激光隔热装置的制造方法_2

文档序号:9509071阅读:来源:国知局
4.5份、钛0.6份?0.8份、镁4份?4.5份、铁1份?1.5份、镍1份?1.2份、猛0.2份?0.4份、石墨稀0.5份?2份、铬0.7份?0.8份、钒0.6份?0.8份和硅1.2份?15份。
[0042]优选地,所述隔离板210与所述隔热板200包括如下质量份的各组分:
[0043]铜72份、铝4.3份、银3.5份、钛0.7份、镁4份、铁1.2份、镍1.1份、锰0.3份、石墨烯1.6份、铬0.75份、钒0.75份和硅1.3份。
[0044]由上述组份合成的合金,具有良好的吸热和导热性能,其中,铜的导热率为500?600W/(m*°C ),铝的导热率为200?300W/(m*°C ),以这两种金属作为主要原料的合金具有较强的导热性能,而银的导热率600?750W/ (m*°C ),合金中的银更佳有效地合金的导热性會κ。
[0045]应该理解的是,所述隔离板210的厚度不宜太厚,太厚则无法降低了热量传导至隔热板200的速度,而如果厚度太薄,则容易使得所述隔离板210两侧的激光模块100间距太近,不利于热量散发,且容易使得隔离板210两侧的激光模块100的热量相互影响,为了使得隔离板210 —方面可以迅速吸收热量,另一方面减小隔离板210两侧的激光模块100的热量的相互作用,例如,所述隔离板210厚度设置为8mm?12mm,优选地,所述隔离板210厚度设置为9mm?10mm,优选地,所述隔离板210厚度设置为9.5mm,这样,使得隔离板210的导热效率得到提高,可以将激光模块100的热量吸收后迅速传递至隔热板200,另一方面,避免了两个相邻的激光模块100的间距太近,使得两者之间的热量相互影响,造成局部温度过高,从而影响激光模块100的使用寿命。
[0046]为了提高散热效果,如图3至图6所示,所述冷却机构300还包括多个冷却板320,所述冷却板320与所述隔热板200连接,多个所述冷却板320连接内部形成冷却腔330,例如,所述多个冷却板320依次连接形成冷却筒310,例如,多个所述冷却板320连接内部形成冷却腔330,例如,多个所述冷却板320 —体成型连接,形成内部具有冷却腔330的冷却筒310,例如,所述冷却腔330形状与所述冷却筒310形状匹配,例如,所述冷却筒310为方形,则所述冷却腔330为方形环,所述冷却腔330环绕所述冷却筒310设置,例如,请参见图3,所述冷却筒310为圆形,则所述冷却腔330为圆形环,所述冷却腔330环绕所述冷却筒310设置。所述冷却板320将所述隔热板200的热量吸收后,所述冷却腔330迅速将热量吸收并散发,使得所述激光模块100的热量可以迅速散发。
[0047]为了进一步提高所述冷却腔330的吸热能力,如图4所示,所述冷却机构300还包括冷却器340,所述冷却器340与所述冷却腔330连通,所述冷却腔330内受隔热板200热量加热的的空气可以通过冷却器340得到降温,使得所述冷却腔330的内空气可以吸收更多热量,吸热效率更高。
[0048]例如,请再次参见图4,所述冷却机构300还包括冷却管350,所述冷却器340通过冷却管350与所述冷却腔330连通,例如,所述冷却管350包括第一循环管351和第二循环管352,所述冷却腔330具有第一流通口 331和第一流通口 332,所述冷却器340通过所述第一循环管351与所述冷却腔330的所述第一流通口 331连通,并通过所述第二循环管352与所述第一流通口 332连通,这样,吸收了热量的空气可以通过第一流通口 331和第一循环管351进入冷却器340,在所述冷却器340作用下,热量由所述冷却器340吸收并排出,经冷却的空气通过第二循环管352和第一流通口 332再次进入冷却腔330中,使得冷却腔330的温度得到降低,提高冷却腔330的吸热能力。
[0049]例如,所述冷却腔330内设置有冷却介质,例如,所述冷却介质为空气,空气是良好的热传递媒介,容易获取,具有流通速度快,易于传输的特点,空气可以迅速在冷却腔330及冷却器340中流通,使得热交换效率提高,为了进一步提高所述冷却机构300的吸热效果,例如,所述冷却介质为冷却液,例如,所述冷却液为冷却水,水具有比热容大的特点,且具有价格低廉,易于获取的优点,当冷却水在冷却腔330内流通时,可以有效带走冷却板320的热量,并使得热量通过冷却器340散发,由于比热容大,冷却水可以充分吸收冷却板320的热量,而温度不至于升高过多,具有良好的吸热效果。例如,所述冷却器340包括水冷箱360,所述水冷箱360通过冷去管与所述冷却腔330连通,例如所述水冷箱360内设置有多个铜管,所述铜管与设置于所述水冷箱360外部的散热翅片361连接,冷却水将所述冷却腔330的热量带到水冷箱360内,所述水冷箱360内的铜管吸收了冷却水的热量后,将热量传递至散热翅片361,散热翅片361将热量散发。
[0050]例如,为了提高冷却腔330内冷却水的吸热效率,请再次参见图4,所述冷却腔330内设置有金属颗粒333,例如,所述金属颗粒333为铜粒,例如,所述金属颗粒333为铝铜合金粒,金属颗粒333具有良好的导热效果,可以充分吸收冷却板320的热量,且金属颗粒333增加了与冷却水的接触面积,在冷却水流动过程中,金属颗粒333能够在多个角度与冷却水充分接触,使得热量可以充分由金属颗粒333传递至冷却水,提高了热转换效率。
[0051]为了避免金属颗粒333随着冷却水的流动而流出所述冷却腔330,如图4所示,所述冷却腔330的所述第一流通口 331和所述第一流通口 332分别设置有滤网334,所述滤网334具有滤孔,所述滤孔的直径小于所述金属颗粒333的直径,应该理解的是,所述金属颗粒333的直径不能过大,如果金属颗粒333的直径过大,金属颗粒333的质量随之增大,则影响所述金属颗粒333的流动性,使得金属颗粒333无法充分随着冷却水的流动而运动,减小了金属颗粒333与冷却水的接触频率,而金属颗粒333的直径也不宜过小,过小则金属颗粒333容易从冷却腔330中流失,而为了避免直径过小的金属颗粒333流失,则滤孔的直径则相应要减小,滤孔的直径的减小则降低了冷却水的流动性,为了提高金属颗粒333的灵活度,并使得冷却水的流动性较佳,例如,所述金属颗粒333直径为3mm?6mm,所述滤孔直径为1.8mm?3.5mm ;优选地,所述金属颗粒333直径为5_,所述滤孔直径为3_,这样,金属颗粒333具有较小的体积和质量,灵活度较高,可随冷却水流动而快速运动,增加与冷却水的接触频率,另一方面,滤孔的控制可以充分过滤金属颗粒333,避免金属颗粒333流失,且具有良好的通过性,使得冷却水具有较佳的流动性,从而使得冷却水可以迅速将热量带走。
[0052]为了进一步提高吸热效果,例如,所述冷却液为乙醇,乙醇具有易挥发的特性,当乙醇在所述冷却腔330时,受热容易挥发,能够迅速吸收所述冷却板320的热量,当乙醇流通到冷却器340时,在冷却器340的作用下放出热量,乙醇凝聚为液体,再次流通入冷却腔330内,从而实现了吸热和散热的循环,大大提高了冷却板320的散热效率。
[0053]例如,所述冷却介质为液态氮,液态氮具有极低温度,具有非常好的吸热效果,当液态氮在冷却腔330内流通时,可极快地吸收冷却版的热量,使得冷却版具有非常好的吸热效果,能够迅速将隔热板200的热量吸收,使得激光模块100在正常温度下工作,大大提高了激光模块100的使用寿命。
[0054]为了进一步提高冷却机构300的冷却效果,例如,所述冷却介质为制冷剂,例如,所述制冷剂为R417A,例如,如图5所示,所述冷却器340包括压缩机341、节流阀342和冷凝器343,所述压缩机341的一端与冷凝器343 —端连接,所述冷凝器343的另一端与节流阀342的一端连接,所述节流阀342的另一端与冷却腔330的一端连接,所述冷却腔330的另一端与压缩机341的另一端连接,具体应用中,压缩机341工作,将制冷剂压缩为高温高压气态制冷剂,制冷剂经压缩后进入冷凝器343,在冷凝器343的冷却作用下,高温高压的气态制冷剂冷却为低温高压的液态制冷剂,低温高压液态制冷剂在节流阀342降压作用下,变为低温低压液态制冷剂,低温低压液态制冷剂进入冷却腔330后,吸收冷却腔330内的热量,迅速挥发,使得冷却腔330和冷却板320的温度迅速降低,从而使得隔热板200的热量被大量吸收,挥发后的气态制冷剂进入压缩机341后,再次进行压缩,以此过程不断循环,在激光模块100工作时为激光模块100低温的工作环境,延长激光模块100的使用寿命。
[0055]为了进一步提高所述冷却板320的吸热和导热能力,请同时参见图6和图7,所述冷却板320内设置有冷却毛细管325,例如,所述冷却毛细管325与所述冷却腔330连通,这样,通过所述冷却毛细管325可以增加冷却腔330与冷却板320的接触面积,进一步提高冷却腔330的吸热效率,使得所述隔热板200的热量可以通过所述冷却板320高效地传递到冷却腔330,并通过冷却腔330散发。
[0056]例如,所述冷却毛细管325内设置有冷却液,例
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1