功率半导体组件、功率模块、功率半导体组件的制造方法和功率模块的制造方法

文档序号:8191744阅读:133来源:国知局
专利名称:功率半导体组件、功率模块、功率半导体组件的制造方法和功率模块的制造方法
技术领域
本发明涉及用于车载用电力转换装置等的功率半导体组件、具有该功率半导体组件的功率模块、功率半导体组件的制造方法和功率模块的制造方法。
背景技术
出于节能的观点,希望汽车具有高燃耗效率,因而通过电动机驱动的电动车和组合了电动机驱动与发动机驱动的混合动力车受到关注。这样的车辆所使用的大容量的车载用电动机,用电池的直流电压难以进行驱动和控制,为了升压而进行交流控制,利用了功率半导体开关的电力转换装置是不可或缺的。此外,功率半导体会因通电而发热,所以冷却结构是重要的。专利文献I记载了一种半导体装置,采用设置一对散热板电极以夹持半导体元件,并利用模塑树脂将它们密封的结构。通过将该兼用作电极的散热板例如安装在冷却器的冷却面上,能够使半导体元件高效率地冷却。在冷却面与散热电极之间,为了确保电绝缘性,配置有导热性良好的绝缘片等。现有技术文献专利文献专利文献1:日本特开2004-303869号公报

发明内容
发明要解决的技术问题然而,在利用模塑树脂成型时,若散热板电极的散热面与模塑树脂之间形成有台阶(阶差,高低差),则使绝缘片与散热面密接时容易在台阶部分产生空隙(微小的空洞)。这样的空隙会导致散热性能降低。此外,在最大电压超过300V的使用环境下,存在容易因空隙而导致部分放电的问题。解决问题的技术手段根据本发明第一技术方案,功率半导体组件包括功率半导体元件;电极引线框,由板状导电性部件形成,在该板状导电性部件的正反面的一个面上形成与功率半导体元件的电极面金属接合的接合面,且在正反面的另一个面上形成散热面;和模塑部件,以使得散热面的至少一部分露出的方式使功率半导体元件成型,其中,散热面隔着绝缘片与散热部件热接触,使功率半导体元件的热散发到散热部件,散热面的露出区域和与该露出区域邻接的模塑部件的表面,形成任一方突出的凹凸台阶,形成于凹凸台阶的凸侧的面与凹侧的面之间的台阶侧面,由与凸侧的面之间的角度和与凹侧的面之间的角度分别为钝角的倾斜面构成。根据本发明第二技术方案,在第一技术方案的功率半导体组件中,凹凸台阶的散热面的一部分比模塑部件的表面更凹陷,倾斜面由形成在以包围散热面的周围的方式突出的模塑部件的边缘的倾斜加工面构成。根据本发明第三技术方案,在第一技术方案的功率半导体组件中,凹凸台阶的散热面整体比模塑部件的表面更突出,倾斜面由形成在从模塑部件的表面突出的散热面的边缘的倒角加工面构成。根据本发明第四技术方案,在第一至三之任一技术方案的功率半导体组件中,倾斜面的角度为110度以上且不足180度。根据本发明第五技术方案,在第一至四之任一技术方案的功率半导体组件中,功率半导体元件在正反两面具有电极,电极引线框包括与功率半导体元件的背面一侧的电极面接合的第一电极引线框,和与功率半导体元件的正面一侧的电极面接合的第二电极引线框,第一电极引线框和第二电极引线框中至少一个电极引线框具有凹凸台阶,该凹凸台阶形成有构成倾斜面的台阶侧面。根据本发明第六技术方案,在第五技术方案的功率半导体组件中,包括贯通孔,形成于第一电极引线框和第二电极引线框的至少一方,从散热面贯通至接合面;金属接合体,在熔化状态下被从贯通孔注入到电极面与接合面的间隙中,通过凝固而将电极面与接合面金属接合;和槽,在形成有贯通孔的电极引线框的散热面上形成,从该电极引线框的端部连通至贯通孔,其中,贯通孔和槽被模塑部件覆盖。根据本发明第七技术方案,在第六技术方案的功率半导体组件中,贯通孔以将接合面的边缘区域贯通的方式形成。根据本发明第八技术方案,功率模块包括第五至七之任一技术方案所述的功率半导体组件;有底的金属筒,具有在外周面上形成有散热翅片的相对的第一和第二散热壁,以第一散热壁的内周面与第一电极引线框的散热面相对、且第二散热壁的内周面与第二电极引线框的散热面相对的方式,在内部插入功率半导体组件;第一导热性绝缘片,被密接配置在第一散热壁的内周面与第 一电极引线框的散热面之间;和第二导热性绝缘片,被密接配置在第二散热壁的内周面与第二电极引线框的散热面之间。根据本发明第九技术方案,在第八技术方案的功率模块中,金属筒包括形成在第一散热壁的周围的厚度比该散热壁薄的第一薄壁部,和形成在第二散热壁的周围的厚度比该散热壁薄的第二薄壁部,第一和第二薄壁部发生塑性变形以使得功率半导体组件被第一和第二散热壁夹持。根据本发明第十技术方案,在第八或九技术方案的功率模块中,第一和第二导热性绝缘片包括对热固性树脂以50%以上90%以下的体积分数填充了导热率为5W/mK以上的绝缘性无机材料而得的高导热层;和由热固性树脂构成,且形成在高导热层的正反两面的高密接层。根据本发明第i^一技术方案,在第十技术方案的功率模块中,高密接层含有多于50%体积分数的环氧改性聚酰胺酰亚胺树脂作为热固性树脂,具有在作为基体树脂的环氧改性聚酰胺酰亚胺树脂中微相分离有平均粒径5 μ m以下的硅酮树脂的结构。根据本发明第十二技术方案,功率半导体组件的制造方法中,通过对第二技术方案的功率半导体组件的以包围散热面的周围的方式突出的模塑部件的边缘区域进行激光加工,形成倾斜面。根据本发明第十三技术方案,功率半导体组件的制造方法包括第一工序,使权利要求3的功率半导体组件中设置的电极引线框的接合面,与功率半导体元件的电极面金属接合;第二工序,在电极引线框的散热面与传递成型模具之间配置柔性脱模片;和第三工序,将传递成型模具按压在电极引线框的散热面上,在使散热面陷入柔性脱模片中的状态下进行传递成型。根据本发明第十四技术方案,功率模块的制造方法包括第一压接工序,以温度140°C以下、加压力2MPa以下、气压IOkPa以下和压接时间15分钟以内的压接条件,在权利要求10或11的功率模块中设置的功率半导体组件的第一和第二电极引线框的散热面上,压接第一和第二导热性绝缘片;和第二压接工序,在压接于功率半导体组件上的第一和第二导热性绝缘片上,以温度130°C以上、加压力5MPa以下、气压IOkPa以下和压接时间5分钟以上的压接条件,压接第一和第二散热壁的各内周面。发明效果根据本发明,能够防止产生空隙,实现可靠性的提高。


图1是表示本发明的功率模块的外观的图。图2是功率半导体组件的分解立体图。图3是功率半导体组件的电路图。图4是说明低电感化的作用的图。图5是搭载了具备功率模块300的逆变器的混合动力车的控制模块图。图6是电力转换装置200的电路图。图7是表示电力转换装置200的外观的立体图。图8是图7的A-A截面图。图9是电力转换装置200的立体图。图10是图8的B-B截面图。图11是配置在水路内的功率模块300的截面图。图12是示意性地表示功率模块300的截面图。图13是图12中标记Cl、C2所示的区域的放大图。图14是表示功率半导体组件的制造方法的图。图15是说明密封部件13的台阶部分的激光加工的图。图16是形成倾斜面后的功率半导体组件6的俯视图。图17是实施了倾斜面加工的情况下的区域D1、D2的放大图。图18是说明形成了平面状的倾斜面PQ的情况下的效果的图。图19是表示比较例的图。图20是表示绝缘片10的一例的图。图21是说明功率模块300的制造方法的图。图22是示意性地表示第二实施方式的功率模块300的截面图。图23是表示功率半导体组件6的制造工序的图。图24是功率半导体组件6的俯视图。图25是表示功率模块300的制造工序的图。
具体实施例方式以下参照

用于实施本发明的方式。-第一实施方式-图1是表示本发明的功率模块的外观的图。功率模块300中,将以包含开关元件的方式通过传递成型而形成的功率半导体组件收纳在金属筒I内。功率模块300例如供搭载在电动车或混合动力车等电动车辆上的电力转换装置使用。在金属筒I的侧面设置有厚壁部301和设于其周围的薄壁部302,该厚壁部301上竖立设置有多个散热翅片305。如后所述,通过使薄壁部302发生塑性变形,而使收纳于内部的功率半导体组件的散热面与厚壁部301的内周面密接。设置在功率半导体组件上的大电流端子3和信号端子4从金属筒I的一面突出。图2是功率半导体组件6的分解立体图,图3是功率半导体组件6的电路图。其中,图2中省略了传递成型的图示。本实施方式中,设置IGBT (绝缘栅型双极晶体管)155、157和二极管156、158作为功率半导体元件。图2所示的例子中,IGBT155、157和二极管156、158分别并列地设置有2个,而图3的电路图中,为了便于说明,只表示其中一方。夹着功率半导体元件,在一侧大致同一平面状地配置直流正极电极引线框315和第一交流电极引线框316,在另一侧大致同一平面状地配置第二交流电极引线框318和直流负极电极引线框319。各功率半导体元件呈板状的扁平结构,各电极形成在正反面。在直流正极电极引线框315的元件固定部322上,通过作为金属接合体的钎料(solder) 160固定上臂用IGBT155的集电极和上臂用二极管156的阴极。另一方面,在第一交流电极引线框316的元件固定部322上,通过作为金属接合体的钎料160固定下臂用IGBT157的集电极和下臂用二极管158的阴极。金属接合体优选使用以锡为主成分的钎料,但也能够使用以金、银、铜之任一为主成分的钎料、(硬)焊料或涂料。在第二交流电极引线框318的元件固定部322上,通过作为金属接合体的钎料160固定上臂用IGBT155的发射极和上臂用二极管156的阳极。另一方面,在直流负极电极引线框319的元件固定部322上,通过作为金属接合体的钎料160固定下臂用IGBT157的发射极和下臂二极管158的阳极。其中,金属接合体除了钎料以外也可以使用银膜或含有金属微粒的低温烧结接合剂等,使各功率半导体元件与引线框电接合并且热接合。如图2所示,直流正极电极引线框315和第二交流电极引线框318夹着作为功率半导体元件的各IGBT155和二极管156大致平行地相对。同样地,第一交流电极引线框316与直流负极电极引线框319夹着作为功率半导体元件的各IGBT157和二极管158大致平行地相对。如图3所示,第一交流电极引线框316与第二交流电极引线框318通过中间电极159连接。通过使用中间电极159连接,使得上臂电路与下臂电路电连接,形成图3所示的上下臂串联电路。直流正极配线315A—体地形成在直流正极电极引线框315上,在直流正极配线315A的前端形成直流正极端子315B。同样地,直流负极配线319A —体地形成在直流负极电极引线框319上,在直流负极配线319A的前端形成直流负极端子319B。此外,在第一交流电极引线框316上一体地形成交流配线320,在交流配线320的前端形成交流端子321。
直流正极配线315A与直流负极配线319A之间设置有热塑性树脂端子模块600。直流正极配线315A与直流负极配线319A在大致平行相对的状态下从金属筒I突出延伸。此夕卜,信号端子4L、4U —体成型在热塑性树脂端子模块600上,在与直流正极配线315A和直流负极配线319A同样的方向上,从金属筒I突出延伸。由此,能够确保直流正极配线315A与直流负极配线319A之间的绝缘性和信号用配线与各配线板间的绝缘性,能够进行高密度配线。关于热塑性树脂端子模块600使用的树脂材料,可适用具有传递成型的模具之温度以上(例如180°C以上)的耐热性和绝缘性的热塑性树脂,可以使用聚苯硫醚(PPS)或液晶聚合物(LCP)等。通过使直流正极配线315A与直流负极配线319A大致平行相对配置,可实现以下效果。即,通过采用功率半导体元件开关动作时瞬间流过的电流在相对配置的直流正极配线315A和上述直流负极配线319A中沿相反方向流动的结构,这些电流产生的磁场彼此抵消。由此,能够实现低电感化。用图4说明该低电感化产生的作用。图4 (a)中,考虑下臂用二极管158处于在正向偏置状态下导通的状态。该状态下,当上臂用IGBT155成为ON状态时,下臂用二极管158成为反向偏置,因载流子移动而产生的恢复电流贯通上下臂。此时,各电极引线框315、316、318、319中,流过图4 (b)所示的恢复电流100。恢复电流100如虚线所示,通过与直流负极端子319B并列配置的直流正极端子315B,接着流过由各电极引线框315、316、318、319形成的环形的路径,再次通过与直流正极端子315B并列配置的直流负极端子319B如实线所示地流动。通过使电流在这样的环形路径中流动,在散热基体307中会流过涡动电流101。利用基于该涡动电流101的磁场抵消效应,环形路径中的配线电感102得到降低。另外,电流路径越接近环形,电感降低作用越大。本实施方式中,环形的电流路径如虚线所示,在电极引线框315的接近端子一侧的路径中流动,通过半导体元件内,再如实线所示在电极引线框318的远离端子一侧的路径中流动。之后,如虚线所示流经电极引线框316的远离端子一侧的路径,再通过半导体元件内,如实线所示地在电极引线框319的接近端子一侧的路径中流动。像这样,相对于直流正极端子315B和直流负极端子319B通过了较近一侧和较远一侧的路径,形成环形的电路,因流过该环形电路的恢复电流100而在散热基体307中流过涡动电流101。由于该涡动电流101的磁场与恢复电流100的磁场抵消,具有降低磁阻的效果。图5是搭载了具有图1所示的功率模块300的逆变器的混合动力车的控制模块图。混合动力车(HEV) 110具有两个车辆驱动用系统。一个是以发动机120为动力源的发动机驱动系统,另一个是以电动发电机192、194为动力源的旋转电机驱动系统。此处,电动发电机指的是根据控制而起到电动机的作用或起到发电机的作用的电机。车体的前部具有一对前轮112,将它们连接的前轮车轴114与差动齿轮(DEF) 116的输出侧连接。在前轮侧DEF116的输入侧,连接有变速器(T/M)118。变速器118的输入侧与电动发电机(MG1)192的输出侧连接。电动发电机192的输入侧通过动力分配机构122与发动机(ENG) 120的输出侧或电动发电机(MG2) 194的输出侧连接。其中,电动发电机192、194和动力分配机构122被收纳在变速器118的壳体的内部。
电动发电机192、194使用感应电机或同步电机,本实施方式中使用效率良好、转子中具有永磁铁的同步电机。通过利用逆变器电路部140、142控制对感应电机或同步电机的定子所具有的定子绕组供给的交流电力,来控制电动发电机192、194是作为电动机工作或是作为发电机工作以及工作特性。逆变器电路部140、142与电池136连接,能够在其与逆变器电路部140、142之间进行电力的授受。HEVllO具有由电动发电机192和逆变器电路部140构成的第一电动发电组件,和由电动发电机194和逆变器电路部142构成的第二电动发电组件这两个电动发电组件,根据运转状态而区分使用。即,在通过来自发动机120的动力进行车辆驱动的状况下,在对车辆的驱动转矩进行辅助时,使第二电动发电组件作为发电组件通过发动机120的动力而工作、发电,利用由该发电获得的电力使第一电动发电组件作为电动组件工作。此外,同样的状况下对车辆的车速进行辅助时,使第一电动发电组件作为发电组件通过发动机120的动力而工作、发电,利用由该发电获得的电力使第二电动发电组件作为电动组件工作。此外,利用电池136的电力使第一电动发电组件作为电动组件动作,从而能够仅通过电动发电机192的动力进行车辆的驱动。进而,使第一电动发电组件或第二电动发电组件作为发电组件通过发动机120的动力或来自车轮的动力而工作、发电,能够进行电池136的充电。电池136进一步用作对辅机用的电机195进行驱动的电源。辅机例如有驱动空调的压缩机的电机、或驱动控制用的油压泵的电机,从电池136对逆变器电路部43供给的直流电力被辅机用的逆变器电路部43转换为交流电力,对电机195供给。辅机用的逆变器电路部43具有与逆变器电路部140、142同样的功能,控制对电机195供给的交流的相位和频率、电力(功率)。例如,通过供给相对于电机195的转子的旋转为进相(相位超前)的交流电力,电机195产生转矩。另一方面,通过产生滞相(相位滞后)的交流电力,电机195起到发电机的作用,电机195成为再生制动状态的运转。这样的辅机用的逆变器电路部43的控制功能与逆变器电路部140、142的控制功能相同。由于电机195的容量比电动发电机192、194的容量小,所以辅机用的逆变器电路部43的最大转换电力比逆变器电路部140、142小,但辅机用的逆变器电路部43的电路结构基本与逆变器电路部140、142的电路结构相同。图5中省略了恒定电压电源。各控制电路和各种传感器通过来自未图示的恒定电压电源的电力而工作。该恒定电压电源例如为14伏特类的电源,具有铅电池等14伏特类电池、根据情况的不同也可以具有24伏特类的电池。恒定电压电源的正极或负极中的一方与车体连接,将车体用作恒定电压电源的电力供给用导体。逆变器电路部140、142和43与电容器模块500为紧密地电连接的关系。并且在需要解决发热问题的方面是共通的。此外还期望使装置的体积制作得尽可能小。出于这些观点,以下详细叙述的电力转换装置200将逆变器电路部140、142和43与电容器模块500内置在电力转换装置200的壳体内。通过该结构能够实现小型化,并且具有能够减少线束的数量的效果,和能够减小辐射噪声等效果。该效果也会带来小型化或可靠性的提高。此外还会带来生产效率的提高。另外,电容器模块500与逆变器电路部140、142和43的连接电路会变短,或能够使用以下说明的结构,能够降低电感,其结果能够降低尖峰电压。进而,根据以下说明的结构,能够实现发热的减少和散热效率的提高。
图6是电力转换装置200的电路图。电力转换装置200具有逆变器电路部140、142、辅机用的逆变器电路部43和电容器模块500。逆变器电路部140、142包括多个具有双面冷却结构的功率模块300,通过将它们连接而构成三相电桥电路。图6所示的例子中,具有三个功率模块300。在载流量较大的情况下,进而将功率模块300并联连接,通过与三相逆变器电路的各相对应地进行这些并联连接,能够应对载流量的增大。此外,将功率模块300中内置的半导体元件并联连接也能够应对载流量的增大。各逆变器电路部140和142通过设置在控制部中的两个驱动器电路分别进行驱动控制。其中,图6中将两个驱动器电路合并表示为驱动器电路174。各驱动器电路通过控制电路172控制。控制电路172生成用于控制功率半导体元件的开关时序的开关信号。逆变器电路部140与逆变器电路部142的基本电路结构是相同的,控制方法和动作也基本相同,此处作为代表以逆变器电路部140为例说明。逆变器电路部140具有三相电桥电路作为基本结构,具体而言,作为U相(用标记Ul表示)、V相(用标记Vl表示)和W相(用标记Wl表不)动作的各臂电路,与输送直流电力的正极一侧和负极一侧的导体分别并联连接。对逆变器电路部142的作为U相、V相和W相动作的各臂电路,与逆变器电路部140的情况同样地用标记U2、V2和W2表示。各相的臂电路构成为由上臂电路和下臂电路串联连接的上下臂串联电路。各相的上臂电路分别与正极一侧的导体连接,各相的下臂电路分别与负极一侧的导体连接。在上臂电路与下臂电路的连接部,分别产生交流电力。各上下臂串联电路的上臂电路与下臂电路的连接部,与各功率模块300的交流端子321连接。各功率模块300的交流端子321分别与电力转换装置200的交流输出端子连接,将产生的交流电力供给到电动发电机192或194的定子绕组。由于各相的各功率模块300具有基本相同的结构,动作也基本相同,因此作为代表说明U相的功率模块300即功率模块Ul。上臂电路具有上臂用IGBT155和上臂用二极管156作为开关用的功率半导体元件。此外,下臂电路具有下臂用IGBT157和下臂用二极管158作为开关用的半导体元件。各上下臂串联电路的直流正极端子315和直流负极端子319与电容器模块500的电容器连接用直流端子分别连接,交流端子321中产生的交流电力对电动发电机192、194供给。IGBT155U57接收从驱动器电路174所包括的两个驱动器电路中的一个或另一个输出的驱动信号进行开关动作,将从电池136供给的直流电力转换为三相交流电力。转换后的电力对电动发电机192的定子绕组供给。由于V相和W相的电路结构与U相大致相同,因此省略标记155、157、156、158的显示。逆变器电路部142的功率模块300的结构与逆变器电路部140的情况相同,此外,辅机用的逆变器电路部43具有与逆变器电路部142相同的结构,此处省略说明。关于开关用的功率半导体元件,使用上臂用IGBT155和下臂用IGBT157说明。上臂用IGBT155和下臂用IGBT157具有集电极、发射极(信号用发射极端子)、栅极(栅极端子)。在上臂用IGBT155和下臂用IGBT157的集电极与发射极之间,上臂用二极管156和下臂用二极管166如图所示地电连接。上臂用二极管156和下臂用二极管158具有阴极和阳极这两个电极。以使得从上臂用IGBT155和下臂用IGBT157的发射极向集电极去的方向为正向的方式,将二极管156、158的阴极与IGBT155、157的集电极电连接,阳极与IGBT155、157的发射极电连接。此外,也可以使用MOSFET (金属氧化物半导体型场效应晶体管)作为功率半导体元件,该情况下不需要上臂用二极管156和下臂用二极管158。控制电路172基于来自车辆侧的控制装置或传感器(例如电流传感器180)等的输入信息,生成用于控制上臂用IGBT155、下臂用IGBT157的开关时序的时序信号。驱动器电路174基于从控制电路172输出的时序信号,生成用于使上臂用IGBT155和下臂用IGBT157进行开关动作的驱动信号。控制电路172具有用于对上臂用IGBT155和下臂用IGBT157的开关时序进行运算处理的微型计算机(以下记载为“微机”)。对电动发电机192要求的目标转矩值、从上下臂串联电路对电动发电机192的定子绕组供给的电流值和电动发电机192的转子的磁极位置,被作为输入信息输入到微机。目标转矩值基于从未图示的上级控制装置输出的指令信号而决定。电流值基于电流传感器180输出的检测信号进行检测而得。磁极位置基于从设置于电动发电机192中的旋转磁极传感器(未图示)输出的检测信号进行检测而得。本实施方式中列举了检测三相的电流值的情况,但也可以检测两个相的电流值。控制电路172内的微机,基于目标转矩值计算电动发电机192的d轴、q轴的电流指令值,基于该计算出的d轴、q轴的电流指令值与检测出的d轴、q轴的电流值的差来计算d轴、q轴的电压指令值。接着,微机将该计算出的d轴、q轴的电压指令值,基于检测出的磁极位置转换为U相、V相、W相的各电压指令值。然后,微机根据基于U相、V相、W相的电压指令值而得的基本波(正弦波)与载波(三角波)的比较而生成脉冲状的调制波,将该生成的调制波作为PWM (脉冲宽度调制)信号输出至驱动器电路174。驱动器电路174在驱动下臂的情况下,将对PWM信号放大后的信号作为驱动信号,输出至对应的下臂用IGBT157的栅极。另一方面,在驱动上臂的情况下,驱动器电路174使PWM信号的基准电位的电平偏移至上臂的基准电位的电平后将PWM信号放大,并将其作为驱动信号,分别输出至对应的上臂用IGBT155的栅极。由此,上臂用IGBT155和下臂用IGBT157基于输入的驱动信号进行开关动作。此外,控制部进行异常检测(过电流、过电压、过热等),保护上下臂串联电路。因此,对控制部输入传感器信息。例如,从各臂的信号用发射极端子向对应的驱动器电路174输入上臂用IGBT155、下臂用IGBT157的发射极中流过的电流的信息。由此,驱动器电路174进行过电流检测,在检测出过电流的情况下使对应的上臂用IGBT155、下臂用IGBT157的开关动作停止,保护对应的上臂用IGBT155、下臂用IGBT157不受过电流影响。从设置在上下臂串联电路中的温度传感器(未图示),将上下臂串联电路的温度信息输入微机。此外,对微机输入上下臂串联电路的直流正极一侧的电压信息。微机基于这些信息进行过热检测和过电压检测,在检测出过热或过电压的情况下使所有上臂用IGBT155、下臂用IGBT157的开关动作停止,保护上下臂串联电路不受过热或过电压影响。逆变器电路部140的上臂用IGBT155和下臂用IGBT157的导通和断路动作按一定的顺序切换,该切换时在电动发电机192的定子绕组中产生的电流,流经包含二极管156、158的电路。其中,本实施方式的电力转换装置200中,对逆变器电路部140的各相设置一个上下臂串联电路,但如上所述,该电力转换装置中,作为产生对电动发电机供给的三相交流电力各相的输出的电路结构,也可以对各相将两个上下臂串联电路并联连接。
各逆变器电路部140、142中设置的直流端子138 (参照图5)与由正极电极引线框和负极电极引线框构成的叠层电极引线框700连接。叠层电极引线框700构成为由在功率模块300的排列方向上较宽的导电性板材形成的正极侧电极弓I线框702和负极侧电极弓I线框704夹持绝缘片(未图示)的三层结构的叠层配线板。叠层电极引线框700的正极侧电极引线框702和负极侧电极引线框704,与设置在电容器模块500中的叠层配线板501所具有的正极电极引线框507和负极电极引线框505分别连接。正极电极引线框507和负极电极引线框505也由在功率模块排列方向上较宽的导电性板材形成,构成夹持绝缘片517(未图示)的三层结构的叠层配线板。电容器模块500由多个电容器单元514并联连接而得,电容器单元514的正极一侧与正极电极引线框507连接,电容器单元514的负极一侧与负极电极引线框505连接。电容器模块500构成平滑电路,用于抑制因上臂用IGBT155、下臂用IGBT157的开关动作而产生的直流电压的变动。电容器模块500的叠层配线板501与连接到电力转换装置200的直流连接器138上的输入叠层配线板230连接。输入叠层配线板230上还连接有位于辅机用逆变器电路部43中的逆变器装置。在输入叠层配线板230与叠层配线板501之间设置有噪声滤波器。噪声滤波器具有连接壳体12的接地端子与各直流电力线的两个电容器,构成用于应对共模噪声的Y电容器。电容器模块500分别具有与用于从直流电源136接受直流电力的直流连接器138连接的端子(省略标记),和与逆变器电路140或逆变器电路142连接的端子。由此,能够减少逆变器电路140或逆变器电路142产生的噪声对直流电源136造成的不良影响。该结构提高了平滑作用的效果。此外,电容器模块500与各功率模块300的连接通过使用上述叠层状态的电极引线框进行,从而降低了对于流经各功率模块300的上下臂串联电路的电流的电感,降低了伴随电流的骤变而发生的浪涌电压。图7是表示电力转换装置200的外观的立体图,图8是图7的A-A截面图,图9是从图7所示的电力转换装置200卸下上部外壳10、AC连接器的情况下的立体图,图10是图8的B-B截面图。本实施方式的电力转换装置200的外观,由上表面或底面为大致长方形的壳体12、设置在壳体12的短边一侧的外周之一(两个外周中的一个)上的上部外壳10、用于封闭壳体12的下部开口的下部外壳16固定而形成。通过使壳体12的底面图或上表面图的形状为大致长方形,其容易安装到车辆上,此外具有易于生产的效果。在电力转换装置200的长边一侧的外周上,设置了设有交流端子18的交流端子盒17。交流端子18将功率模块300与电动发电机192、194电连接,使从功率模块300输出的交流电流传递到电动发电机192、194。连接器21与内置于壳体12中的控制电路基板20 (参照图8)连接,将来自外部的各种信号传输至控制电路基板20。直流负极侧连接端子510和直流正极侧连接端子512与电池136和电容器模块500电连接。如图8所示,在壳体12的中间层形成有具有水路的冷却套19A。在冷却套19A的上方空间中,分别配置搭载了控制电路172的控制电路基板20、搭载了驱动器电路174的驱动电路基板22。另一方面,在冷却套19A的下方空间中,配置电容器模块500。电容器模块500中设置了多个电容器单元504。
冷却套19A中形成有供冷却水流动的水路19,在该水路上,如图9所示,形成多个用于将功率模块300插入到水路内的开口 400、402。功率模块300从这些开口 400、402被插入到水路内,固定到壳体12上。图1所示的金属筒I的形成散热翅片305的面浸泡冷却水内,功率模块300被冷却水冷却。图10是图8的B-B截面图,表示了壳体12的形成有水路19的冷却套19A的部分。从冷却水入口 13流入水路19内的冷却水,在弯曲前进的水路19中如箭头421所示地流动,从冷却水出口 14排出。在水路19内,6个功率模块300沿着冷却水流配置。图11是表示配置在水路内的功率模块300的截面图。如上所述,在壳体12的内部,形成具有冷却水的水路19的冷却套19A。在冷却套19A的底面一侧安装有用于覆盖水路19的底面一侧的底盖420。固定在冷却套19A上的功率模块300,其金属筒I的下端部分从冷却套19A的水路19向下方突出,被收纳在形成于底盖420上的凹部420a内。底盖420与冷却套19A的间隙,和功率模块300的凸缘304B与冷却套19A的间隙,由密封部件800、801 密封。图12是用于说明本实施方式的功率模块300的截面示意图。图12表示设置了功率半导体元件5的部分的截面,例如,表示图2的设置了 IGBT155的部分的截面。其中,图2中,IGBT155和二极管156在电极引线框的延伸方向上并列配置,而图12中省略二极管的图示,将IGBT155作为功率半导体元件5图示。此外,7、8是电极引线框。3是一体形成在电极引线框上的大电流端子,对应于图2的直流正极端子315B、直流负极端子319B、交流端子321。信号端子4对应于图2的信号端子4L、4U。电极引线框要求高导热和高强度,所以优选以铜为主成分,但也能够使用以铝为主成分的电极引线框。功率模块300中,将上述功率半导体组件6收纳在金属筒I内,在功率半导体组件6与金属筒I的间隙中填充有封装树脂2。功率半导体组件6通过使用密封部件13将功率半导体元件5和电极引线框7、8等传递成型而得,被收纳在金属筒I内的厚壁部301的部分。功率半导体元件5在芯片正反面形成电极,功率半导体元件5的背面一侧与电极引线框7接合,功率半导体元件5的正面一侧与电极引线框8接合。设置在功率半导体元件5的正面一侧的控制用电极(IGBT的栅极)通过铝接合线IlCffire Bonding)与信号端子4连接。信号端子4与端子模块600通过嵌件成型(insertmolding)而形成。端子模块600例如由聚苯硫醚(PPS)这样的热塑性树脂构成。在两个大电流端子3之间,插入该端子模块600。电极引线框7、8通过冲切加工形成,面对金属筒I 一侧的端面被实施了倒角加工。金属筒I与电极引线框7、8之间,设置了用于保持电绝缘的绝缘片10。绝缘片10使用热固性树脂,通过将固化前的绝缘片10压接在电极引线框7、8的散热面一侧,防止绝缘片10与散热面之间形成空隙(微小的空洞),详情在后文叙述。图12的标记Cl、C2所示的区域是容易产生空隙的部位,图13的(a)、(b)表示标记Cl、C2所示的区域的放大图。传递成型时,在电极引线框7、8的散热面与密封部件表面13b之间容易形成台阶,在该台阶部分容易产生空隙。因此,本实施方式中,在如图13 (a)所示散热面7b比密封部件表面13b突出的情况下,在电极引线框7的端部通过倒角加工形成倾斜面7a。相反,在如图13 (b)所示散热面Sb比密封部件表面13b凹陷的情况下,在密封部件13形成倾斜面13a。通过采用这样的结构,防止在电极引线框7、8的散热面与密封部件13的表面的台阶部分形成空隙。图14是表示使用传递成型来制造功率半导体组件的方法。此处,举例表示了图2的IGBT157、二极管158、电极引线框316、319的部分。IGBT157在图示上侧(芯片正面一侧)形成发射极和栅极,在图示下侧(芯片背面一侧)形成集电极。首先,图14 (a)所示的工序中,在集电极一侧的电极引线框316的元件固定部322上放置钎料片160a,在该钎料片160a上载置IGBT157和二极管158。进而,在IGBT157和二极管158上分别载置钎料片160a,在其上载置发射极一侧的电极引线框319。接着,在图14(b)所示的工序中,将它们一并回流焊接,使IGBT157、二极管158与电极引线框316、319通过钎料160固定并电连接。此时,因软钎焊的尺寸误差,结合体的高度尺寸会产生误差,或者上侧的电极引线框319会发生倾斜。此处,假设电极引线框319发生倾斜,其前端部分比其他部分高大约75 μ m的情况进行说明。将通过嵌件成型而形成了信号端子4的由热塑性树脂构成的端子模块600,插入到从集电极侧和发射极侧引线框316、319延伸的端子(图12的大电流端子3)之间。然后,将IGBT157的栅极与信号端子4用铝接合线11电连接。图14 (C)所示的工序中,在传递成型模具26a、26b的下模具26b上配置柔软的脱模片27,在该脱模片27上载置图4 (b)的工序生成的引线框结构体。此时,以集电极一侧的电极引线框316成为脱模片27 —侧的方式配置。之后,将模具的上模具26a和下模具26b夹紧,在模具温度175°C和压力(压强)IOMPa的加压条件下进行传递成型。设定模具尺寸和脱模片27的厚度尺寸,使得在该传递成型中,将模具夹紧时电极引线框316陷入脱模片27。即,考虑到形成引线框结构体时的高度尺寸误差来设定模具尺寸,并且选择脱模片27的厚 度尺寸以使得电极引线框316陷入到脱模片27中的量为规定量(例如25卩111左右)。结果,如标记D2所示,电极引线框316陷入到脱模片27中,如图14 (d)所示,电极引线框316的散热面316s从密封部件13的表面突出。图14 (d)是表示从图14 (c)的状态卸下传递成型模具26a、26b,并除去脱模片27后的功率半导体组件6的图。另一方面,对于发射极一侧的电极引线框319,如图14 (C)所示,高度尺寸最大的电极引线框前端部与上模具26a接触,在其他区域与上模具26a之间产生间隙。结果,如图14 (c)的标记Dl所示,密封部件13绕到电极引线框319的散热面319s上。密封部件13绕过来的部分的密封部件边缘部的形状,由于表面张力等关系而具有相对于电极引线框319的散热面319s成倒锥形的趋势。于是,本实施方式中,如图15所示通过除去绕到电极引线框319上的密封部件13的台阶部分的一部分(加阴影的部分),而在台阶部分形成平缓的倾斜面13a。密封部件13的除去可以用机械加工进行,也可以通过激光加工来除去。例如,在照射二氧化碳激光进行除去的情况下,激光照射范围SI如图15所示设定为比电极引线框319的外周的边缘更靠内侧。其理由是,若激光入射到电极引线框319的外周边缘的外侧,则密封部件13会被切削得较深,在该部分产生急剧的台阶。通过改变激光的照射强度,绕过来的密封部件13的边缘部分成为图15所示的倾斜面13a。图16是形成倾斜面后的功率半导体组件6的俯视图。通过密封部件13成型的电极引线框138、139中,密封部件13在散热面318s、319s的周围环绕,中央部分从密封部件13露出。与露出区域318A、319A的周围接触的密封部件13的边缘部分如图14(d)所示成为台阶形状,通过上述激光照射等形成倾斜面,以倾斜面13a包围露出区域318A、319A的方式形成。如图12所示,通过将图16所示的功率半导体组件6收纳在金属筒I内成为功率模块300。此时,在功率半导体组件6的正反两面与金属筒I的内周面之间,配置绝缘片10。该绝缘片10如后所述被压接在功率半导体组件6的正反两面上。这时,在图14 (c)的标记D1、D2所示的区域容易产生空隙。本实施方式中,为了防止区域Dl、D2产生空隙,在区域Dl,在密封部件边缘部分形成上述倾斜面13a。此外,在区域D2,对电极引线框316的端部施加倒角加工形成倾斜面316c (相当于图13的电极引线框7的倾斜面7a),且如图14 (c)所示,在使电极引线框316陷入脱模片27的状态下进行传递成型。图17是实施了上述倾斜面加工的情况下的区域D1、D2的放大图,表示在散热面与密封部件13的台阶部形成的倾斜面13a、316c的一例。观察散热面与密封部件13的表面13b的突出关系可知,如图17 (a)所示区域Dl中密封部件表面13b更突出,相反地,图17(b)的区域D2中电极引线框316的散热面316s更突出。在区域D2的情况下,如图14 (c)所示通过倒角加工而形成的倾斜面316c的一部分陷入脱模片27中,所以密封部件13成为一部分搭在倾斜面316c上的形状。不过,台阶的斜面形状无论在哪一种情况下均为相同的形状。当令突出的一方的面与倾斜面的交点为Q,倾斜面与凹陷的一方的面的交点为P时,通过点P、Q的直线LI的倾斜角Θ表示倾斜面PQ的平均的倾斜角。此处,倾斜面PQ指的是从点P到点Q的弯曲的面,是台阶结构的实际的倾斜面。其中,区域D2中 的倾斜面由使电极引线框316陷入脱模片27时的脱模片27的面与电极引线框316的倒角部分(图13 (a)的倾斜面7a)决定,所以严格来讲无法使台阶结构的倾斜面成为直线LI所示的平面。另一方面,图17 Ca)所示的密封部件13的倾斜面13a的情况下,能够成为直线LI所示的平面状的倾斜面。图18是说明形成了平面状的倾斜面PQ的情况下的效果的图。在功率半导体组件6的正反两面压接绝缘片10,而如上所述,该压接时容易产生空隙。压接时,绝缘片10具有柔软性和流动性,详情在之后叙述。因此,从图示上方加压时,绝缘片10的一部分按照功率半导体组件6的面形状无间隙地变形。图19中,作为比较例表示未在密封部件13的台阶部分形成倾斜面的情况。在绕到电极引线框319的散热面上的密封部件13的边缘部分(标记C表示的部分),形成了口袋状的空间,所以即使进行加压压接也非常难以使绝缘片10无间隙地进入该空间,该部分会
产生空隙。另一方面,由于本实施方式中倾斜面PQ是平缓的面,所以能够防止空隙的产生。可变形的绝缘片10通过加压被压紧在倾斜面PQ上,该压力Pl依赖于倾斜面PQ的角度Θ。压力Pl的大小能够认为是施加的压力PO的与倾斜面PQ垂直的成分,角度Θ越小时越大。由于该压力Pl起到挤压空隙的作用,所以优选较大。如后所述,加压力PO为IMPa左右,为了抑制空隙的产生,优选其1/3以上的压力作为压力Pl起到倾斜面PQ的加压力的作用。即,优选将倾斜面PQ的角度Θ设定为70deg以下。换言之,优选使倾斜面PQ与邻接的散热面或密封部件表面所成的角度为钝角,进而,将该钝角设定为Iio度以上且不足180度。图17 (a)、(b)所示的例子中,倾斜面PQ是弯曲的,其倾斜角度在点Pl附近为角度Θ1,在点Ql附近为角度Θ2 O Θ l)0图18中用平面状的倾斜面PQ进行了说明,但是更优选成为图17所示的具有角度Θ1、Θ 2的弯曲的倾斜面。通过形成这样的形状,绝缘片10因对电极引线框319的散热面319s垂直地施加的加压力而流动,使散热面319s的空隙向外侧流出的效果较大。实际上,若密封部件13的台阶部分不是图19所示的倒锥形,就能够通过增大压接绝缘片10时的加压力而压缩空隙。但是,对半导体元件施加较大的加压力可能会导致元件破损,因此优选能够用较小的加压力将空隙压缩为对绝缘性能没有影响的大约7. 5μπι以下。为此,优选如上所述使倾斜面的角度为70deg以下。图20是表示绝缘片10的一例的图,图20 Ca)的绝缘片10表示了三层构造的例子。中央部的高导热层37通过在树脂成分中以50%以上 90%以下的体积分数填充了作为导热率为5W/mK以上的绝缘性无机材料的氧化铝填料而得到。作为导热率为5W/mK以上的绝缘性无机材料,除了氧化铝填料以外也能够使用氮化铝、氮化硼等。另一方面,设置在高导热层37的正反两面侧的高密接层38中,树脂成分的体积分数大于50%。此处,使用环氧改性聚酰胺酰亚胺树脂作为树脂成分,但也可以使用例如环氧树脂、双马来酰亚胺树脂等热固性树脂。此外,此处表示了三层构造的例子,但也可以使高导热层由多层形成,也可以使高密接层由多层形成。通过这样用多层形成,即使各层存在空隙等缺陷,也能够防止其成为贯通空隙而导致绝缘性降低。此外,也可以通过对压接绝缘片的金属筒一侧进行阳极氧化处理或粗化处理来改善密接性,使高导热层与金属筒一侧直接粘接。通过这样使高导热层与金属筒一侧直接粘接,具有能够实现高导热的效果。图20 (b)是将高密接层38的一例放大表示的示意图。高密接层38通过使树脂成分的体积分数大于50%而提高密接性,进而使平均粒径Ιμπι左右的硅酮树脂等的岛36微相分离在环氧改性聚酰胺酰亚胺树脂等基体树脂35中,具有提高粘接力的效果。如图12所示,配置在功率半导体组件6与金属筒I之间的绝缘片10,优选是导热率为3W/mK以上、击穿电压为20kV/mm以上、对于密封部件、引线框、金属筒I具有IOMPa以上的粘接强度的材料。如果导热率为3W/mK以上,则即使在为了确保绝缘可靠性而使绝缘片10的厚度为100 μ m以上的情况下,也能够获得足够的散热性。此外,如果对于金属筒I的粘接强度为IOMPa以上,则能够使粘接力高于温度循环中发生的应力,粘接的可靠性提闻。本实施方式中,为了实现绝缘片10的高导热化,使高导热层37中,含有体积分数50%以上的作为具有绝缘性和高导热率的无机材料的氧化铝填料。然而,由于采用这样的结构,高导热层37的粘接强度会降低。于是,使高导热层37与树脂成分的体积分数大于50%的高密接层38形成为多层,在与金属筒I和功率半导体组件6接触的一侧配置高密接层38。即,成为图20所示的多层结构。其结果,能够同时实现3W/mK以上的高导热率(本实施方式中导热率为5W/mK)和IOMpa以上的高粘接力。

此外,也可以使用陶瓷板作为上述高导热层37,能够实现绝缘可靠性的进一步提高。不过,在作为高导热层37使用填充了体积分数50%以上的高导热率无机材料的树脂组成物的情况下,由于高导热层37是柔软的,在对功率半导体6和金属筒I的表面形状的追踪性的方面是优良的。未固化的传递成型密封部件中含有聚乙烯或硬脂酸等脱模剂。该脱模剂在室温下为固体且没有粘性,但在90°C以上会成为液状。成为液状的脱模剂与作为密封部件的基体树脂的环氧树脂相比溶解度参数较低,因此在密封部件固化时会浮出到表面,起到使传递成型模具与密封部件良好脱模的作用。因此,粘接剂对于传递成型后没有进行任何处理的密封部件的粘接性,一般会因浮出的脱模剂而导致粘接性较差。通常,通过UV清洗、等离子体清洗、激光照射、研磨等除去该脱模剂,使粘接剂的密接性提高。发明人注意到溶解度参数与脱模剂接近的硅酮树脂,发现通过形成图20 (b)所示的包含硅酮树脂36的高密接层38,即使没有脱模剂的除去工序也能够实现高密接化。然而,由于硅酮树脂弹性系数较低,存在粘接强度降低的问题。于是,发明人使粘接剂的结构为微小的硅酮树脂分散在弹性系数较高的基体树脂中的微相分离结构,并研究了使用这样的粘接剂的情况。结果得知,作为绝缘片10的高密接层38,如果使用粘接剂固化后在环氧改性聚酰胺酰亚胺的基体树脂中形成平均粒径5 μ m以下的微小的硅酮树脂的相分离结构的粘接剂,则无需除去传递成型密封部件的脱模剂就可以实现IOMPa以上的高密接化。如上所述,本实施方式中,通过使绝缘片10成为高导热层37被高密接层38夹着的三层结构,能够获得具有高导热性且具有粘接性的绝缘片10。因此,绝缘片固化后,无需像专利文献I所述地持续维持夹压也能够保持绝缘片10的密接。(功率模块的制造工序)图21是说明功率模块的制造方法的图。首先,如图21 (a)所示,在通过传递成型而形成的功率半导体组件6的正反两面——即电极引线框316、319的散热面316s、319s和密封部件13的表面上压接绝缘片10。其中,在图20所示的绝缘片10的正反两面上,出于作业效率的观点贴有脱模片,而进行压接时,使绝缘片10的一个面一侧(与功率半导体组件6不相对的一个面)的脱模 片保留。在该状态下,使用真空冲压机在温度130°C、加压力IMPa、气压IOkPa的条件下压接I分钟。其中,绝缘片的压接作业分成图21 (a)所示的状态下的压接,和后述图21 (C)的状态下进行的压接这两个阶段进行。最初的压接是为了使功率半导体组件6和绝缘片10容易插入金属筒1,而将绝缘片10固定在功率半导体组件6的正反两面的预压接作业,绝缘片10中包含的树脂成分还未成为完全凝固的状态。具体而言,树脂成分的固化度为约80%以下的状态。为了成为这样的状态,在图21 (a)的压接作业中,以140°C以下的温度条件、2MPa以下的加压条件和IOkPa以下的气压条件进行15分钟以内的压接即可。接着,除去残留在绝缘片10上的脱模片,如图21 (b)所示将正反两面压接了绝缘片10的功率半导体组件6插入金属筒I内。之后,使用真空冲压机,通过对金属筒I的厚壁部301加压而使薄壁部302塑性变形,进行绝缘片10与金属筒I的压接。此时的压接作业的条件是温度130°C、加压力2MPa、气压lOkPa、压接时间15分钟。其中,该第二次压接作业中,以130°C以上的温度条件、5MPa以下的加压条件和IOkPa以下的气压条件进行5分钟以上的压接即可。通过该压接作业,绝缘片10的树脂成分的固化度成为大约90%以上。像这样,由于存在用于使绝缘片10与金属筒I的内周面接合的压接作业,所以在图21 (a)的最初的压接作业中,不能使绝缘片固化至完全凝固的状态。功率半导体组件6配置在被金属筒I的厚壁部301夹着的区域中,被薄壁部302夹着的区域成为间隙。图21 (c)所示的工序中,对该间隙区域注入封装树脂2使其加热固化。通过这一系列的作业形成功率模块31。其中,如图1所示,薄壁部302以包围厚壁部301的方式形成U字形,封装树脂2填充在该U字形的间隙空间中。这样,在功率模块300中,由于使用无缝的金属筒1,能够本质上成为水密结构,具有耐水性优良的效果。此外,由于将金属筒I与功率半导体组件6的间隙部用封装树脂2密封,具有能够通过封装树脂2的粘接力强化功率半导体组件与金属筒I的密接而实现高可靠性的效果。-第二实施方式_参照图22 图25说明本发明的第二实施方式。图22是示意性地表示第二实施方式的功率模块300B的截面的图。功率模块300B与图12所示的功率模块300的不同点在于电极引线框7的形状不同。以下以不同点为中心进行说明。与第一实施方式同样地,功率半导体组件6被收纳在金属筒I内,在功率半导体组件6与金属筒I之间配置绝缘片10。在电极引线框7上,形成贯通电极引线框7的钎料注入孔41。制造功率半导体组件6时,通过从该注入孔41注入钎料,使功率半导体元件5的集电极一侧的电极与电极引线框7连接。在电极引线框7的散热面一侧,形成用于将密封部件13导入钎料注入口 41的槽44。因此,为了在传递成型时使密封部件13通过该槽44到达钎料注入口 41,将槽44的深度设定为IOOym以上。图23是表示功率半导体组件6的制造工序的图。图23中,也与上述图14的情况同样地,以IGBT157、二极管158、电极引线框316、319的部分为例表示。IGBT157在图示上侦仪芯片正面一侧)形成发射极和栅极,在图示下侧(芯片背面一侧)形成集电极。首先,如图23 (a)所示,在发射极一侧的电极引线框319的元件固定部322上分别载置钎料片160a,在该钎料片160a上载置IGBT157和二极管158。图23 (b)所示的工序中,将它们一并回流焊接,使IGBT157和二极管158与电极引线框319通过钎料160固定并电连接。接着,如图23 (C)所示,使用夹具(治具)将集电极一侧的电极引线框316保持为规定的高度,从形成在电极引线框316上的钎料注入口 41通过分配器填充熔化的钎料。在该填充时调节填充量,以使钎料不会从电极引线框316的散热面一侧突出,即如图23 (c)所示使钎料比散热面316s凹陷。之后,将嵌件成型有信号端子4的由热塑性树脂构成的端子模块600,插入集电极侧和发射极侧电极引线框316、319的端子之间,将IGBT157的栅极与信号端子4用铝接合线11电连接。接着,使用传递成型用的模具利用密封部件13进行传递成型,不过这一工序省略了图示。图23 (d)是表示通过传递成型形成的功率半导体组件6的图。引线框结构体通过密封部件13成型,电极引线框316、319的散热面316s、319s在正反两面露出。在钎料注入口 41内,钎料比散热面316s凹陷,在该凹陷中填充有密封部件13。图24是功率半导体组件6的俯视图。电极引线框315、316的散热面315s、316s从密封部件13露出。钎料注入口 41在虚线所示的每一个元件固定部322设置,贯通电极引线框315、316的设置元件固定部322的区域而形成。槽44形成为从注入口 41延伸到散热面315s、316s的边缘,密封部件13从散热面315s、316s的边缘通过槽44向钎料注入口41内填充。
本实施方式中,由于能够如上所述利用夹具正确地定位电极引线框316的高度,并同时进行软钎焊作业,所以能够使图23 (c)所示的引线框结构体的图示上下方向的尺寸误差非常小。其中,为了减小该尺寸误差,使注入到钎料注入口 41的钎料160不比散热面更向外侧突出是非常重要的。此外,对于软钎焊后的整体高度进行研究发现,如果使软钎焊后的整体高度相对于模具型腔高度在O 60 μ m的范围内调整,则功率半导体元件不会破损,且密封树脂绕到电极引线框面的部分能够限制为距离电极引线框的外周部5mm以内。这样,本实施方式中,能够使电极引线框316、319与模具的间隙减小至能够防止传递成型时密封部件13绕到散热面316s、319s的程度。图14 (c)所示的例子中,为了吸收引线框结构体的高度尺寸误差而使用了柔软的脱模片27,但本实施方式中能够省略脱模片27。图25表示功率模块300的制作工序。图25 (a)所示的工序中,在图24 (d)所示的功率半导体组件6的正反两面上压接上述绝缘片10。然后,将压接了绝缘片10的功率半导体组件6收纳在金属筒I内,对厚壁部301加压使薄壁部302塑性变形,进行厚壁部301的内周面与绝缘片10的粘接。其中,图25 (a)、(b)的压接工序,在与上述第一实施方式同样的条件下进行。之后,通过进行封装树脂2的注入和加热固化,完成图1所示的功率模块300。(I)如上所述,本实施方式的功率半导体组件如图12所示,具有由板状导电性部件形成,在该板状导电 性部件的正反面的一个面上形成与功率半导体元件5的电极面金属接合的接合面,且在正反面的另一个面上形成散热面的电极引线框7、8,以使得电极引线框7,8的散热面的至少一部分露出的方式利用密封部件13使功率半导体元件5成型而得。通过使散热面隔着绝缘片10与散热部件(厚壁部301)热接触,来使功率半导体元件5的热散发到散热部件。在这样的功率半导体组件6中,如图13所示,散热面7b、8b的露出区域和与该露出区域邻接的密封部件13的表面,形成任一方突出的凹凸台阶,形成于凹凸台阶的凸侧的面与凹侧的面之间的台阶侧面,由与凸侧的面之间的角度和与凹侧的面之间的角度分别为钝角的倾斜面7a、13a构成。这样,即使散热面7b、8b的露出区域与邻接的密封部件13的表面形成为台阶,也使台阶侧面为上述钝角的倾斜面7a、13a,因此能够防止使绝缘片10密接时产生空隙。其结果,在最大电压超过300V的使用环境下,绝缘可靠性也是优良的。此外,通过使电极引线框端部为倾斜面7a,能够防止电场集中引起的介质击穿。此外,即使如图2所示,将电位不同的多个电极引线框315、316配置在同一平面上的情况下,由于电极引线框侧面不产生空隙所以难以产生树(tree,电树枝),不容易发生因迁移引起的短路。(2)另外,如图13 (b)所示,在凹凸台阶的散热面8b的一部分比密封部件13的表面13b更凹陷的情况下,倾斜面为形成在以包围散热面Sb的周围的方式突出的密封部件13的边缘的倾斜加工面13a。(3)另外,如图13 (a)所示,在凹凸台阶的散热面7b整体比密封部件13的表面更突出的情况下,倾斜面为形成在从密封部件13的表面13b突出的散热面7b的边缘的倒角加工面7a。
(4)另外,倾斜面7a、13a的角度优选为110度以上且不足180度。(5)在功率半导体元件5在正反两面具有电极的情况下,如图12所示,包括与功率半导体元件5的背面一侧的电极面接合的第一电极引线框7,和与功率半导体元件5的正面一侧的电极面接合的第二电极引线框8,第一电极引线框7和第二电极引线框8中至少一个电极引线框形成有具有倾斜面的凹凸台阶。由此,能够从功率半导体元件的两面进行冷却,具有能够实现高散热的效果。(6)如图22所示,在电极引线框的至少一方,形成作为从散热面贯通至接合面的贯通孔的钎料注入口 41,使作为金属接合体的钎料在熔化状态下从钎料注入口 41注入到电极面与接合面的间隙中,将电极面与接合面金属接合。另外,在形成有钎料注入口 41的电极引线框的散热面上,形成从电极引线框的端部连通至钎料注入口 41的槽44。由此,传递成型时密封部件13通过槽44流入钎料注入口 41,所以钎料注入口 41和槽44被密封部件13覆盖。这样,由于从钎料注入口 41注入钎料使散热面与接合面金属接合,所以通过进行使用了夹具的软钎焊,能够减少软钎焊时产生的高度方向的尺寸误差。因此,还能够使功率半导体组件6与传递成型模具的间隙尺寸减小至能够防止密封部件13绕过来的程度。此夕卜,即使密封部件13绕过来,通过形成上述倾斜面,也能够防止与绝缘片之间产生空隙。由于钎料注入口 41被通过槽44导入的密封部件13覆盖,所以能够防止钎料注入口 41与绝缘片之间产生空隙。(7)此外,由于钎料注入口 41以将接合面的边缘区域贯通的方式形成,远离散热面的中央,所以能够抑制因设置钎料注入口 41而引起的散热效果的降低。(8)本实施方式的功率模块如图12所不,有底的金属筒I具有在外周面上形成有散热翅片305的相对的一对厚壁部301 (散热壁),以一方的厚壁部301的内周面与电极引线框7的散热面相对、且另一方的厚壁部301的内周面与电极引线框8的散热面相对的方式,在内部插入功率半导体组件6。在电极引线框7的散热面与厚壁部301之间,和电极引线框8的散热面与厚壁部301之间,分别密接地配置导热性绝缘片10。因此,由于能够从功率半导体元件的两面进行冷却,所以具有能够实现高散热的效果。此外,能够防止电极引线框与绝缘片之间产生空隙。进而,由于散热面的一部分被密封部件覆盖,通过具有粘接性的绝缘片使电极引线框与金属筒的厚壁部内周面密接时,能够从根本上防止电极弓I线框与金属制壳体直接接触。(9)金属筒I包括形成在厚壁部301的周围的厚度比该厚壁部301薄的薄壁部302,薄壁部302发生塑性变形以使得功率半导体组件6被厚壁部301夹持,所以功率半导体组件6插入到金属筒I时的插入作业变得容易,且能够使厚壁部301的内周面与绝缘片可靠地密接。因此,能够实现散热性的提高。由于使薄壁部302塑性变形从而使具有粘接性的绝缘片10与功率半导体组件6的散热面粘接,因此优选金属筒I是容易塑性变形的金属,例如是铝制的。(10)绝缘片10包括对热固性树脂以50%以上90%以下的体积分数填充了导热率为5W/mK以上的绝缘性无机材料而得的高导热层37,和形成在该高导热层的正反两面、由热固性树脂构成的高密接层38。由于具有高导热层37,提高了绝缘片10的导热性能。此夕卜,在与厚壁部301和散热面相对的正反两面上设置了热固性树脂构成的高密接层38,因此绝缘片10与散热面和金属筒I的内周面粘接,即使在绝缘片10固化后不持续夹压,也能够保持绝缘片10与散热面和金属筒I的密接。(11)高密接层38含有多于50%体积分数的环氧改性聚酰胺酰亚胺树脂作为热固性树脂,具有在作为基体树脂的环氧改性聚酰胺酰亚胺树脂中微相分离有平均粒径5 μ m以下的硅酮树脂的结构。通过采用这样的结构,能够实现绝缘片10与散热面和金属筒I的高密接化。(12)在使以包围散热面的周围的方式突出的密封部件13的边缘区域成为倾斜面时,通过使用激光加工,能够在短时间内容易地进行倾斜面加工。(13)本实施方式的功率半导体组件的制造方法中,如图14所示,使散热面的边缘形成了倒角加工面的电极引线框316的接合面,与功率半导体元件157的电极面金属接合,在与功率半导体元件157金属接合的电极引线框316的散热面和传递成型模具26b之间配置柔性脱模片27,将传递成型模具26b按压在电极引线框316的散热面上,在使该散热面陷入柔性脱模片27中的状态下进行传递成型。其结果,能够使电极引线框316的散热面从密封部件13的表面突出,防止密封部件13绕到散热面上。(14)本实施方式的功率模块的制造方法,以温度140°C以下、加压力2MPa以下、气压IOkPa以下和压接时间15分钟以内的压接条件,进行绝缘片10与功率半导体组件的电极引线框的散热面的压接,之后,以温度130°C以上、加压力5MPa以下、气压IOkPa以下和压接时间5分钟以上的压接条件,进行厚壁部301的内周面与压接在功率半导体组件上的绝缘片10的压接。通过进行最初的压接,绝缘片10和半导体单元6向金属筒I的插入作业变得容易,通过第二次压接使绝缘片10与厚壁部301可靠地密接。上述各实施方式可以分别单独使用或组合使用。这是由于各实施方式的效果能够单独或叠加实现。此外,只 要不损害本发明的特征,本发明就不限于上述实施方式。本发明的技术思想范围内能够考虑的其他方式也包括在本发明的范围内。以下优先权基础申请的公开内容通过引用的方式引入本申请。日本国专利申请2010年第166705号(2010年7月26日递交)
权利要求
1.一种功率半导体组件,其特征在于,包括 功率半导体元件; 电极引线框,由板状导电性部件形成,在该板状导电性部件的正反面的一个面上形成与所述功率半导体元件的电极面金属接合的接合面,且在所述正反面的另一个面上形成散热面;和 模塑部件,以使得所述散热面的至少一部分露出的方式使所述功率半导体元件成型,其中, 所述散热面隔着绝缘片与散热部件热接触,使所述功率半导体元件的热散发到所述散热部件, 所述散热面的露出区域和与该露出区域邻接的所述模塑部件的表面,形成任一方突出的凹凸台阶, 形成于所述凹凸台阶的凸侧的面与凹侧的面之间的台阶侧面,由与所述凸侧的面之间的角度和与所述凹侧的面之间的角度分别为钝角的倾斜面构成。
2.如权利要求1所述的功率半导体组件,其特征在于 所述凹凸台阶的所述散热面的一部分比所述模塑部件的表面更凹陷, 所述倾斜面,由形成在以包围所述散热面的周围的方式突出的所述模塑部件的边缘的倾斜加工面构成。
3.如权利要求1所述的功率半导体组件,其特征在于 所述凹凸台阶的所述散热面整体比所述模塑部件的表面更突出, 所述倾斜面,由形成在从所述模塑部件的表面突出的所述散热面的边缘的倒角加工面构成。
4.如权利要求1 3的任意一项所述的功率半导体组件,其特征在于 所述倾斜面的所述角度为110度以上且不足180度。
5.如权利要求1 4的任意一项所述的功率半导体组件,其特征在于 所述功率半导体元件在正反两面具有所述电极, 所述电极引线框,包括与所述功率半导体元件的背面一侧的电极面接合的第一电极引线框,和与所述功率半导体元件的正面一侧的电极面接合的第二电极引线框, 所述第一电极引线框和第二电极引线框中至少一个电极引线框具有凹凸台阶,该凹凸台阶形成有构成所述倾斜面的台阶侧面。
6.如权利要求5所述的功率半导体组件,其特征在于,包括 贯通孔,形成于所述第一电极引线框和第二电极引线框的至少一方,从所述散热面贯通至所述接合面; 金属接合体,在熔化状态下被从所述贯通孔注入到所述电极面与所述接合面的间隙中,通过凝固而将电极面与接合面金属接合;和 槽,在形成有所述贯通孔的电极引线框的散热面上形成,从该电极引线框的端部连通至所述贯通孔,其中, 所述贯通孔和槽被所述模塑部件覆盖。
7.如权利要求6所述的功率半导体组件,其特征在于 所述贯通孔,以将所述接合面的边缘区域贯通的方式形成。
8.—种功率模块,其特征在于,包括 权利要求5 7的任意一项所述的功率半导体组件; 有底的金属筒,具有在外周面上形成有散热翅片的相对的第一和第二散热壁,以所述第一散热壁的内周面与所述第一电极引线框的散热面相对、且所述第二散热壁的内周面与所述第二电极引线框的散热面相对的方式,在内部插入所述功率半导体组件; 第一导热性绝缘片,被密接配置在所述第一散热壁的内周面与所述第一电极引线框的散热面之间;和 第二导热性绝缘片,被密接配置在所述第二散热壁的内周面与所述第二电极引线框的散热面之间。
9.如权利要求8所述的功率模块,其特征在于 所述金属筒包括形成在所述第一散热壁的周围的厚度比该散热壁薄的第一薄壁部,和形成在所述第二散热壁的周围的厚度比该散热壁薄的第二薄壁部, 所述第一和第二薄壁部发生塑性变形以使得所述功率半导体组件被所述第一和第二散热壁夹持。
10.如权利要求8或9所述的功率模块,其特征在于 所述第一和第二导热性绝缘片包括 对热固性树脂以50%以上90%以下的体积分数填充了导热率为5W/mK以上的绝缘性无机材料而得的高导热层;和 由所述热固性树脂构成,且形成在所述高导热层的正反两面的高密接层。
11.如权利要求10所述的功率模块,其特征在于 所述高密接层,含有多于50%体积分数的环氧改性聚酰胺酰亚胺树脂作为所述热固性树脂,具有在作为基体树脂的所述环氧改性聚酰胺酰亚胺树脂中微相分离有平均粒径5 μ m以下的硅酮树脂的结构。
12.—种功率半导体组件的制造方法,其特征在于 通过对权利要求2所述的功率半导体组件的以包围所述散热面的周围的方式突出的所述模塑部件的边缘区域进行激光加工,形成所述倾斜面。
13.一种功率半导体组件的制造方法,其特征在于,包括 第一工序,使权利要求3所述的功率半导体组件中设置的所述电极引线框的所述接合面,与所述功率半导体元件的电极面金属接合; 第二工序,在所述电极引线框的所述散热面与传递成型模具之间配置柔性脱模片;和第三工序,将所述传递成型模具按压在所述电极引线框的所述散热面上,在使所述散热面陷入所述柔性脱模片中的状态下进行传递成型。
14.一种功率模块的制造方法,其特征在于,包括 第一压接工序,以温度140°C以下、加压力2MPa以下、气压IOkPa以下和压接时间15分钟以内的压接条件,在权利要求10或11所述的功率模块中设置的所述功率半导体组件的所述第一和第二电极引线框的散热面上,压接所述第一和第二导热性绝缘片;和 第二压接工序,在压接于所述功率半导体组件上的所述第一和第二导热性绝缘片上,以温度130°C以上、加压力5MPa以下、气压IOkPa以下和压接时间5分钟以上的压接条件,压接所述第一和第二散热壁的各内周面。
全文摘要
电极引线框(7、8)的散热面(7b、8b)隔着绝缘片(10)与散热部件(301)热接触,使功率半导体元件(5)的热散发到散热部件(厚壁部301)。散热面(7b、8b)的露出区域和与该露出区域邻接的模塑部件(密封部件13)的表面(13b),形成任一方突出的凹凸台阶。形成于该凹凸台阶的凸侧的面与凹侧的面之间的台阶侧面,由与凸侧的面之间的角度和与凹侧的面之间的角度分别为钝角的倾斜面(7a、13a)构成。
文档编号H05K7/20GK103069935SQ20118003651
公开日2013年4月24日 申请日期2011年7月25日 优先权日2010年7月26日
发明者露野圆丈, 宝藏寺裕之, 石井利昭, 诹访时人, 中津欣也, 德山健, 楠川顺平 申请人:日立汽车系统株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1