变换器装置的制作方法

文档序号:17354245发布日期:2019-04-09 21:28阅读:119来源:国知局
变换器装置的制作方法

本发明涉及变换器装置。



背景技术:

例如,在车载用的电动压缩机中,由变换器(逆变器)装置驱动马达,由此通过压缩机构压缩制冷剂。三相变换器装置在u相、v相以及w相这三相的每一相具备在正极母线与负极母线之间互相串联连接的上臂用开关元件和下臂用开关元件。作为这种技术,在日本特开2003-31765号公报中公开了如下技术方案:通过接合线将功率模块的上表面的电极焊盘与外部发射极端子连接,或者代替接合线而利用钎焊料将所述电极焊盘与外部发射极端子直接接合。



技术实现要素:

发明要解决的问题

各相的上下臂用开关元件由u相用、v相用以及w相用的驱动器中的对应的驱动器驱动。这些开关元件搭载于主电路基板,对应的驱动器搭载于控制基板。在使用igbt作为开关元件的情况下,有时在igbt的上表面设置辅助发射极用焊盘,并经由接合线将辅助发射极连接于驱动器。这是因为,当设置辅助发射极时,能够减短从igbt的发射极到驱动器的布线路径,能够期待igbt的开关的高速化以及动作的稳定化。但是,若在igbt设置辅助发射极用焊盘,则会妨碍小型化。另外,不仅需要抑制u、v、w相间的发射极布线路径的不平衡,还需要抑制上下臂之间的发射极布线路径的不平衡。

本发明的目的在与提供一种能够实现开关元件的小型化且能够抑制发射极布线路径的不平衡的变换器装置。

用于解决问题的技术方案

本公开的变换器装置具备:上臂用开关元件和下臂用开关元件,该上臂用开关元件和下臂用开关元件是u相、v相以及w相的各相的上臂用开关元件和下臂用开关元件,并在正极母线与负极母线之间相互串联连接;主电路基板,各相的所述上臂用开关元件和所述下臂用开关元件以互相相邻的方式搭载于该主电路基板;驱动器,该驱动器是u相、v相以及w相的各相的驱动器,并构成为驱动对应的相的所述上臂用开关元件和所述下臂用开关元件;以及控制基板,各相的所述驱动器以与对应的相的所述上臂用开关元件和所述下臂用开关元件的双方相对的方式搭载于该控制基板。各相的所述上臂用开关元件和所述下臂用开关元件分别具有发射电极。所述主电路基板具有:与所述各发射电极直接接合的布线用导电板;从所述各布线用导电板分支的辅助发射极;以及连接于所述各辅助发射极的控制端子。所述各控制端子从所述主电路基板朝向所述控制基板延伸,并与对应的相的所述驱动器电连接。

附图说明

图1是将电动压缩机的一部分剖开来示出的侧视图。

图2是沿着图1的a-a线的剖视图。

图3a是实施方式的变换器装置具备的功率模块的俯视图。

图3b是沿图3a的b-b线观察功率模块而得的图。

图4是图3a的功率模块的立体图。

图5a是图3a的功率模块的一部分的俯视图。

图5b是图3a的功率模块的一部分的侧视图。

图6是示出实施方式的变换器装置的电气构成的电路图。

图7是实施方式的变换器装置具备的控制基板的概略俯视图。

图8是示出实施方式的变换器装置的切断时的栅极-发射极电压、集电极电流以及集电极-发射极电压的测定结果的图。

图9是比较例的变换器装置具备的控制基板的概略俯视图。

图10是示出比较例的变换器装置的电气构成的电路图。

图11是示出比较例的变换器装置的切断时的栅极-发射极电压、集电极电流以及集电极-发射极电压的测定结果的图。

具体实施方式

以下,按照附图对将本发明具体化为车载用的电动压缩机的一实施方式进行说明。

如图1所示,电动压缩机10具备:压缩机构(例如涡旋压缩机构)11;具有三相交流马达13的马达部12;驱动三相交流马达13的三相变换器装置14。压缩机构11、马达部12以及三相变换器装置14在三相交流马达13的轴向即z方向上排列。电动压缩机10具有筒状的壳体15。在壳体15的内部收纳有压缩制冷剂的压缩机构11和驱动压缩机构11的马达部12。壳体15具有在与z方向交叉的方向上延伸的分隔壁15a。分隔壁15a呈圆板状。

壳体15具有第1外壳16和第2外壳17。第1外壳16和第2外壳17分别具有筒状的周壁和封闭周壁的一方的端部的端壁,周壁的另一方的端部为开口端。第1外壳16和第2外壳17配置成彼此的开口端相接。分隔壁15a为第1外壳16的端壁。第1外壳16和第2外壳17由例如铝材料形成。壳体15是通过将第1外壳16与第2外壳17连结而构成的。第1外壳16的周壁具有使制冷剂向第1外壳16内流入的流入口18。流入口18在径向上贯通第1外壳16的周壁。第1外壳16收纳压缩机构11和马达部12。

三相交流马达13具有轴13a。轴13a被轴承箱13b内的轴承支承为能够旋转。另外,三相交流马达13具有:固定于轴13a的转子13c和配置于转子13c的径向外侧的定子13d。定子13d固定于第1外壳16的周壁。线圈13e卷绕于定子13d的定子芯。

如图1和图2所示,在分隔壁15a的外表面上配置有使三相交流马达13驱动的三相变换器装置14。三相变换器装置14被罩19覆盖。罩具有:周壁、与分隔壁15a相接的开口端、以及开口端的相反侧的端壁。使罩19在z方向上移动而嵌于第1外壳16,由此三相变换器装置14被罩19覆盖。罩19,在覆盖着三相变换器装置14的状态下,通过螺纹件等固定于第1外壳16。罩19既可以由例如铝材料形成,也可以由用树脂涂布后的铁质材料形成。

变换器装置14包括功率模块20。由功率模块20构成图6的变换器电路21。在功率模块20内置有构成臂的功率元件(图6的开关元件q1~q6和二极管d1~d6)。

如图6所示,变换器装置14具备变换器电路21、变换器控制装置22、线圈23以及电容器24。变换器控制装置22具备与三相分别对应的驱动器25、26、27。驱动器25是u相用驱动器,驱动器26是v相用驱动器,驱动器27是w相用驱动器。驱动器25、26、27是ic化了的芯片(ic芯片)。

变换器电路21具有六个开关元件q1~q6和六个二极管d1~d6。开关元件q1~q6是igbt。在正极母线lp与负极母线ln之间,构成u相上臂的开关元件q1与构成u相下臂的开关元件q2串联连接。在正极母线lp与负极母线ln之间,构成v相上臂的开关元件q3与构成v相下臂的开关元件q4串联连接。在正极母线lp与负极母线ln之间,构成w相上臂的开关元件q5与构成w相下臂的开关元件q6串联连接。二极管d1~d6分别反并联连接于开关元件q1~q6。作为直流电源的车载蓄电池28连接于正极母线lp和负极母线ln。车载蓄电池28是高压例如600v的蓄电池。

三相交流马达13的u相端子连接于开关元件q1与开关元件q2之间。马达13的v相端子连接于开关元件q3与开关元件q4之间。马达13的w相端子连接于开关元件q5与开关元件q6之间。具有构成上下臂的开关元件q1~q6和二极管d1~d6的变换器电路21构成为,伴随于开关元件q1~q6的开关动作而将车载蓄电池28的直流电压变换为交流电压并将该交流电压向马达13供给。

u相用的驱动器25连接于开关元件q1、q2的栅极端子。v相用的驱动器26连接于开关元件q3、q4的栅极端子。w相用的驱动器27连接于开关元件q5、q6的栅极端子。驱动器25、26、27使对应的开关元件q1~q6进行开关动作。也就是说,变换器电路21的开关元件q1~q6和二极管d1~d6构成对应的相的上下臂。变换器电路21构成为,根据开关元件q1~q6的开关动作将从车载蓄电池28供给的直流变换为合适的频率的三相交流,并将该三相交流向三相交流马达13的三相线圈(图1的线圈13e)供给。即,当根据开关元件q1~q6的开关动作使三相交流马达13的三相线圈(图1的线圈13e)通电时,三相交流马达13被驱动。

电流检测用的分流电阻rs1连接于开关元件q2的发射极端子与负极母线ln之间。电流检测用的分流电阻rs2连接于开关元件q4的发射极端子与负极母线ln之间。电流检测用的分流电阻rs3连接于开关元件q6的发射极端子与负极母线ln之间。

控制基板30(参照图1)具备作为以主接地110为基准进行工作的电流检测用电路的ic35、36、37。ic35、36、37分别对应于u相、v相以及w相。分流电阻rs1、rs2、rs3各自的两端分别连接于作为电流检测用电路的ic35、36、37。详细而言,变换器控制装置22具备电流检测用的ic35,ic35对分流电阻rs1的两端间的电压进行检测。同样地,变换器控制装置22具备电流检测用的ic36,ic36对分流电阻rs2的两端间的电压进行检测。变换器控制装置22具备电流检测用的ic37,ic37对分流电阻rs3的两端间的电压进行检测。电流检测用的ic35、36、37根据对应的分流电阻的检测到的两端电压,分别对u相电流、v相电流、w相电流进行检测,并反映于开关元件q1~q6的控制。未图示的控制电源连接于驱动器25、26、27和电流检测用的ic35、36、37。

在变换器电路21的输入侧设置有包括线圈23和电容器24的滤波电路。电容器24例如是薄膜电容器。电容器24的一端连接于正极母线lp,电容器24的另一端连接于负极母线ln。线圈23的一端连接于车载蓄电池28的正极端子,线圈23的另一端连接于正极母线lp。

接着,对变换器装置14的构造进行说明。

如图1、2所示,变换器装置14具备功率模块20、线圈23、电容器24以及控制基板30等。控制基板30固定于壳体15。在控制基板30安装有功率模块20、线圈23、电容器24、驱动器25、26、27以及电流检测用的ic35、36、37等。功率模块20、线圈23、电容器24以及控制基板30等被罩19覆盖。罩19与壳体15导通。控制基板30具有圆板形状。控制基板30的外径与罩19的内径大致相同。

如图7所示,控制基板30具有形成有导体图案(导体图案pg等)的绝缘基板31。在控制基板30安装有驱动器25、26、27作为安装部件。驱动器25、26、27在x方向上排列。

如图7所示,控制基板30具有接地导体图案(groundconductorpattern)pg作为导体图案。接地导体图案pg具有在y方向上延伸的缝32。主接地端子112在接地导体图案pg中,相对于缝32连接于x方向上的一方侧(在图7中为左侧)。驱动器25、26、27在接地导体图案pg中,相对于缝32连接于x方向上的另一方侧(在图7中为右侧)。经过了主接地端子112与驱动器25、26、27之间的接地导体图案pg的路径(接地布线路径)因缝32的存在而变长。

如图1所示,壳体15具有凸起(圆柱部)29。螺纹件sc1贯通控制基板30地拧入凸起29,由此控制基板30被固定于壳体15。

如图2所示,在壳体15的圆形的端面(分隔壁15a),在沿着圆弧状的外缘的部分配置有功率模块20。也就是说,功率模块20以外缘沿着分隔壁15a的圆弧状的外缘的方式配置于分隔壁15a。功率模块20电连接于三相交流马达13。功率模块20、线圈23以及电容器24等电连接于控制基板30。

在图3a、图3b以及图4中示出功率模块20。功率模块20具备主电路基板40。主电路基板40是具有由例如铜形成的金属板和形成于金属板的上表面的绝缘层的绝缘基板。在主电路基板40形成有由铜形成的导体图案75、76、77、78、79、80、81、82、83、84、85、86、87、88、89。导体图案81、82、83各设有两个。主电路基板40具有扇型的形状。

在导体图案75钎焊(日文:はんだ付け)有开关元件(芯片)q2和二极管(芯片)d2。在图3a中,导体图案76形成于导体图案75的右侧,在导体图案76钎焊有开关元件(芯片)q1和二极管(芯片)d1。以下同样地,在图3a中,导体图案77形成于导体图案76的右侧,在导体图案77钎焊有开关元件(芯片)q4和二极管(芯片)d4。导体图案78形成于导体图案77的右侧,在导体图案78钎焊有开关元件(芯片)q3和二极管(芯片)d3。导体图案79形成于导体图案78的右侧,在导体图案79钎焊有开关元件(芯片)q6和二极管(芯片)d6。导体图案80形成于导体图案79的右侧,在导体图案80钎焊有开关元件(芯片)q5和二极管(芯片)d5。开关元件q1~q6与分别对应的二极管d1~d6在y方向上排列,并配置于比对应的二极管d1~d6靠外周侧的位置。

如图5a和图5b所示,布线用导电板90直接接合于开关元件q2的上表面的发射电极102、二极管d2的上表面电极以及导体图案81。以下同样地,如图3a、图4、图5a以及图5b所示,布线用导电板92直接接合于开关元件q1的上表面的发射电极102、二极管d1的上表面电极以及导体图案75。布线用导电板92与u相输出端子120电连接。布线用导电板94直接接合于开关元件q4的上表面的发射电极102、二极管d4的上表面电极以及导体图案82。布线用导电板96直接接合于开关元件q3的上表面的发射电极102、二极管d3的上表面电极以及导体图案77。布线用导电板96与v相输出端子121电连接。布线用导电板98直接接合于开关元件q6的上表面的发射电极102、二极管d6的上表面电极以及导体图案83。布线用导电板100直接接合于开关元件q5的上表面的发射电极102、二极管d5的上表面电极以及导体图案79。布线用导电板100与w相输出端子122电连接。

开关元件q1~q6和二极管d1~d6是分立元件,如图3a所示那样在俯视下具有长方形状。另外,如图3b所示,功率模块20中的基板40的背面为平坦面,该背面是功率模块20的散热面。基板40的散热面与壳体15热连接。

而且,如图2和图3a所示,壳体15的周壁的截面为圆形。并且,开关元件q1~q6和二极管d1~d6沿着壳体15的圆弧状的外缘配置。

这样,如图3a和图4所示,在主电路基板40搭载有与u相、v相、w相分别对应的上臂用开关元件q1、q3、q5、和与u相、v相、w相分别对应的下臂用开关元件q2、q4、q6。开关元件q1、q2配置成在x方向上相邻地排列,开关元件q3、q4配置成在x方向上相邻地排列,开关元件q5、q6配置成在x方向上相邻地排列。

在控制基板30搭载有驱动器25、26、27。驱动器25驱动u相的开关元件q1、q2,驱动器26驱动v相的开关元件q3、q4,驱动器27驱动w相的开关元件q5、q6。如图2所示,驱动器25、26、27分别配置成与对应的上臂用开关元件q1、q3、q5和下臂用开关元件q2、q4、q6隔着控制基板30相对。即,驱动器25配置成与开关元件q1、q2在z方向上排列,驱动器26配置成与开关元件q3、q4在z方向上排列,驱动器27配置成与开关元件q5、q6在z方向上排列。

如图3a和图4所示,分流电阻(芯片电阻器)rs1钎焊于两个导体图案81、81的在y方向上分开的部分。分流电阻(芯片电阻器)rs2钎焊于两个导体图案82、82的在y方向上分开的部分。分流电阻(芯片电阻器)rs3钎焊于两个导体图案83、83的在y方向上分开的部分。分流电阻rs1~rs3是分立元件。

形成于导体图案75、76、77、78、79、80的各自的外周侧的导体图案84、85、86、87、88、89与开关元件q1~q6的上表面的栅极电极通过接合线电连接。在导体图案84、85、86、87、88、89分别立设有作为信号端子的控制端子52、55、58、61、65、67。在与分流电阻rs1、rs2、rs3的一方的电极连接的一方的导体图案81、82、83分别立设有作为信号端子的电压监视端子50、56、62。在与分流电阻rs1、rs2、rs3的另一方的电极连接的另一方的导体图案81、82、83分别立设有作为信号端子的电压监视端子51、57、63。

如图3a、图4、图5a以及图5b所示,布线用导电板90直接接合于下臂用开关元件q2中的发射电极102。辅助发射极(布线用导电板)91从布线用导电板90分支。在辅助发射极91电连接有立设的控制端子53。

同样地,布线用导电板92直接接合于上臂用开关元件q1中的发射电极102。辅助发射极(布线用导电板)93从布线用导电板92分支。在辅助发射极93电连接有立设的控制端子54。

布线用导电板94直接接合于下臂用开关元件q4中的发射电极102。辅助发射极(布线用导电板)95从布线用导电板94分支。在辅助发射极95电连接有立设的控制端子59。

布线用导电板96直接接合于上臂用开关元件q3中的发射电极102。辅助发射极(布线用导电板)97从布线用导电板96分支。在辅助发射极97电连接有立设的控制端子60。

布线用导电板98直接接合于下臂用开关元件q6中的发射电极102。辅助发射极(布线用导电板)99从布线用导电板98分支。在辅助发射极99电连接有立设的控制端子64。

布线用导电板100直接接合于上臂用开关元件q5中的发射电极102。辅助发射极(布线用导电板)101从布线用导电板100分支。在辅助发射极101电连接有立设的控制端子66。

如图3a、图3b以及图4所示,负极用端子70具有在x方向上延伸并与一方的导体图案81、82、83连接的部分和从x方向的一端部(在图3a、图3b以及图4中为左端部)朝向控制基板30在z方向上延伸的部分。负极用端子70是负极母线。正极用端子71具有在x方向上延伸并与导体图案76、78、80连接的部分和从x方向的一端部(在图3a、图3b以及图4中为左端部)朝向控制基板30在z方向上延伸的部分。正极用端子71是正极母线。

如图1所示,从功率模块20延伸的端子50~67贯通控制基板30并钎焊于控制基板30。此时,分别连接于辅助发射极91、93、95、97、99、101的控制端子53、54、59、60、64、66从主电路基板40朝向控制基板30在z方向上延伸,并电连接于控制基板30的对应的驱动器25、26、27。

另外,u相输出端子(连接器)120、v相输出端子(连接器)121、w相输出端子(连接器)122连接于马达部12。

如图6所示,电流检测用的ic35、36、37以主接地(主接地端子)110为基准进行工作,下臂用开关元件q2、q4、q6以不同于主接地110的辅助发射极用接地(辅助发射极用接地端子)111为基准进行驱动。

如图3a所示,端子50~67沿x方向排列。主电路基板40具有沿长边方向(x方向)排列的三个区域(第1区域、第2区域以及第3区域)。u相用的端子50~55排列于第1区域(在图3a中为左侧的区域),w相用的端子62~67排列于第3区域(在图3a中为右侧的区域),v相用的端子56~61排列于正中间的第2区域。即,u相的控制端子52、55、v相的控制端子58、61、w相的控制端子65、67在一个方向上排列。另外,u相用的开关元件q1、q2、v相用的开关元件q3、q4以及w相用的开关元件q5、q6分别配置于第1区域、第2区域以及第3区域。即,开关元件q1~q6在每个相沿x方向排列。另外,u相的上臂用开关元件和び下臂用开关元件的组q1、q2、v相的上臂用开关元件和下臂用开关元件的组q3、q4、w相的上臂用开关元件和下臂用开关元件的组q5、q6在与控制端子排列的方向相同的方向上排列。

接着,对本实施方式的作用进行说明。

通过u相用的驱动器25向对应的u相用的开关元件q1、q2的栅极电极施加脉冲状的栅极电压,来对开关元件q1、q2进行导通/切断控制。同样地,通过v相用的驱动器26向对应的v相用的开关元件q3、q4的栅极电极施加脉冲状的栅极电压,来对开关元件q3、q4进行导通/切断控制。通过w相用的驱动器27向对应的w相用的开关元件q5、q6的栅极电极施加脉冲状的栅极电压,来对开关元件q5、q6进行导通/切断控制。从车载蓄电池28供给的直流根据开关元件q1~q6的开关动作而变换为合适的频率的三相交流,并向三相交流马达13的各相的线圈供给。在开关元件(igbt)q1~q6导通时对栅极进行充电,在切断时从栅极放电。

以下,与下臂用开关元件的作用相关联地说明为了w相用的下臂用开关元件(igbt)q6的断开(turn-off)动作稳定化而对栅极环路(gateloop)进行改善的情况。

在图8中示出本实施方式的特定的开关元件中的断开(turn-off)时的栅极-发射极电压vge、集电极电流ic以及集电极-发射极电压vce的测定结果。在图8中一并记载了阈值电压vth。

图9、图10以及图11是对比较例进行说明的图。在比较例的变换器装置14a(参照图10)中,在开关元件q2、q4、q6不具备辅助发射极路径这一点和电流检测用的ic的功能被组入驱动器这一点上与本实施方式的变换器装置14(参照图6)不同。

在比较例的控制基板30a(参照图9)中,在开关元件q2、q4、q6的发射极通过接地导体图案pg连接这一点上与本实施方式的控制基板30(参照图7)不同。在图11中示出与本实施方式的测定结果(图8)进行比较的比较例中的测定结果。

在图9和图10所示的比较例中,如图10和图9中虚线所示,从igbt的发射极到驱动器27的主接地(端子)110的布线路径(电力线)长。因此,如图11所示,在集电极电流ic切断时,栅极-发射极电压vge跨过阈值电压vth地在阈值电压vth附近停滞。其结果,会产生错误的导通(误导通),集电极电流ic流动。

与此相对,在图6和图7所示的本实施方式中,如图6和图7中虚线所示,从igbt的发射极到驱动器27的辅助发射极用接地(端子)111的布线路径(电力线)短。因此,能够减小布线电感。由此,如图8所示,能够减小集电极电流ic切断时的电感,能够抑制栅极-发射极电压vge的上升。其结果,栅极-发射极电压vge不会在阈值电压vth附近停滞。因此,能够避免起因于产生错误的导通而集电极电流ic流动的情况。

接着,对具备辅助发射极焊盘进行引线接合的情况进行说明。

在大型的igbt中,为了开关的速度提高和稳定的动作,有时在igbt的发射电极上具备小信号用的辅助发射极用焊盘。在该情况下,以igbt的栅极-发射极间到驱动器25、26、27的环路(栅极环路)尽可能短的方式,利用线接合将辅助发射极与驱动器连接来进行栅极驱动。在此,随着芯片的小型化进展,辅助发射极的引线接合所需要的焊盘面积比率变高。因此,对辅助发射极进行引线接合这一情况有可能成为芯片的小型化的妨碍要因,另外,也会成为在密集的部位进行引线接合的制造上的问题。由于这样的情况,在小型(30a左右的电流容量)的igbt中,大多不具备辅助发射极。

在本实施方式中,采用dlb(直接端子键合(directleadbond))将主发射极与辅助发射极集成于一处连接。并且,对应的辅助发射极91、93、95、97、99、101从igbt具备的发射极布线用导电板(主发射极的引线)分支。

由此,igbt能够不用另外设置辅助发射极用焊盘地具备辅助发射极。其结果,在小型的芯片也能够安装辅助发射极,构成短的栅极环路。由此,能够改善栅极环路以使断开动作稳定化。也就是说,通过缩短从开关元件(igbt)的发射极到驱动器的接地的路径,能够减小环路上的布线电感(寄生电感)。其结果,能够减小集电极电流切断时产生的栅极-发射极电压vge=ls〃di/dt中的寄生电感ls,能够抑制栅极-发射极电压vge的上升。另外,通过使用dlb方法将主发射极与辅助发射极91、93、95、97、99、101的连接集成于一处,从而能够以简单的构成实现辅助发射极的安装。另外,能够实现开关动作(导通(turn-on)以及断开(turn-off))的稳定化和高速化。

根据上述实施方式,能够得到以下那样的效果。

(1)搭载于变换器装置14的主电路基板40具有在正极母线lp与负极母线ln之间在每一相串联连接的上臂用开关元件q1、q3、q5和下臂用开关元件q2、q4、q6。搭载于变换器装置14的控制基板30具有驱动对应的相的开关元件q1~q6的驱动器25、26、27。各相的驱动器25、26、27配置成与对应的相的上臂用开关元件q1、q3、q5和下臂用开关元件q2、q4、q6的双方相对。上臂用开关元件q1、q3、q5和下臂用开关元件q2、q4、q6各自具有发射电极102。布线用导电板90、92、94、96、98、100直接接合于发射电极102。分别从布线用导电板90、92、94、96、98、100分支的辅助发射极91、93、95、97、99、101连接于对应的控制端子53、54、59、60、64、66。控制端子53、54、59、60、64、66从主电路基板40朝向控制基板30延伸,并与驱动器25、26、27电连接。

即,在主电路基板40中,上臂用开关元件q1、q3、q5与下臂用开关元件q2、q4、q6分别相邻地配置。另外,驱动器25、26、27以配置成分别与对应的相的上臂用开关元件q1、q3、q5和下臂用开关元件q2、q4、q6相对的状态搭载于控制基板。从直接接合于发射电极102的布线用导电板90、92、94、96、98、100,分别分支有辅助发射极91、93、95、97、99、101。经由这些辅助发射极,开关元件的发射极电连接于对应的相的驱动器25、26、27。根据这样的构成,从开关元件的发射极到驱动器的路径变短。因此,能够缩短u、v、w相间的发射极布线路径和上下的臂间的发射极布线路径,能够抑制发射极布线路径的不平衡。其结果,能够实现在u、v、w相间的发射极布线路径中的寄生电感的均等化并且能够实现在上下臂间的发射极布线路径中的寄生电感的均等化。另外,与在开关元件的上表面设置辅助发射极用焊盘并经由接合线与驱动器连接的情况相比,能够不需要辅助发射极用焊盘,所以装置能够小型化。其结果,能够实现开关元件的小型化并且抑制发射极布线路径的不平衡。另外,从开关元件的发射极到驱动器的路径变短,可减小布线电感。

(2)电流检测用的ic35、36、37以主接地为基准进行工作。分流电阻rs1、rs2、rs3配置于负极母线ln与下臂用开关元件q2、q4、q6的发射极端子之间,从分流电阻rs1、rs2、rs3与发射极端子之间分别分支出辅助发射极91、95、99。分流电阻rs1、rs2、rs3的各自的两端连接于对应的相的电流检测用的ic35、36、37。下臂用开关元件q2、q4、q6以不同于主接地110的辅助发射极用接地(专用端子)111为基准进行驱动。由此,与从分流电阻中的另一方的端子侧(发射极端子相反侧)连接于驱动器相比,能够减小电感。

假设在使电流控制用的ic35、36、37也与下臂用开关元件同样地以辅助发射极用接地111为基准进行工作的情况下,作为基准的电压成为辅助发射极用接地111的电位。ic35、36、37为了检测准确的电流值,需要将辅助发射极连接于分流电阻的发射极端子相反侧的布线,这样一来,在下臂用开关元件工作时,辅助发射极的布线路径包括分流电阻,所以电感会增加。

(3)u相的控制端子52、55、v相的控制端子58、61、w相的控制端子65、67在一个方向上排列。另外,u相的上臂用开关元件和下臂用开关元件的组q1、q2、v相的上臂用开关元件和下臂用开关元件的组q3、q4、w相的上臂用开关元件和下臂用开关元件的组q5、q6在与控制端子排列的方向相同的方向上排列。由此,能够实现省空间化。

实施方式并不限定于所述,例如,也可以像以下那样具体化。

●控制基板30具有u相用驱动器、v相用驱动器、w相用驱动器,但也可以使用三相用的一个驱动器。

●也可以是,主电路基板40不具备分流电阻,而是具备对电流进行计测的霍尔元件等来代替分流电阻。另外,分流电阻也可以仅设置于三相中的两相。

●变换器装置14也可以使用于除了电动压缩机以外的设备。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1