制备陶瓷成形部件的方法、装置及其用途的制作方法

文档序号:8042498阅读:150来源:国知局
专利名称:制备陶瓷成形部件的方法、装置及其用途的制作方法
制备陶瓷成形部件的方法、装置及其用途本发明涉及制备至少一种陶瓷成形部件(shaped part)的方法,制备至少所述陶瓷成形部件的装置及其用途。现有技术描述对于陶瓷成形部件,当前的问题是产生具有所需尺寸的形状,特别是大尺寸成形部件,其可循环多次使用。进一步讲,在若干领域中都需要大尺寸陶瓷成形部件,例如制备太阳能电池工业所需的硅锭。目前,当制备硅锭用于进一步制备硅片时,使用由二氧化硅构成的成形部件。在制备太阳能电池用硅所必需的高温下,被称为石英坩埚(silica crucible)的二氧化硅成形部件暴露于高达1500°C的温度下。石英坩埚在例如1500°C的高温下软化。当将石英坩埚冷却至室温时会形成裂纹,使得坩埚无法循环使用。在若干制备方法中,坩埚仅能使用一次,涉及成本巨大。数种已知的制备陶瓷成形部件的技术中包括不同的模制(moulding)方法。在这些方法中,制备主要是优选粉末的含水组合物和适当粘合剂的刮平/分散体。该刮平/分散体也可以基于除了水的其他液体,例如乙醇或其他醇类。刮平体(slicker)倒入注模中 (典型地为石膏模具)。在模具中提取刮平体中的液体,并在一段时间后拆除模具。获得由粘合剂结合粉末构成的生坯。然后对生坯进行若干加工步骤,例如干燥、去除粘合剂以及氮化/烧结,随后获得所需的产品。生坯具有低强度,因而可以在进一步操作和处理中容易地改变形状和裂纹。这对于制备较大尺寸和较复杂成形部件来说尤为重要。压力注浆是另一种已知的技术。其基础主要是粉末、粘合剂和一些液体的组合物。 组合物通过不同的方法压制以获得所需的形状,即生坯。压制大的和/或复杂的几何形状非常困难,直至今日在技术上仍未得以解决。生坯具有如上所述的相同问题。在高温下、典型地在1150-1400摄氏度下根据下述反应式进行硅至氮化硅的氮化(l)3Si(s)+2N2(g) = Si3N4 (s)该反应强烈放热并因此可能产生过热区域并因而发生后续扩大反应。在这种情况下,形成液态硅的可能性非常大。液态硅并不会转化为氮化硅,因此导致材料的弱化。这是一个制备氮化硅的已知问题,并且在制备大尺寸成形部件时尤其难以避免。本发明意在解决或至少推进上述问题。特别是,本发明的一个目的在于提供方法, 其非常适合于制备在制造太阳能电池工业所需硅锭时使用的陶瓷成形部件。进一步地,本发明的一个目的在于提供方法,在该方法中所述陶瓷成形部件可以循环使用若干次。在本发明中,制备陶瓷成形部件时所遇到的问题,例如变形或裂纹得以避免。进一步地,在本发明中不使用粘合剂或液体,因此无需额外的加工步骤以进行干燥和去除粘合剂。还使用了可以补偿在氮化过程中陶瓷成形部件温度的模型件(shape),由此意味着最小化形成液态硅的可能。与本领域中的现有技术相比,本发明提供了简化的、适于制备大尺寸成形部件的方法,该方法由较少工艺步骤组成,避免了变形并经济上有益。本发明提供了制备至少一种陶瓷成形部件的方法,其中-在至少一个外部模型件和至少一个内部模型件之间提供腔体;
-将含硅粉末组合物置于所述腔体中,-在反应性气体气氛中将硅粉末组合物加热至获得反应结合的陶瓷成形部件的温度。进一步地,应该注意到至少一个外部模型件是穿孔的和至少一个内部模型件也是穿孔的。穿孔的模型件会产生相对均勻的反应性气体气氛。进一步地,制备反应结合的陶瓷成形部件的反应在可确保所需气体气氛供应的穿孔模型件的基础上迅速发生。本发明的内部模型件通过插入耐热可变形材料彼此分开,其中该耐热可变形材料选自石墨毡、石墨织物或石墨棒。在提供该腔体前,用浆料涂覆如上所述的提供在至少所述外部模型件和内部模型件之间的腔体。在用浆料涂覆前,根据本发明在至少一个外部模型件和所述浆料间施加箔片。进一步地,在用浆料涂覆前在至少一个内部模型件和所述浆料间施加箔片。在用浆料涂覆前施加耐热的穿孔箔片。所述浆料包括含有氮化硅的粉末,粒径< 100μ,< 80μ, ^ 60 μ,^ 40 μ,^ 20 μ,^ 10 μ,或彡 1 μ。本发明所述含硅粉末组合物选自下述成分中的至少一种硅,碳化硅,氮化硅。反应性气体气氛至少含有氮气。进一步地,当实施本发明时也可以使用其他气体气氛或气体组合物。本发明的至少一个外部模型件和至少一个内部模型件包括含石墨材料。进一步地,本发明包括用于制备至少一种陶瓷成形部件的装置,该装置包括在至少一个外部模型件和至少一个内部模型件之间的至少一个腔体,用于插入含硅粉末组合物的机构,用于在反应性气体气氛下加热的机构。本发明的装置包括穿孔的至少一个外部模型件和内部模型件。进一步地,如上所述需要提供能暴露于热应力下,同时保持原始尺寸并且避免裂纹形成的装置。与此相关,本发明进一步提及包括如上所述的装置,其中至少内部模型件具有高于反应结合的陶瓷成形部件的热膨胀系数,且至少外部模型件具有低于反应结合的陶瓷成形部件的热膨胀系数。 在使用热膨胀系数低于反应结合的陶瓷成形部件的内部模型件的情况下,耐热可变形材料分隔至少两个内部模型件。所述耐热可变形材料选自石墨毡、石墨织物或石墨棒。进一步地,本发明包括使用提供在至少一个外部模型件和至少一个内部模型件之间的腔体,其中在腔体中提供含硅粉末组合物,然后在反应性气体气氛中将粉末组合物加热至制备陶瓷成形部件的温度。在提供腔体前,所述腔体用含氮化硅的浆料涂覆。在用浆料涂覆前,在至少一个外部模型件和所述浆料间使用箔片。进一步地,在用浆料涂覆前,在至少一个内部模型件和所述浆料间使用箔片。箔片由耐热的穿孔箔片构成。本发明的应用在包含氮气的气体气氛或含氮气气体气氛下进行。附图描述至少一个陶瓷成形部件的成形取决于该陶瓷成形部件的目标和应用。在制备太阳能电池行业用的硅锭时,通常使用正方形或长方形成形部件。

图1显示了不同部件构成形状的横截面。图2显示了从正方形的侧面所见的横截面。图3显示了从上向下看得到的正方形的横截面。图4和图6分别显示了圆形内部模型件和从上向下看得到的圆形最终模型件。图5和图7显示了圆形内部模型件和外部模型件的横截面。实施例1在该实施例中使用由不同含石墨材料的部件构成的模型件。该模型件由如图1所
5示的内部模型件(A)、外部模型件(B)、基板(底板)(C)和板(D)构成。对除基板以外的含石墨部件穿孔。包括四个相对相似的含石墨部件的内部模型件彼此紧固并紧固在基板上。 所述部件使用例如螺钉的合适的固定装置彼此紧固。在内部模型件部件之间的间距中施加石墨棒、石墨毡或石墨织物形式的耐热可变形材料(E)。在内部含石墨模型件上施加穿孔石墨箔片。箔片的穿孔优选与含石墨部件的穿孔不重合。外部模型件由四个相对相似的含石墨板构成。在外部含石墨模型件上施加穿孔石墨箔片。在由石墨箔片涂覆的表面上进一步涂覆含氮化硅的浆料。浆料在室温下干燥。外部含石墨模型件在基板上组装(图1)。进一步地,所述外部含石墨部件紧固在基板上并在内部模型件上方。含硅粉末放置在内部和外部模型件之间提供的腔体(图1,F)中,该含硅粉末的优选尺寸在下述一个或多个范围内 < 10微米,< 20微米,< 40微米,< 60微米,< 75微米,< 100微米,< 120微米,< 150 微米,< 180微米,< 200微米。进一步地,含硅粉末通过振动压实。在如上所述尺寸范围内的含硅粉末最终置于所述腔体的上部区域。粉末进一步振动压实以及机械压实。如图1 所示,该实施例中刚性安装的模型件翻转180度。进一步地,将基板拆除。刚性安装的模型件置于具有氮气气氛的炉中。炉迅速加热到1100-1200°C,然后在40-60小时内缓慢加热到 1400-1500°C。安装的模型件随后冷却至室温。整个炉循环(即加热,制备至少一个陶瓷成形部件以及冷却)在60-90小时的时间间隔内发生,该循环起始于冷的安装模型件,经由将模型件加热至1400-1500°C,最终结束于冷却的/冷的安装模型件。冷却后将所述模型件从炉中取出。拆除外部和内部含石墨模型件,获得尺寸与所述外部和内部含石墨模型件之间腔体相同的反应结合的氮化硅成形部件/陶瓷成形部件。陶瓷成形部件上来自含石墨模型件的可能残留浆料可以简单方式通过干冰鼓吹(t0rrisbmsing)或机械摩擦/修整去除。利用清洁布清洁含石墨部件并为再次应用做准备。实施例2在实施例2中使用与实施例1相同的步骤,除了粉末组合物不同。在该实施例中, 使用含有硅(70重量%,< 150微米)和碳化硅(30重量%,< 150微米)的粉末组合物。 拆除石墨部件后,获得氮化物结合的碳化硅成形部件。实施例3在实施例3中使用与实施例1相同的方法,除了粉末组合物不同。在该实施例中, 选择含有硅(70重量%,< 150微米)和氮化硅(30重量%,< 10微米)的粉末组合物。拆除石墨部件后,获得氮化物结合的氮化硅成形部件。前文中描述了本发明的优先实施方案,很显然对于本领域技术人员来说其他包括相同概念的实施方案也可以使用。如上所述的本发明这些和其他实施例仅仅作为示例进行描述,本发明的保护范围在下述权利要求中进行描述。
权利要求
1.制备至少一个陶瓷成形部件的方法,其特征在于-在至少一个外部模型件和至少一个内部模型件之间提供腔体, -将含硅粉末组合物置于所述腔体中,-在反应性气体气氛中将所述硅粉末组合物加热至获得反应结合的陶瓷成形部件的温度。
2.根据权利要求1的方法,其中至少一个外部模型件经穿孔。
3.根据权利要求1的方法,其中至少一个内部模型件经穿孔。
4.根据权利要求1的方法,其中通过插入耐热可变形材料使至少两个内部模型件彼此分开。
5.根据权利要求4的方法,其中耐热可变形材料选自下述材料中的至少一种石墨毡、 石墨织物、石墨棒。
6.根据权利要求1的方法,其中在提供腔体前用浆料涂覆该腔体。
7.根据权利要求1的方法,其中在用浆料涂覆前,在至少一个外部模型件和所述浆料间施加箔片。
8.根据权利要求1的方法,其中在用浆料涂覆前,在至少一个内部模型件和所述浆料间施加箔片。
9.根据权利要求7-8的方法,其中在用浆料涂覆前施加耐热的穿孔箔片。
10.根据权利要求1的方法,其中浆料包括含有粒径<100μ的氮化硅的粉末。
11.根据权利要求1的方法,其中所述含硅粉末组合物选自下述成分中的至少一种 硅,碳化硅,氮化硅。
12.根据权利要求1的方法,其中所述反应性气体气氛至少含有氮气。
13.根据权利要求1,2,3,7和8的方法,其中至少一个外部模型件和至少一个内部模型件包括含石墨材料。
14.用于制备至少一个陶瓷成形部件的装置,其包括在至少一个外部模型件和至少一个内部模型件之间的至少一个腔体, 用于放入含硅粉末组合物的机构, 用于在反应性气体气氛中加热的机构。
15.根据权利要求14的装置,其中外部模型件中的至少一个是穿孔的。
16.根据权利要求14的装置,其中内部模型件中的至少一个是穿孔的。
17.根据权利要求14的装置,其中至少所述内部模型件的热膨胀系数高于反应结合的陶瓷成形部件的热膨胀系数,且至少所述外部模型件的热膨胀系数低于所述反应结合的陶瓷成形部件的热膨胀系数。
18.根据权利要求14的装置,其中至少一种耐热可变形材料分隔开至少两个内部模型件。
19.根据权利要求14的装置,其中至少一种耐热可变形材料选自石墨毡、石墨织物或石墨棒。
20.提供在至少一个外部模型件和至少一个内部模型件之间的腔体的应用,其中将含硅粉末组合物提供在所述腔体中,然后在反应性气体气氛中将所述粉末组合物加热至制备陶瓷成形部件的温度。
21.根据权利要求20的应用,其中在提供所述腔体前,用浆料涂覆该腔体。
22.根据权利要求20的应用,其中在用浆料涂覆前,在至少一个外部模型件和所述浆料间施加箔片。
23.根据权利要求20的应用,其中在用浆料涂覆前,在至少一个内部模型件和所述浆料间施加箔片。
24.根据权利要求22-23的应用,使用耐热的穿孔箔片。
25.根据权利要求20的应用,使用包括含氮化硅的粉末的浆料。
26.根据权利要求20的应用,使用含氮气的气体气氛。
全文摘要
制备至少一种陶瓷成形部件的方法和装置,包括在至少一个外部模型件和至少一个内部模型件之间形成一个腔体,将含硅粉末组合物置于腔体中,在反应性气体气氛中将硅粉末组合物加热至可获得反应结合陶瓷成形部件的温度。还提供了其应用。
文档编号C30B11/00GK102482166SQ201080018032
公开日2012年5月30日 申请日期2010年4月23日 优先权日2009年4月23日
发明者A·索尔海姆, H·索尔海姆 申请人:圣戈班工业陶瓷罗登塔尔有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1