、在设备或交通工具的各部之间、在隧道、洞穴和井中(例如,油井、其它钻场)和水下或地下设备之间等。可以在其中磁场比电场经历较少的损耗的地方提供通信服务。

本文所述的系统和方法可以实现无线功率传输系统中的源和设备之间的功率和通信信号的同时传输,或者其可以实现在不同时间段期间或不同的频率处进行功率和通信信号的传输。可以可控地改变谐振器的性能特性以优先地支持或限制能量或信息传送的效率或范围。例如,可以控制谐振器的性能特性以通过缩小信息传送的范围来改善安全性。可以连续地、周期性地、根据预定、计算或自动调整的算法来改变谐振器的性能特性。例如,可以以时间复用或频率复用的方式来提供由本文所述的系统和方法实现的功率和信息传送。源和设备可以通过调谐、改变、改动、抖动等谐振器阻抗来相互发送信号,所述谐振器阻抗可以影响能够检测的其它谐振器的反射阻抗。如本文所述地传送的信息可以包括关于设备识别、设备功率要求、握手协议等的信息。

源和设备可以感测、传送、处理和利用关于电力网中的任何其它源和/或设备的位置和定位信息。源和设备可以捕捉或使用来自可以被构建到源和设备中或者可以是源或设备连接的组件的多种传感器和源的信息,诸如海拔、倾斜度、经度和纬度等。定位和取向信息可以包括诸如全球定位传感器(gps)、指南针、加速度计、压力传感器、常压气压传感器、使用wi-fi或蜂窝式网络信号的定位系统等源。源和设备可以使用位置和定位信息来找到附近的无线功率传输源。源可以广播或与识别其位置的中央站或数据库通信。设备可以获得来自中央站或数据库或来自本地广播的源位置信息,并且可以借助于听觉、振动或音频信号来将用户或操作员引导至源。源和设备可以是电力网、通信网络、传感器网络、导航网络等中或各种组合功能网络中的节点。

位置和定位信息还可以用来使功率递送最优化或协调功率递送。可以使用关于源和设备的相对位置的附加信息来使磁场方向和谐振器对准最优化。例如,可以使用可以从加速度计和磁性传感器等获得的设备和源的取向来识别谐振器的取向和磁场的最适宜方向,使得磁通不被设备电路阻挡。用此类信息,可以使用具有最适宜的取向的源或源的组合。同样地,可以使用位置和取向信息来移动或给设备的用户或操作员提供反馈以将设备置于适宜的取向或位置以使功率传输效率最大化、使损耗最小化等。

源和设备可以包括功率计量和测量电路和能力。可以使用功率计量来跟踪多少功率被递送到设备或由源传递了多少功率。可以处于开帐单的目的在基于费用的功率递送布置中使用功率计量和功率使用信息。还可以使用功率计量来使得功率递送策略能够保证根据特定的标准来向多个设备分配功率。例如,功率计量可以用来基于接收到的功率的量将设备分类并在递送方面优先考虑已接收到最少功率的那些。功率计量可以用来提供可以被以单独的费率开帐单的分层递送服务,诸如“保证功率”和“尽力服务功率”。功率计量可以用来组成并实行分级功率递送结构,并且可以使得优先权设备在某些情况下或使用方案下能够要求并接收更多功率。

功率计量可以用来使功率递送效率最优化并使吸收和使辐射损耗最小化。源可以将关于由设备接收到的功率的信息与关于源的功率输出的信息相结合地使用来识别不适宜的工作环境或频率。例如,源可以将由设备接收到的功率的量与其传送的功率的量相比较以确定传输损耗是否可能异常地或不可接受地大。大量的传输损耗可能是由于从源接收功率的未授权设备而引起的,并且源和其它设备可以发起谐振频率的跳频或其它防范措施以防止或阻止未授权使用。大的传输损耗可能是由于例如吸收损耗而引起的,并且设备和源可以调谐至交变谐振频率以使此类损耗最小化。大量的传输损耗还可以指示不想要或不明对象或材料的存在,并且源可以关小或关闭其功率水平,直至去除或识别了不想要或不明对象,在这时,源可以重新开始对远程设备供电。

源和设备可以包括认证能力。认证可以用来保证仅兼容的源和设备能够传送和接收功率。认证可以用来保证仅是特定制造商的可信设备且不是克隆或来自其它制造商的设备和源或仅作为特定订阅或计划的一部分的设备能够从源接收功率。认证可以基于加密请求和应答协议,或者其可以基于允许其基于与物理上不可克隆功能类似的性质被使用和认证的特定设备的扰动的唯一签名。可以用本地通信在每个源与设备之间本地地执行认证,或者可以将其与第三人认证方法一起使用,其中,源和设备用通信向中央权威机构进行认证。认证协议可以使用位置信息来向真正设备的本地源报警。

源和设备可以使用跳频技术来防止无线功率源的未授权使用。该源可以连续地调整或改变功率递送的谐振频率。可以以已知、可再现或被传送到授权设备但难以预测的伪随机或预定方式来执行频率改变。跳频的速率和所使用的各种频率的数目可以大量且频繁到足以保证未授权使用是困难且不切实际的。可以通过调谐阻抗网络、调谐任何驱动电路、使用被调谐或可调谐至多个谐振频率的多个谐振器等来实现跳频。

源可以具有用户通知能力以示出关于源是否被耦合到设备谐振器并正在传送功率、其是否处于待机模式或者源谐振器是否解调谐或被外部对象扰动的源状态。通知能力可以包括视觉、听觉和振动方法。该通知可以如三色灯一样简单,每个状态一个,并且可选地是扬声器在操作错误的情况下提供通知。可替换地,通知能力可以涉及显示源的状态并可选地提供关于如何确定或解决所识别的任何错误或问题的指令的交互式显示器。

作为另一示例,可以使用无线功率转移来改善电子爆炸雷管的安全性。可以以电子雷管、电气雷管或激波管雷管来引爆爆炸设备。用传导地或通过无线电传送的低能量触发信号,电子雷管利用所储存的电能(通常在电容器中)来激活点火器电荷。电气雷管利用高能量传导触发信号来提供激活点火器电荷所需的信号和能量两者。激波管通过涂敷有爆炸物的空心管将受控爆炸从发电机发送到点火器电荷。存在与电气和电子雷管相关联的安全问题,因为存在意外的电磁能引起非故意激活的情况。经由锐谐振磁耦合的无线功率转移能够改善此类系统的安全性。

使用本文公开的无线功率转移方法,可以构建不具有本地储存的能量的电子起爆系统,因此减少非故意激活的风险。可以将无线功率源放置在雷管附近(几米内)。雷管可以装配有谐振捕捉线圈。可以在无线功率源已被触发时传送激活能量。可以由任何数目的机制来发起无线功率源的触发:无线电、磁性近场无线电、传导性信令、超声波、激光。基于谐振磁耦合的无线功率转移还具有能够通过诸如岩石、土壤、混凝土、水及其它稠密材料之类的材料来转移功率的益处。使用非常高q的线圈作为接收机和源(具有非常窄带的响应并被锐调谐至专用频率)进一步保证雷管电路不能捕捉意外的emi和非故意地激活。

无线供电设备的谐振器可以在设备外部或外面,并被接线到设备的电池。可以修改设备的电池以包括适当的整流和控制电路以接收设备谐振器的交流电。这可以使得能够实现具有较大外部线圈的结构,诸如可以被构建到键盘或鼠标或数字式静止照相机的电池门中,或者具有被附着到设备但被是用带状线缆背接线到电池/转换器的甚至更大线圈。可以修改电池门以提供从外部线圈到电池/转换器的互连(其将需要能够接触电池门触点的暴露触点)。

虽然已经结合某些优选实施例描述了本发明,但本领域的技术人员将认识到其它实施例,并且其意在落入以法律允许的最广泛意义来解释的本公开的范围内。

本文参考的所有文献通过引用结合到本文中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1