用核酸或蛋白质进行亚微升级反应的方法和装置的制作方法

文档序号:448076阅读:1191来源:国知局
专利名称:用核酸或蛋白质进行亚微升级反应的方法和装置的制作方法
技术领域
本发明属于生物技术领域,涉及制备和进行使用核酸或蛋白质的小规模反应的方法和装置。
背景技术
联邦政府资助的人类基因组工程其最初目标是在2005年前完成人类基因组十次折叠范围内的测序。随着步伐极大加速,最近已有了部分的草图。然而,这项壮举并没有降低对快速、便宜DNA测序的需求,反而刺激了对快速、便宜核酸测序的需求。人类基因组序列草图的完成也刺激了对直接分析基因组所编码蛋白的复杂集合的方法和装置的需求,该集合统称为蛋白质组。
至于DNA测序的需求,对包括细菌、植物及动物在内的非人类生物基因组测序越来越引起人们的注意。
更重要的是,分子病理及药物基因组学领域的发展将需要对来自单个患者的多个基因进行重新测序。分子病理涉及通过鉴定特定基因中的突变对人类疾病作出诊断,也常涉及预后的明确陈述。药理基因组学指推断所有人类总体中所存在的等位基因差异如何影响个体对药物的治疗反应及对副作用的敏感性。
随着个体患者基因测序的需求增长,测序能力的关注点需求也会增长。这就要求只有在得到良好资金资助的学术研究中心及基因组公司才有的、集中的、高通量大DNA测序设备转变成可在大部分医院和诊所安装、不那么复杂的中等通量小基因测序系统。DNA测序技术市场的这种转变将使降低试剂成本并使样品加工步骤尽可能简单和无缝带来额外的费用。
在20世纪70年代末,Sanger等开发出一种DNA序列分析的酶链终止方法,可生成一系列起点相同而在整个的序列的每一核苷酸生成随机结束点的嵌套DNA片段。Lioyd Smith、Lee Hood及其它人对Sanger方法作了改动,在测序反应中使用4个荧光标记,使得可以实现单条泳道分离。结果就产生了首台自动化DNA测序仪,它分离时使用聚丙烯酰胺板状凝胶。最近,荧光能量转移染料也开始用于制备可使信号增强2到10倍并简化光学配置的染料组合。
自动化荧光毛细管阵列电泳(CAE)DNA测序仪开始成为取代板状凝胶的一致技术。毛细管凝胶电泳加快了测序产物的分离,具有极大降低样品量需求的潜能。Amersham Biosciences公司(Sunnyvale,CA)的商用MegaBACETM是96通道毛细管电泳装置,它使用激光诱导荧光(LIF)共聚焦荧光扫描仪,在90分钟运行及两小时的循环的时间内可检测到平均每毛细管(Phred 20个窗口)约625个碱基。共聚焦立体过滤的结果是得到更高的信噪比,因为在光电倍增管(PMT)进行信号检测前已消除了周围物质过剩的反射和荧光。相应地,每一测序条带的灵敏度均可达到亚阿摩尔(subattomole)水平。共聚焦成像在使用毛细管电泳的微芯片分析系统中也非常重要,因为此时玻璃或塑料的微芯片其背景荧光可能要比熔凝硅石毛细管的背景荧光高得多。毛细管阵列电泳系统可解决基因组领域中许多DNA分析的起始通量需求。然而,目前小体积样品制备的方法仍是增加通量并降低成本的重要障碍。
当荧光DNA测序仪提高DNA序列采集的通量时,它们也将通量瓶颈从序列采集转回到了样品制备。为了适应需要,已开发出象不需离心的磁珠捕获方法那样,快速制备测序模板的方法和转座子辅助的DNA测序方法。已筛选到嗜热Archae DNA聚合酶,并将其进行基因改造从而提高保真度,保证高温时的稳定性,增加长度并改变双脱氧核苷酸及荧光类似物的亲和力。这些改进降低了试剂成本,简化了样品制备,使数据精确度更高,阅读长度也增长了。
在测序领域也研发出制备DNA模板、聚合酶链反应(PCR)及DNA测序反应的更高通量方法。使用96孔和384孔微量、多通道移液器及实验室机器人工作站,使样品制备快了许多倍,并实现了自动化。虽然标准的多通道移液器用于操作更小的体积,一般来说这些工作站模仿技术人员所做的操作,工作时的体积最小可小到约1微升。
用鸟枪法在毛细管系统上进行DNA测序时,典型的全范围样品制备方法开始时将噬菌斑或细菌菌落裂解以分离亚克隆的DNA。在一些情况下,可能需要用PCR扩增亚克隆的DNA插入片段以便指数级地增加其在样品中的浓度。然后,加入外切核酸酶I(ExoI)和北极虾碱性磷酸酶(SAP)进行酶清除反应以除去干扰循环测序的引物和过量的dNTPs。ExoI用于将单链引物降解成dNMPs而不消化双链产物。SAP将dNTPs转化成dNPs,并将dNTP的浓度从PCR反应所用的200μM降到荧光测序使用的0.1μM。反应先在37℃进行,然后加热到65℃使ExoI和SAP发生不可逆变性。
因为PCR扩增可以产生循环测序所需的过量DNA模板,测序前可将ExoI/SAP处理过的PCR样品稀释5倍。这样可以将污染浓度降到更少干扰毛细管电泳分析的范围。加入循环测序试剂,一般同时加入荧光标记的染料引物及终止子,反应进行热循环使标记的片段得以线形扩增。最后,在循环后用乙醇沉淀法或旋转过滤法对样品进行处理,重悬于甲酰胺中,将另一变性剂或水与样品一起动电注射进毛细管电泳分析系统中。
这样的工作流程使MegaBACETM系统的性能得到极大的改善,目前其它毛细管电泳系统似乎也选用类似工作流程。通过使用来源于单个噬菌斑和人类基因组随机亚克隆集落的真实样品或表达序列标签(ESTs),这种以线形聚丙烯酰胺为分离基质的工作流程其200个碱基对样品的分离成功率从约60%提高到85~90%,其平均阅读长度从约400个碱基增长到超过600个碱基。而且,这种方法已证明是非常稳定的。
尽管上述的样品制备方法已使通量得到很大的提高,试剂的成本仍是测序成本的主要组成部分之一。毛细管电泳只需亚阿摩尔的样品,但目前所制备的样品为皮摩尔级。因此降低反应体积将可以降低DNA测序的成本,并且仍可提供足够的材料用于分析。但是,只有研发出操作、反应样品及试剂令人满意的方法,才能真正减少反应体积。理想的是,这种方法是自动化的,并可配置成同时生成多份样品。另外,将这种方法可作为一个与其它组分如毛细管电泳和分离、分析检测仪整合的模块,将是非常理想的。
已设计了数种装置来辅助样品制备的自动化。例如,第5,720,923号美国专利介绍了一种系统,在该系统中循环反应在直径小到1mm的管子里进行。然后,将这些管子暴露于加热部件所产生的热循环中以完成所需的反应。在单个管子中各加入小量的样品,每个样品在管子中用不与样品组合的液体分隔开为,这样就可在单个管子中处理多个样品。流体靠泵通过管子。将这些特性引入一个系统中,其中该系统可自动清洗管子、移动携带有含样品孔的样品架并将管子与样品架的孔相接触。
第5,785,926号美国专利公开了一个运输小体积样品的系统。在该系统中,至少有一个毛细管用于运输小体积的样品。精确度线性调节器作为气动活塞使用管子来等分并分配液体,该调节器与计算机控制的马达相连。用光学传感器检测毛细管各段中液体的存在,从而监测样品的量。该系统包括含需储存液体的流体工作站,及安置该运输毛细管的安置设备。
第5,897,842号美国专利公开了利用热循环来实现自动化样品制备的系统。在该系统中,将反应混合物泵入毛细管中。该管的一端用来自相关泵的压力封闭,而另一端则通过将该管顶住屏障而得以封闭。该泵也用于将流体移入管中。一旦管的两端封闭后,将其暴露于热循环中。在此系统中,机器人传输装置将管子在样品制备工作站和热循环工作站之间移动,泵在样品制备工作站将反应混合物的组分加到管子中。
在上述所讨论的系统中,需要先将诸如DNA模板之类的样品与试剂混合在一起,然后才将混合物引入反应室中。此中间混合步骤不可避免地需要额外的试剂和样品处理步骤,从而产生了浪费。例如,如果用分开的微量移液器将样品和试剂分配到混合室中,各移液器中将残留有小量的样品和试剂,而混合室中也会有反应混合物残留。在高通量系统中,这种浪费的成本及提供新的或已适当清洗的移液管及混合室会迅速上升。经常需要分配相对大量、含低浓度反应组分的液体,以补偿分配小量、高浓度反应组分所带来的不准确度,从而使浪费的程度更加严重。通常,形成反应混合物后,只需要一部分用于分析,剩下的就丢弃了。
因此,需要有种方法,不必先将样品与发生反应所需的试剂混合,就将需分析的生物样品引入反应室中。
第5,846,727号美国专利公开了亲和捕获的方法,在该方法中,模板DNA固定在玻璃毛细管的内部,该管用作热循环的反应室。首先将生物素分子固定到该管的内表面,然后装满与该生物素紧密结合的抗生物素蛋白或链霉抗生素蛋白,将毛细管制备好。要测序的模板DNA通过PCR与生物素部分共价结合,然后暴露于毛细管内部的抗生物素蛋白中。这样就通过生物素-抗生物素蛋白-生物素连接将模板固定到毛细管的管壁上。洗去未结合的模板之后,加入测序试剂,毛细管的内容物进行热循环以激活测序反应。以这种方式,模板DNA上样到毛细管之前不必与测序试剂混合。
然而,前面刚刚所述的方法需要用PCR将生物素与模板DNA连接,需要在测序反应之前制备好,和需要进行一次反应。该必要的预步骤增加了与获得序列数据相关的时间和成本。而且,该DNA的固定实际上是不可逆的,因为生物素-抗生物素蛋白的连接强度很强,以至于只有使用变性该抗生物素蛋白的试剂才能打开此连接,而这一处理也会使反应中的其它蛋白质组分变性。结果模板DNA必须保持固定于毛细管的内表面。因为DNA在溶液中不是游离的,就得需要额外的时间才能使反应组分扩散到可与DNA相互作用的管壁。另外,当需要回收毛细管时,就得将抗生物素蛋白变性、洗掉以除去模板DNA,然后重新在毛细管负荷抗生物素蛋白,所有这些均会增加时间及试剂成本。
因此,本领域内一直需要有一种方法,可以将分子引入反应室中而不需要起始的样品-试剂混合步骤,也不需要将亲合捕获物部分附到样品中所有分子上,并且其中模板固定是可逆的。这样,可以使成本降到最低、处理速度最快。
毛细管阵列电泳系统及毛细管电泳微芯片分析系统可以检测亚阿摩尔的DNA测序反应产物。与板状凝胶相比,其对测序反应中模板DNA理想含量的偏差的容许程度下降,它的超常灵敏度正是以此为代价换来的。例如,如果测序反应中的模板DNA太少,则荧光标记引物的延伸产物量收率将很少。这就导致用激光扫描反应产物时信号强度极弱。这样就使分析色谱的软件无法充分实施光谱分离,造成序列阅读长度比平均长度短,反应得重复,否则序列信息就会丢失。
模板DNA的过量也会因毛细管超负荷而产生问题。尽管荧光标记反应产物的产率足够高,如果模板过量,它将在动电注射时与测序产物竞争进入毛细管。大量模板DNA的存在可使毛细管的总流量下降,或使流量突然下降,可以各种形式表现出来。超负荷可导致信号强度弱,层析谱中可解释的荧光强度峰出现得晚,反应产物分辨率极低,因为荧光激发广而弥散。所有这些效应均会导致阅读长度变短和测序数据质量下降。
超负荷的问题一般是通过稀释测序反应或仔细滴定引入测序反应的模板DNA量来解决。尽管理论上这些解决方案都不复杂,但是前者需要重复反应的分析,后者则用传统的方法在高通量系统中难以实现。这些方法包括检测与样品中DNA结合的荧光染料量,并与标准浓度曲线比较;或于260nm波长处测定紫外吸收,可将其转化成DNA浓度的绝对测量值。因此,本领域内一直需要方法来滴定将要用高通量毛细管电泳分析系统分析的测序反应模板DNA量,其中使成本最低化和速度最快化是关键的。
另外还需要有一套自动化系统,可以高度平行的方式进行小规模热循环反应。该系统应该可以允许快速制备循环反应,同时最低限度地耗费试剂。将减少反应所需试剂和减少反应所需时间结合起来,将可极大地减少制备循环反应的总体成本。
至于蛋白质组学,分析蛋白组需要分离、定量和鉴定很大的蛋白质集合。
典型地,可以将不同的技术联用来完成这样的分析,如先进行2维电泳分离,然后进行酶消化并用基质辅助激光解吸/电离质谱(2DPAGE-MALDI/MS)或电子喷雾电离质谱(2D PAGE-ESI/MS)加以鉴定。另一通用的途径是LC/LC-MS/MS,即将蛋白质消化,用强阳离子交换液相色谱和反相液相色谱(LC/LC)进行分离,然后用串联质谱(MS/MS)进行鉴定。目前的限制包括在蛋白质消化前需要集中制备样品、分析物丢失以及在蛋白质浓度低时反应效率低。
在另一替代方案中,所开发的方法和设备允许使用单一的衍生激光解吸探针同时进行部分纯化及质谱鉴定。参见第6,225,047、6,124,137、5,719,060号美国专利。然而这类方法需要专门的设备,并且需要对质谱仪非常熟悉。
因此,本领域内一直需要有一种自动化系统,可以高度平行的方式进行小规模蛋白质组反应。该系统应该可以允许快速制备酶反应,同时最低限度地耗费试剂。将减少反应所需试剂和减少反应所需时间结合起来,将可极大地减少制备酶反应的总体成本,同时高度平行的系统可提高通量。
发明概述相应地,本发明的某些实施方案如下列编号段落所阐明1.进行小规模反应的系统,该系统包括包含基片和延伸过该基片的多个毛细管的毛细管盒,其中所述每个毛细管在所述基片的相对两侧具有第一和第二开口端;一对膜,这对膜的定向和间隔使得它们可以临时封闭所述毛细管相对的两端;热循环仪,其内部室具有足以放置所述毛细管盒和膜的容积;以及自动化运输装置,该装置的位置使得其能接触毛细管盒并且将毛细管盒移到毛细管两端可被这对膜封闭并且该毛细管两端已被膜封闭的毛细管盒可以定位到热循环内部室在中的位置上。
2.第1段的系统,还包括将流体从毛细管盒的毛细管分配到接收基片的位置上的分样器,其中所述自动化运输装置可以移动与该分样器和接收基片相关的毛细管盒,以便毛细管盒中毛细管内所含流体可以分配到基片上。
3.第2段的系统,其中分样器为离心机。
4.第2段的系统,其中分样器为置换分样器。
5.第2段的系统,还包括一个分析台,从而自动化装置可以移动与所述分样器相关的毛细管盒,以便将毛细管盒中的内容物转到位于该分析台上的基片上。
6.第5段的系统,其中所述基片是样品制备微芯片,自动化运输装置布置成将毛细管盒直接分配到多个样品制备芯片的样品接收孔中。
7.第5段的系统,其中所述基片为一组毛细管,自动化运输装置布置成将毛细管盒直接分配到毛细管中。
8.第2段的系统,其中所述基片是多孔板。
9.第1段的系统,其中所述毛细管内部具有10~1000nL的容积。
10.第1段的系统,还包括毛细管盒清洗工作站,其中所述自动化装置可以移动毛细管盒,使之与该清洗工作站接触,当毛细管盒置于清洗工作站内时,该清洗工作站引导清洗液通过毛细管盒的毛细管。
11.第10段的系统,其中所述清洗工作站含有一个清洗液槽,上面有一个清洗歧管,它可以移到该清洗液槽的上方,其中清洗流体可以通过该歧管引入清洗液槽,当毛细管盒插入该清洗工作站时清洗流体可以吸到清洗歧管中。
12.第11段的系统,所述清洗工作站还包括多个清洗流体瓶,每个瓶子均含一种清洗流体和选择阀门,从而可以选择将一个所述瓶子中的清洗流体注入所述清洗槽中。
13.第1段的系统,还包括电子控制仪,可以编程向系统的各组分发送电子指令。
14.第1段的系统,其中所述的一对膜粘附于热循环仪内部室的对侧。
15.第1段的系统,还包含多个微量反应板支架箱,它可将微量反应板分配到所述自动化运输装置可以接触到并移动微量反应板的位置。
16.第1段的系统,其中所述膜为加载弹簧的可变形膜,以便临时封闭毛细管的两端。
17.制备纳米级反应的系统,该系统包括包含基片和延伸过该基片的多个毛细管的毛细管盒,每个毛细管的内部容积为10nL至约1μL,其中所述每个毛细管在所述基片的两侧具有第一和第二开口端,毛细管延伸通过基片在该基片一侧的距离应短于微量反应板孔的深度;多孔反应板,毛细管盒的毛细管可插入其所具有的多个孔中;分样器,当所述毛细管送到分样器时该分样器可将流体从毛细管盒的毛细管分配到所述多孔反应板;自动化运输机器人,具有运输头可以携带选自毛细管盒、多孔反应板及毛细管盒的毛细管插入多孔反应板孔中的多孔反应板的物品;一对相对的膜表面,其中通过将膜压着管的两端可临时将毛细管的末端封闭;和热循环仪,当用膜封闭毛细管盒的毛细管两端时,其内部室的容积应大到足以放置毛细管盒和膜,其中热循环仪安置在自动化运输机器人可以将毛细管盒放入该热循环仪内部室的位置,膜可以在该内部室内封闭毛细管盒内的毛细管末端。
18.第17段的系统,其中所述分样器为动电注射器。
19.第17段的系统,其中所述分样器为离心机。
20.第17段的系统,其中所述分样器为排气头。
21.第17段的系统,其中所述分样器布置成将液体从毛细管分配到位于分析台上的分析基片中。
22.第17段的系统,还包括毛细管盒清洗工作站,其中所述自动化装置可以移动毛细管盒,使之与该清洗工作站接触,当毛细管盒置于清洗工作站内时,该清洗工作站引导清洗液通过毛细管盒的毛细管内部。
23.第22段的系统,其中所述清洗工作站包括位于下面的清洗液槽和上面的清洗歧管,其中当毛细管盒插入所述清洗工作站时清洗流体可进入清洗槽中并吸入清洗歧管中。
24.第23段的系统,其中所述清洗工作站还包括多个清洗流体瓶和与所述瓶流体相通的选择阀门,从而可以选择清洗流体注入所述清洗槽中。
25.第17段所述的系统,还包括电子控制仪,该控制仪发送电子指令以影响该系统的已编程操作。
26.制备纳米级反应的系统,该系统包括一层基片,它具有相关的完整延伸亚微升体积反应容器,此容器具有相对的两端;该反应容器内的反应混合物;一对安置成临时封闭该反应容器相对两端的膜;热循环仪,其内部室有足够的空间容纳带有所述膜封闭的关联延伸反应室的基片。
27.第26段的系统,其中所述基片具有延伸穿过所述基片的毛细管,其中该毛细管充当反应室。
28.第26段的系统,其中该延伸反应容器穿过该基片的厚度。
29.第26段的系统,其中所述热循环仪使加热的空气在连续的回路中循环,其内部室是该连续回路的一部分。
30.第29段的系统,其中该连续回路可以通过阻断内部通道的一段形成出口,并将热气排出从而可以快速调节该热空气的温度。
31.第30段的系统,其中所述内部室含有膜固定在该内部室相对的两侧表面。
32.第31段的系统,其中所述膜至少有一张带弹簧装在所述室的内部,弹簧提供了该膜对所述反应容器所对一端的封闭压力。
33.第26段的系统,还包括了分发所述反应容器的工具。
34.第26段的系统,还包括将试剂组合起来形成所述反应混合的工具,以及用该反应混合物灌注所述反应容器的工具。
35.第26段的系统,还包括一个可以放置和清洗反应容器的清洗工作站。
36.制备纳米级热循环反应混合物的方法,其步骤包括将化合物组合在一起形成反应混合物;将该反应混合物引入置于基片上的多个反应容器,每一反应容器的内部体积少于1微升,并且具有第一和第二开口端;将一对相对的膜压向反应容器的第一和第二套末端以临时封闭反应容器的末端;将封闭的反应容器暴露于温度循环中以便在反应混合物中产生反应;将反应容器分配到基片上。
37.第36段的方法,其中将化合物合在一起形成反应混合物的步骤包括下列步骤将毛细管盒的多个毛细管放与第一液体反应组分接触从而量取一定量的第一液体反应组分,其中毛细管通过毛细管作用得以灌注;将第一液体反应组分分配到基片的分离的位置上;将毛细管盒的毛细管的一个末端放与反应试剂接触从而量取一定量的第二液体反应组分,其中毛细管通过毛细管作用得以灌注;将第二反应试剂组分分配到分离的位置,从而将第一和第二液体反应组分组合在一起形成反应混合物。
38.第37段的方法,其中将所述反应混合物引入多个反应容器中的步骤是这样实现的提供毛细管盒并将其毛细管一开口端浸入反应混合物中与之接触,以便毛细管可以经由毛细管作用得以灌注。
39.第36段的方法,其中将化合物组合形成反应混合物的步骤包括下列步骤将生物分子样品固定在反应容器的内表面;将毛细管盒的毛细管的一个末端放与反应试剂接触从而量取一定量的反应试剂进入毛细管盒的毛细管中,其中毛细管通过毛细管作用得以灌注,从而反应试剂与固定的生物分子组合在一起形成反应混合物。
40.第39段的方法,其中所述生物分子为核酸。
41.第36段的方法,其中将化合物组合形成反应混合物的步骤包括下列步骤用一层干燥的反应试剂包被多个表面位置;在每一表面位置加上核酸样品溶液,其体积足以溶解反应试剂的固体层,从而形成反应混合物。
42.第36段的方法,其中将化合物组合形成反应混合物的步骤包括下列步骤用一层干燥的反应试剂包被毛细管盒中每一毛细管的内表面;将毛细管盒的毛细管一端放与核酸样品溶液接触从而量取一定量的核酸样品溶液进入毛细管盒的毛细管中,其中毛细管通过毛细管作用得以灌注,该溶液可以使该层反应试剂溶解,形成反应混合物。
43.第36段的方法,其中将反应容器分配到基片上的步骤这样实现将基片与离心机中的反应容器关联在一起;将基片置于该反应容器一个开口端的径向远端;并施加离心力以便该反应容器内的液体反应混合物分配到该基片上。
44.第36段的方法,其中将反应容器分配到基片的步骤这样实现用气体置换法将反应容器中的内容物置换到基片上。
45.第36段的方法,其中将一对相对的膜压向反应容器的第一和第二套末端以临时封闭反应容器的末端的步骤这样实现将反应容器放到热循环仪的内部室,其中当所述反应容器封闭于该热循环仪中时,该内部室内表面对侧的可变形膜在反应容器每一端将反应容器末端临时封闭。
46.第36段的方法,其中将封闭的反应暴露于温度循环中以便产生反应的步骤这样实现通过导管将热空气循环穿过反应容器,在温度循环过程中通过导管使得空气快速排出到该导管外从而产生快速温度变化。
47.将反应混合物暴露于温度循环的热循环装置,该装置包括包围连续回路通道的外壳,该外壳有一部分可以临时开放以便接触到外壳的内部;置于该回路通道内的鼓风机,在该回路通道内将气流导向一个方向;置于该回路通道内的加热元件,以便在该通道内循环的气体经过该加热元件;样品停留室,该室内部装有两张相对放置的膜,其中该膜可压向插入样品停留室的容器的相反两端;可以打开从而快速排出循环热气的外壳通风口;外壳进气口,当通风口排出循环热气时气体可以从该口吸入内部回路通道。
48.第47段的热循环装置,还包括放置于内部通道贴近样品停留室之处的温度监测装置。
49.第47段的热循环装置,还包括至少一个放置于内部通道的鼓风机和样口停留室之间的气体扩散器,该扩散器促进内部通道内的循环气体温度统一。
50.第47段的热循环装置,其中样品停留室内的膜至少有一张带有弹簧压力。
51.第47段的热循环装置,其中还包括附于内部回路通道表面的绝缘体。
52.第47段的热循环装置,还包括向热循环装置组件发送指令的电子控制仪。
53.第47段的热循环装置,其中所述通风口可通过将位于所述样品停留室和进气口之间的部分移动而打开,以便内部通道至少部分受限,并且建立了该外壳向外部开放的开口。
54.第47段的热循环装置,其中所述外壳有一个可封闭的开口,该开口允许接触到样口停留室。
55.进行反应的方法,该方法包括a)将反应混合物引入反应容器组,该容器组中每一容器具有相对的两端,其内部容积为10~1000nl;b)将可变形膜压向反应容器的相对两端,从而将反应室临时封闭;c)在该反应容器内发生反应;d)将反应混合物分配到基片上分离的位置;及e)将所述反应混合物与至少1mul液体试剂混合物组合在一起。
56.第55段的方法,还包括步骤f)将完成的反应混合物与液体试剂混合物反应。
57.第56段的方法,还包括步骤g)将步骤f)反应后的混合物与一组反应试剂组合在一起形成第二组反应混合物;h)将此第二组反应混合物引入第二组反应容器,每一个容器含相对的两端,内部体积为10~1000nl;i)将可变形膜压着该反应容器的相对两端,将这组反应容器的两端暂时封闭;j)在该组容器里发生反应;和k)将反应后的混合物从所述第二组反应容器分配。
58.第57段的方法,其中步骤f在恒温反应条件下发生。
59.第57段的方法,其中步骤a的反应混物为PCR混合物,步骤e的液体试剂混合物包含外切核酸酶I和虾碱性磷酸酶和第二反应混合物。
60.第57段的方法,其中步骤c和j包括将该组反应容器暴露于温度循环。
61.第60段的方法,其中将该组反应容器暴露于温度循环的步骤由循环气体热循环仪实现。
62.第57段的方法,其中第二组反应容器被分配到分析基片上。
63.第57段的方法,其中第二组反应容器被分配到毛细管电泳阵列中的毛细管末端内。
64.第57段的方法,其中第二组反应容器被分配到微量反应板孔内。
65.从第一和第二样品获得基本等量核酸的方法,该方法包括将第一毛细管的内表面与包含核酸和离液剂的溶液接触足够长的时间,使得核酸与该内表面饱和性地结合,从而使来自第一样品的核酸直接与第一毛细管的内表面饱和性地结合;和将第二毛细管的内表面与包含核酸和离液剂的溶液接触足够长的时间,使得核酸与该内表面饱和性地结合,从而使来自所述第二样品的核酸直接与第二毛细管的内表面饱和性地结合,其中所述第一和第二毛细管的内表面能够与基本等量的分别来自于所述第一和第二样品中的核酸饱和性地结合。
66.第65段的方法,其中饱和性地结合在所述第一和第二毛细管内表面上的核酸的量相差小于约10%。
67.第65段的方法,其中所述结合步骤基本同时进行。
68.第65段的方法,其中所述第二毛细管与第一毛细管相同,并且其中所述结合步骤重复进行。
69.第65段的方法,还包括在所述结合步骤之前选择欲饱和性地结合的核酸大小的步骤。
70.第65段的方法,还包括在所述结合步骤之后在酶反应中使用第一或第二毛细管中的核酸的步骤。
71.第65段的方法,其中第一或第二毛细管的饱和性地结合的核酸是DNA。
72.第71段的方法,还包括在所述结合步骤之后在酶反应中使用第一或第二毛细管中的DNA的步骤。
73.第72段的方法,其中所述酶反应是DNA测序反应。
74.第65段的方法,其中第一或第二毛细管包含玻璃。
75.第65段的方法,其中所述毛细管以阵列形式存在。
76.第75段的方法,其中所述阵列包至少含8个毛细管。
77.第75段的方法,其中所述阵列包含至少16个毛细管。
78.第75段的方法,其中所述阵列包含至少96个毛细管。
79.第65段的方法,其中所述离液剂选自尿素、高氯酸钠、高氯酸钾、溴化钠、溴化钾、碘化钠、碘化钾、硫氰酸钠、硫氰酸钾、硫氰酸胍、异硫氰酸钠、异硫氰酸钾、盐酸胍、异硫氰酸胍、氯化锂、三氯乙酸钠、二甲亚砜、四胺卤化物、氯化四乙胺和三氯乙酸钾。
80.第65段的方法,还包括除去溶液的步骤,其中所述除去步骤在所述接触步骤之后进行。
81.第80段的方法,还包括清洗第一或第二毛细管的内表面的步骤,其中所述清洗步骤在所述除去步骤之后进行。
82.第81段的方法,还包括干燥第一或第二毛细管的内表面的步骤,其中所述干燥步骤在清洗步骤之后进行。
83.用规格量的核酸在毛细管中进行酶反应的方法,该方法包括用规格量的所述核酸在毛细管中进行所述酶反应,所述核酸已通过将包含核酸和离液剂的溶液与毛细管内表面接触足够长的时间使核酸饱和性地与所述内表面结合,而从过量核酸中直接、饱和性地结合到毛细管的内表面上;和所述过量核酸已从其中除去。
84.第83段的方法,还包括在除去过量核酸后将酶反应混合物引入所述毛细管中的步骤。
85.使用规格量的核酸在毛细管中进行酶反应的方法,该方法包括将酶反应混合物引入具有规格量的核酸的毛细管中,其中所述酶反应混合物包括寡核苷酸引物、DNA聚合酶及至少一种三磷酸双脱氧核苷酸(ddNTP),所述核酸已通过将包含核酸和离液剂的溶液与毛细管内表面接触足够长的时间使核酸饱和性地与所述内表面结合,而从过量核酸中直接、饱和性地结合到毛细管的内表面上;和所述过量核酸已从其中除去;并且用所述规格量的核酸在所述毛细管中进行酶反应。
86.第85段的方法,还包括使所述酶反应混合物经受至少一次热循环。
87.第85段的方法,还包括在除去过量核酸的步骤之后清洗所述毛细管内表面的步骤。
88.第87段的方法,还包括所述清洗所述毛细管内表面步骤后使所述毛细管内表面干燥的步骤。
89.第85段的方法,其中所述酶反应混合物通过毛细管作用引入所述毛细管中。
90.第85段的方法,还包括所述进行酶反应步骤后将所述反应产物排出来的步骤。
91.第85段的方法,还包括所述进行酶反应步骤后除去未掺入的三磷酸双脱氧核苷酸(ddNTPs)的步骤。
92.第91段的方法,其中所述未掺入的ddNTPs通过将所述产物与凝胶过滤介质接触而除去。
93.第85段的方法,还包括所述进行酶反应步骤后灭活未掺入的三磷酸双脱氧核苷酸(ddNTPs)的步骤。
94.第93段的方法,其中所述未掺入的ddNTPs通过用小牛小肠碱性磷酸酶(CIAP)处理所述反应产物而得以灭活。
95.第85段的方法,其中所述酶反应混合物中的三磷酸双脱氧核苷酸(ddNTPs)选自仅有A;仅有C;仅有G;仅有T;A、C;A、G;A、T;C、G;C、T;G、T;A、C、G;A、C、T;A、G、T;C、G、T;和A、C、G、T。
96.第85段的方法,其中所述三磷酸双脱氧核苷酸(ddNTPs)与荧光团缀合。
97.第96段的方法,其中所述荧光团是碱基特异性的。
98.第96段的方法,其中所述荧光团选自荧光素、5-羧基-荧光素、6-羧基-罗丹明、N,N,N’,N’-四甲基-5-羧基罗丹明和5-羧基-X-罗丹明、罗丹明110、罗丹明-6-G、四甲基罗丹明和罗丹明X。
99.第96段的方法,其中所述荧光团为能量转移荧光团。
100.第85段的方法,其中所述引物与所述核酸中的多个毗连核苷酸互补;并且其中所述引物在紧接着所述核酸中存在的需鉴定其特性的核苷酸之前终止。
101.第100段的方法,其中所述引物与荧光团缀合。
102.第101段的方法,其中所述荧光团选自荧光素、5-羧基-荧光素、6-羧基-罗丹明、N,N,N’,N’-四甲基-5-羧基罗丹明和5-羧基-X-罗丹明、罗丹明110、罗丹明-6-G、四甲基罗丹明和罗丹明X。
103.第101段的方法,其中所述荧光团为能量转移荧光团。
104.第85段的方法,还包括对所述酶反应产物进行分析以测定并鉴定在引物3’末端掺入的dNNTP。
105.第104段的方法,其中对所述酶反应产物进行分析以测定存在于所述核酸中的碱基特性的步骤利用选自凝胶电泳、毛细管电泳、质谱、MALDI质谱、SELDI质谱、荧光发射检测、扫描共聚焦激光诱导荧光检测、荧光偏振(FP)和分析微芯片分析的技术来实现。
106.第104段的方法,还包括从与ddNTP缀合的荧光团的发射光谱推断在所述引物3’-末端掺入的该ddNTP的特性。
107.第106段的方法,还包括从在所述引物3’-末端掺入的所述ddNTP特性推断存在于所述核酸中的核苷酸的特性。
108.第107段的方法,还包括从所述核酸中所述核苷酸的特性推断存在于第二种核酸中的核苷酸的特性。
109.第107段的方法,其中所述核苷酸的特性界定了所述核酸中的单核苷酸多态性(SNP)。
110.第109段的方法,其中所述SNP为杂合SNP。
111.第109段的方法,其中所述SNP为纯合SNP。
112.第109段的方法,其中所述核苷酸的特性作为数据存在计算机数据结构中。
113.第112段的方法,其中所述计算机数据结构收录于计算机可读的介质中。
114.第85段的方法,其中所述DNA聚合酶是耐热的。
115.第85段的方法,其中所述DNA聚合酶为DNA依赖性DNA聚合酶。
116.第85段的方法,其中所述DNA聚合酶为RNA依赖性DNA聚合酶。
117.第85段的方法,其中所述核酸选自DNA、双链DNA、单链DNA、由聚合酶链反应生成的DNA、由逆转录反应生成的DNA、从真核细胞分离出来的DNA、从原核细胞分离出来的DNA、从原始细胞(archaea cell)分离出来的DNA、从真菌细胞分离出来的DNA、从植物细胞分离出来的DNA、从病毒分离出来的DNA、从噬菌体分离出来的DNA、基因组DNA、质粒DNA、附加型DNA、RNA、信使RNA、双链RNA、单链RNA、从真核细胞分离出来的RNA、从原核细胞分离出来的RNA、从原始细胞分离出来的RNA、从真菌细胞分离出来的RNA、从植物细胞分离出来的RNA、从病毒细胞分离出来的RNA、基因组RNA、DNA-RNA杂交体、从细菌冷冻甘油原种获得的核酸和从生长于固体生长培养基上的细菌菌落所获得的核酸。
118.第85段的方法,其中所述核酸为DNA;并且还包括用聚合酶链反应(PCR)制备该DNA的步骤。
119.第118段的方法,其中所述聚合酶链反应中所用的模板为基因组DNA。
120.第118段的方法,还包括在用PCR制备所述DNA的步骤后用单链DNA酶除去未掺入的PCR引物的步骤。
121.第118段的方法,还包括在用PCR制备所述DNA的步骤后用磷酸酶除去未掺入的dNTP的步骤。
122.第118段的方法,还包括在用PCR制备所述DNA的步骤后用外切核酸酶I(ExoI)和虾碱性磷酸酶(SAP)处理所述DNA的步骤。
123.第85段的方法,还包括将DNA从过量所述DNA直接与所述毛细管内表面饱和性地结合并除去所述过量DNA的步骤后,通过清洗所述毛细管内表面而除去未掺入的PCR引物和dNTP的步骤。
124.第85段的方法,其中所述酶反应以约10~5000纳升的反应体积进行。
125.第85段的方法,其中所述毛细管存在于可空间定位的毛细管阵列中。
126.第125段的方法,其中所述可空间定位的毛细管阵列为具有选自2、4、8、12、16、24、32、48、64、96、128、192、288、384、480、576、672、768、864、960和1536个毛细管数目的毛细管阵列。
127.用规格量的核酸由第85段所述方法生成的酶反应产物。
128.从第一和第二样品获得基本等量核酸用于在酶反应中有效检测单核苷酸多态性(SNP)的方法,该方法包括将第一毛细管的内表面与包含核酸和离液剂的溶液接触足够长的时间,使得核酸与该内表面饱和性地结合,从而使来自第一样品的核酸直接与第一毛细管的内表面饱和性地结合;和将第二毛细管的内表面与包含核酸和离液剂的溶液接触足够长的时间,使得核酸与该内表面饱和性地结合,从而使来自所述第二样品的核酸直接与第二毛细管的内表面饱和性地结合其中所述第一和第二毛细管的内表面能够与基本等量的分别来自于所述第一和第二样品中的核酸饱和性地结合;和在酶反应中使用第一或第二毛细管或第一与第二毛细管的核酸以便有效检测所述核酸中存在的单核苷酸多态性(SNP)。
129.第128段的方法,其中所述酶反应选自寡核苷酸连接测定基因型分析(OLA)反应、微型测序反应(minisequence reaction)、TaqManTM基因型分析反应、InvaderTM测定反应、染料标记的寡核苷酸连接反应、高温测序(Pyrosequencing)反应、滚动循环扩增(RCA)反应和单碱基延伸(SBE)反应。
130.第129段的方法,其中所述酶反应为单碱基延伸反应。
131.第128段的方法,还包括对所述酶反应产物进行分析。
132.用规格量的核酸通过第128段方法进行酶反应的产物。
133.用规格量的核酸在毛细管中进行酶反应以有效检测单核苷酸多态性(SNP)的方法,该方法包括用规格量的所述核酸在毛细管中进行所述酶反应,所述核酸已通过将包含核酸和离液剂的溶液与毛细管内表面接触足够长的时间使核酸饱和性地与所述内表面结合,而从过量核酸中直接、饱和性地结合到毛细管的内表面上;和所述过量核酸已从其中除去,其中所述酶反应选自寡核苷酸连接测定基因型分析(OLA)反应、微型测序反应、TaqManTM基因型分析反应、InvaderTM测定反应、染料标记的寡核苷酸连接反应、高温测序反应、滚动循环扩增(RCA)反应和单碱基延伸(SBE)反应。
134.第133段的方法,其中所述酶反应为单碱基延伸反应。
135.第133段的方法,还包括对所述酶反应产物进行分析。
136.用规格量的核酸通过第133段方法进行酶反应的产物。
137.用规格量的酶在毛细管中进行酶反应的方法,该方法包括用规格量的所述酶在毛细管中进行所述酶反应,所述酶已通过将包含酶的溶液与毛细管内表面接触足够长的时间使酶饱和性地与所述内表面结合,而从过量酶中直接、饱和性地结合到毛细管的内表面上;和所述过量的酶已被除去。
138.用规格量的酶在毛细管中进行酶反应的方法,该方法包括用规格量的所述酶在毛细管中进行所述酶反应,所述酶已通过将包含酶的溶液与毛细管的修饰内表面接触足够长的时间使酶特异性且饱和性地与所述修饰内表面结合,而从过量酶中特异性且饱和性地结合到毛细管的修饰内表面上;和所述过量的酶已被除去。
139.第138段的方法,其中所述毛细管的内表面修饰通过硅烷化实现。
140.第138段的方法,其中所述毛细管的修饰内表面是用官能团修饰的。
141.第141段的方法,其中所述官能团选自氨基、吡啶基二硫基、双琥珀亚胺酰辛二酸酯基、环氧乙烷基、链霉抗生素蛋白分子及表面活性水凝胶。
142.第138段的方法,其中所述结合的酶与所述官能团共价偶联。
143.第138段的方法,其中所述结合的酶与所述官能团非共价偶联。
144.第138段的方法,其中多个所述酶分子在所述毛细管的修饰内表面上朝向统一的方向。
145.第138段的方法,还包括加入过量硫代吡啶酮使所述饱和性地结合的酶释放出来的步骤。
146.第138段的方法,其中所述酶选自蛋白水解酶、序列特异性酶、胰蛋白酶、糜蛋白酶、蛋白酶K、木瓜蛋白酶、胃蛋白酶、内切蛋白酶,内切蛋白酶Glu-C、内切蛋白酶Arg-C、内切蛋白酶Lys-C、内切蛋白酶Pro-C、内切蛋白酶Asp-N、V8蛋白酶、糖苷酶、β-半乳糖苷酶、脂肪酶、氧化酶、加氧酶、葡萄糖氧化酶、胆固醇氧化酶、乳酸单加氧酶、连接酶、DNA连接酶、RNA连接酶、甲基化酶、聚合酶、DNA依赖性DNA聚合酶、末端转移酶、RNA依赖性DNA聚合酶、DNA依赖性RNA聚合酶、磷酸酶、激酶、DNA回旋酶、拓扑异构酶、核酸酶、外切核酸酶、S1外切核酸酶、绿豆核酸酶、内切核酸酶、限制性内切酶、核糖核酸酶及脲酶。
147.第138段的方法,还包括在进行所述酶反应的步骤前用包含底物的溶液灌注所述毛细管的步骤。
148.第147段的方法,其中用包含底物的溶液灌注所述毛细管的步骤通过毛细管作用实现。
149.第147段的方法,其中所用溶液包含约100~2,000纳升的体积。
150.第147段的方法,其中所述酶反应在恒温下进行。
151.第138段的方法,其中所述毛细管放在可空间定位的阵列中。
152.第138段的方法,其中所述酶反应与至少一个附加的酶反应平行进行。
153.第138段的方法,还包括进行酶反应的步骤后对所述酶反应的产物进行分析的步骤。
154.第153段的方法,其中对所述酶反应的产物进行分析的步骤通过利用选自质谱、毛细管电泳、荧光扫描及高效液相色谱(HPLC)的技术来实现。
155.第152段的方法,还包括在对所述酶反应产物分析的步骤之前对所述产物进行荧光标记的步骤。
156.用规格量的蛋白质在毛细管中进行基于蛋白质的反应的方法,该方法包括用规格量的所述蛋白质在毛细管中进行所述基于蛋白质的反应,所述蛋白质已通过将包含蛋白质的溶液与毛细管内表面接触足够长的时间使蛋白质饱和性地与所述内表面结合,而从过量蛋白质中饱和性地结合到毛细管的内表面上;和所述过量的蛋白质已被除去。
157.用规格量的蛋白质在毛细管中进行基于蛋白质的反应,该方法包括用规格量的所述蛋白质在毛细管中进行所述基于蛋白质的反应,所述蛋白质已通过将包含蛋白质的溶液与毛细管的修饰内表面接触足够长的时间使蛋白质特异性且饱和性地与所述修饰内表面结合,而从过量蛋白质中特异性且饱和性地结合到毛细管的修饰内表面上;和所述过量的蛋白质已被除去。
158.第157段的方法,其中所述蛋白质为非催化性蛋白质。
159.第158段的方法,其中所述非催化性蛋白质选自抗体、抗体的抗原结合片段、IgG、IgE、IgM、G蛋白、A蛋白及链霉抗生素蛋白。
160.第157段的方法,其中所述基于蛋白质的反应为分子结合反应。
161.第160段的方法,其中所述分子结合反应的底物选自蛋白质、酶、核酸、DNA、RNA、碳水化合物、脂类及其它化学物质。
162.从第一及第二样品获得基本等量蛋白质的方法,该方法包括将第一毛细管的修饰内表面与含蛋白质的溶液接触足够长的时间,使得该蛋白质与该修饰内表面饱和且特异性地结合,从而使来自第一样品的蛋白质直接与第一毛细管的修饰内表面饱和且特异性地结合;和将第二毛细管的修饰内表面与含蛋白质的溶液接触足够长的时间,使得该蛋白质与该修饰内表面饱和且特异性地结合,从而使来自第二样品的蛋白质直接与第二毛细管的修饰内表面饱和且特异性地结合;其中所述第一和第二毛细管的修饰内表面能够与基本等量的分别来自于所述第一和第二样品中的蛋白质饱和且特异性地结合。
附图简述下文所进行的详细说明及相对应的附图将会使本发明的上述及其它目标和优势将变得显而易见,其中

图1.是用于制备循环测序反应产物的整合系统示意图,该系统可方便地使用本发明的方法。
图2.是演示循环反应生产步骤的流程图,使用本发明的方法可对其第一步方便地加以改进。
图3A.是在本发明实施方案中使用的毛细管盒透视图。
图3B.是图3A毛细管盒插入本发明方法中高通量应用系统的毛细管盒支架的透视图。
图3C.为方便使用本发明方法的可变形毛细管盒。
图3D.演示将图3C的毛细管弯成曲线状以便使毛细管的末端成曲线模式。
图3E.是含有与毛细管功能相同、用于按照本发明制备样品包括直接可逆固定核酸的通道的微芯片装置。
图4A.演示本发明中使用的、将液体从图3中的毛细管盒分样的分样头。
图4B.显示了图4A气体排斥分样头的一个内部横截面。
图4C.显示了分样头关闭的图4A分样头。
图5A.演示可用于从图3A中毛细管盒对流体进行分样的离心机顶视图。
图5B.演示图5A中离心机臂装有摆动微量反应板容器的横截面,其中该反应板容器包含插入微量滴定板的毛细管盒。
图6.显示了图3B中所示毛细管盒及支架插入温度循环装置、基于气体的热循环装置示意图,该装置用于进行可使用本发明模板捕获和校正方法的平行反应。
图7A.显示了带有整合毛细管盒封闭膜、基于气体的热循环装置的内部横截面,可方便与本发明的模板捕获方法一起使用。
图7B.显示了图7A所示基于气体的热循环装置的透视细节,其盖子升起以说明毛细管所插入的室。
图7C.显示了毛细管盒插入图7A热循环仪内部室与该盒区室的横截面。
图8A.是对本发明方法中高通量性能有用的毛细管合清洗工作站前视图。
图8B.是图8A毛细管清洗工作站的侧视图,其中清洗管下降、清洗槽上升。
图8C.是图8A毛细管清洗工作站的侧视图,其中清洗管上升、清洗槽下降。
图8D.为所述清洗歧管的内部横截面。
图8E.是清洗工作站的示意垂直图。
图8F.是清洗工作站的顶视图。
图9.显示了实施例1测序分析百分成功率对阅读长度窗口的直方图。
图10.是实施例2反应产物的电泳图谱。
图11.显示了实施例3测序分析百分成功率对阅读长度窗口的直方图。
图12A.显示了所制备PCR产物以全体积进行电泳分离的凝胶扫描图像。
图12B.显示了所制备PCR产物以纳米级体积(500nL)进行电泳分离的凝胶扫描图像。
图13.显示了以500nL体积进行PCR制备、以全体积进行提纯反应制得测序混合物,然后以500nL体积进行循环测序的电泳图谱。
图14.比较在试管、毛细管及表面结合毛细管中进行恒温反应所得产物的信号强度图。
图15.是解释制备核酸可逆性直接结合于毛细管的方法流程图。
图16.演示了本发明方法的实施方案。
图17A.显示了对测序前与反应混合物的PCR产物进行测序的结果;图17B.显示了先将PCR模板与硫代氰酸钠混合、将DNA与毛细管内表面结合、用80%乙醇洗涤DNA,然后进行测序所得的结果。
图18.描述了实施模板捕获方案的保留的DNA量。
图19.显示了阅读长度对DNA与测序试剂预混合所制备样品(π)和模板捕获所制备样品(★)相比起始DNA量的曲线。
图20.显示了将特定起始量的模板与M13mp18结合后在1.5%琼脂糖凝胶上电泳、用SYBR绿染料染色并用荧光成像仪器照相的PCR反应的产物。
图21.为模板浓度增加后所获得的相对信号强度。
图22.为模板浓度增加后所获得的相对信号强度,显示随着模板浓度的升高峰的高度也升高。
图23A和图23B显示了从甘油原种液进行纳米级直接循环测序所获得的Phred20评分为561碱基的轨迹.。
图24.为四个纳米级单碱基延伸反应、不带模板捕获所获得的MegaBACETM轨迹,表明轨迹2中存在杂合现象。
图25.显示对纳摩尔量PCR产物(图25A)及全体积PCR产物(图25B)定量分析的结果。
图26.显示了全体积SBE反应和阴性对照的结果。
图27.是全体积PCR及产物经ExoI/SAP处理后(A)全体积单碱基延伸反应,和(B)纳摩尔体积单碱基延伸反应的MegaBACETM轨迹。
图28.是纳摩尔体积PCR及产物经模板捕获后(A)全体积单碱基延伸反应,和(B)纳摩尔体积单碱基延伸反应的MegaBACETM轨迹。
图29.是(A)纳摩尔体积PCR及产物经模板捕获,但未对SBE产物纯化;(B)纳摩尔体积SBE反应经CIAP纯化后与MegaBACETM上样液一起注射入MegaBACETM中;(C)纳摩尔体积SBE反应经CIAP纯化后与去离子水一起注射入MegaBACETM中;以及(D)纳摩尔体积SBE反应经交联葡聚糖纯化后与去离子水注射入MegaBACETM中的MegaBACETM轨迹。
图30.显示了比较全体积及纳摩尔SBE的验证试验结果。
图31.说明了细胞色素C一段肽经毛细管盒中的胰蛋白酶进行蛋白酶水解后的代表性特征。该特征经MegaBACETM分析产生。胰蛋白酶或在溶液中(图31A)或固定于磁珠上(图31B)。
图32.为细胞色素C一段肽经其价包被于多通道毛细管盒中毛细管内表面的胰蛋白酶进行蛋白酶水解后的第一轮代表性特征。该毛细管内表面用氨基烷基硅烷试剂或链霉抗生素蛋白进行修饰。该特征经MegaBACETM分析产生。
图33.为细胞色素C一段肽经共价表面包被的胰蛋白酶进行蛋白酶水解后的第二轮代表性特征。该毛细管表面用氨基烷基硅烷试剂或链霉抗生素蛋白进行修饰。该特征经MegaBACETM分析产生。
图34.呈现了细胞色素C一段肽经共价表面包被的胰蛋白酶进行蛋白酶水解后的第三轮代表性特征。该毛细管表面用氨基烷基硅烷试剂或链霉抗生素蛋白进行修饰。该特征经MegaBACETM分析产生。
图35呈现了细胞色素C一段肽经共价表面包被的胰蛋白酶进行蛋白酶水解后的代表性HPLC特征。该毛细管表面用氨基烷基硅烷试剂或链霉抗生素蛋白进行修饰。
图36.呈现了Asp-N浓度与所消化多肽量之间的关系,此处用从所消化肽的Cys3发射信号强度表示。
发明详述为了这里所述的本发明得以全面理解,对本发明作了以下详细说明。
在本发明中,应该认识到可用一段毛细管来量取试剂并作为进行温度循环反应的反应容器。毛细管的长度和毛细管口的内径(I.D.)决定了该段毛细管的内部体积。常用的是I.D.为50~150μm的毛细管。
毛细管内部直径小可以实现反应容器的内部体积少于1微升。就本发明来说,容积为10~500纳升的毛细管可加以修改来制备DNA循环测序反应或任何其它反应。
通过本自动化系统进行的方法如图2的流程图所示。该方法开始是装配将试剂和样品核酸合在一起的反应混合物,如框52。然后将合在一起的试剂引入毛细管盒的毛细管中,如框54。将毛细管俄末端封闭,如框56。将封闭好的毛细管段进行热循环从而产生循环反应,如框58。然后将毛细管盒的毛细管分配到基片上,如框60。将基片转到分析系统中对反应混合物进行分析,如框62。此方法及实施该方法的装置结构的详细情况在此加以详述。
图1显示了一套自动化系统,该系统装配反应混合物,进行温度循环以完成化学反应,并将完成的反应混合物分样到基片上以进行随后的分析。该系统中,自动化机器人102可移动平台114长度的距离并可以旋转以便自动化机器人102可以相对于该自动化系统的其它组件移动。自动化机器人102可旋转成自动化机器人102上的传输头104能接触到平台114相邻各侧上的物体。反应混合物装配时,传输头104将毛细管盒从盒停留室106中提起来。
毛细管盒如图3A所示。它由大量延伸至基片10的毛细管12构成。毛细管优选一排至少含有8个毛细管,并且毛细管之间等距。所示毛细管带有基片,96个毛细管呈8×12的阵列排列,管之间的距离与96孔微量反应板的孔距一致。毛细管12从基片10一侧所延伸的长度不相等。优选毛细管片段12的短端短于微量反应板的孔深。这样就可以使毛细管片段12的短端插入微量反应板的孔中而基片10仍留在微量反应板的上面。
毛细管可由与将要进行的测定及制备相兼容的材料制造,虽然可使用塑料、金属及其它材料,但优选的毛细管材料包括但不限于玻璃和硅毛细管。可使用各种尺寸的毛细管,如I.D.为75μm的毛细管或者I.D.为150μm/O.D.为360μm的毛细管。
毛细管12延伸穿过基片10,优选以统一的模式排列。毛细管长度相等,以基本平行的方向延伸过基片,使毛细管12两相对端的每一末端共平面,毛细管12末端界定的平面基本与基片10平行。毛细管的间距可以一致并选择与微量反应板上的孔间距相匹配。例如,在96孔微量反应板上毛细管将排列成中心与中心间距离为9mm,在384孔微量反应板上毛细管12将排列成中心与中心间距离为4.5mm。与1536孔或更高空密度的微量反应板相匹配的更高密度毛细管形式也是有可能的。毛细管12优选在基片内部加以固定,以便毛细管12从基片10一侧延伸的长度短于基片10对侧的毛细管12长度。毛细管12在基片10相对短一侧的长度与微量反应板的孔深匹配,以便该短侧的长度比微量反应板的孔深短。这一特性使得毛细管可以插入微量反应板中,而基片10仍留在多孔板的顶部边缘,并且在基片10一侧的毛细管可以延伸入微量反应板的孔中而不会使毛细管触及孔底。这样就可保证分配到孔里的液体不会粘到毛细管上,从而避免重新进入毛细管中。
毛细管盒基片10克由玻璃纤维板或其它刚性的或半柔软的材料制成。毛细管12可完全插入基片中隔开的孔中并用粘合剂固定。在一实施方案中,基片的长和宽与标准96孔微量反应板的长和宽相同。这就简化了对自动化系统的改动,其中该系统设计成用于操纵微量反应板以处理毛细管盒。
在一些实施方案中,用各种表面包被物如离子型及非离子型表面活化剂对毛细管的内表面积进行包被可能是有利的。可以使用的包被物包括牛血清白蛋白(BSA)、甘油、聚乙烯醇和吐温20。将包被物引入毛细管并在毛细管内表面上干燥。此外,也可能需要通过硅烷化或格式反应对毛细管的内表面进行共价修饰。例如,对毛细管内表面进行减少电内渗的共价修饰,有助于减少毛细管内表面和反应混合物之间的电荷表面效应。第09/324,892号美国专利申请公布了用具有碱性磷酸酶稳定性的丙烯酰基二乙醇胺作为毛细管共价包被物,在此将其特别引入作为各种目的的参考。除了该包被物外,丙烯酰亚胺或其它已知的包被物也可用于共价修饰毛细管内表面。
A.反应混合物的装配再回到图1,该自动化系统可以实现用毛细管盒将反应试剂和DNA样品合在一起。毛细管盒由传输头104从盒停留室106提起来并带使它与位置A处样品板中所含样品接触。该样品板由样品板停留室108分过来。毛细管的内部容积由毛细管的长度和内部直径决定。图3A的毛细管用作固定容积的平行移液器,可以使大量毛细管得以平息灌注。每个毛细管将量取分立量的液体用于随后的分样。
一旦毛细管的一端插入含样品的孔中,液体将会被吸入毛细管中。此小量样品可与其它液体合在一起形成反应混合物。分析系统如毛细管电泳系统的灵敏度以及循环反应水反应混合物的扩增可以实现纳米级的反应和分析。非常小规模的反应可以可靠的生成足够量的反应混合物在毛细管阵列电泳系统、毛细管电泳芯片、质谱仪或其它分析仪器中进行分析。如果可以使用纳米级的反应混合物,则所需的反应试剂会显著降低。
该自动化系统可在各种方法中用于制备反应混合物。这些使用该系统的方法中有一部分在下面生产反应混合物时应用。
反应混合物制备实施例1用毛细管盒量取试剂并在基片上混合制备反应混合物的方法之一是使用移液器分别量取反应混合物的各个组分。例如,制备PCR混合物时,将分别量取核酸样品和PCR试剂然后将它们分配到同一个容器中,在该容器中合在一起。使用图1中的自动化系统时,自动化机器人102将含毛细管盒的传输头104移动到样品板所处位置。将毛细管盒的毛细管末端浸入孔中。毛细管通过毛细管作用得以灌注,从而量取精确量的样品。样品板的孔含有PCR说扩增的核酸样品。DNA样品应充分稀释,使毛细管盒中每个毛细管所量取的10~10,000nL体积中含有5~20ng DNA。
图4显示了将流体样品从多孔板36转到毛细管盒15中的16通道毛细管盒。毛细管盒15上的毛细管片段延伸入多孔板36的孔中。多孔板36的孔呈圆锥形,每个孔中的液体都会流向个孔的底部中心。这样可以使孔中的少量样品处于能被插入该孔中心和底部之上的毛细管与液体接触。然后毛细管盒的毛细管片段通过毛细管作用得以被孔中的液体灌注。毛细管盒优选盒中毛细管片段中心与中心之间的距离相等,并与含DNA样品的多孔板孔距一样。在一实施方案中,毛细管盒具有与放置样品的多孔板孔数一样多的毛细管。
回到图1,毛细管盒浸入含核酸样品的孔中之后,用传输头104将灌注好的毛细管盒移到分样装置的位置122。样品在分样装置的位置122处分配到基片上。重新取一个干净的毛细管盒浸入含PCR试剂的样品板中。如前面所看到的那样,毛细管盒量取由处于毛细管盒中毛细管内部容积所确定的精确量液体。说量取的试剂体积可以与分样的样品体积相同,也可以不同,这取决于实际需要。来自各毛细管片段的反应试剂在分样装置的位置122处分配到含核酸样品的混合基片上。
此反应混合物装配线可在各种类型的反应中使用。用于装配PCR反应混合物的相同方法可以加以修改来装配循环测序混合物、滚动循环扩增反应混合物、酶测定、化学反应或其它反应混合物。
将内含物分配到微量反应板时,应以避免泼溅的方式小心混合样品和反应试剂。已设想了大量的方法从毛细管盒对液体分样。
毛细管盒分样实施例1离心力对毛细管盒内含物进行免泼溅分样的第一种方法是,使用离心机通过离心力对流体分样。离心力均匀地施加到毛细管盒中的所有毛细管上,以便各毛细管独立地分配到微量反应板的孔中。所分样品由离心力使其进入多孔板的孔中。
在图5A中,所示离心机42具有一个可摆动的微量反应板容器43,它可含有插入毛细管盒的多孔板。该摆动微量反应板固定在转子41上。
图5B显示了摆动摆动微量反应板容器43的横截面。毛细管盒的毛细管12插入多孔板36的孔36a中。毛细管盒插入后应使延伸自基片10的毛细管12部分短于孔36a的深度。如图5B所示,延伸自基片10的毛细管12不会触及多孔板36的孔36a底部。微量反应板摇摆容器43由臂45和平台44组成。臂45的上部一端安装到转子41上的插销头42上。微量反应板位于微量反应板摇摆容器43的平台44上。离心机运动时,平台44在插销头上旋转,使多孔板面对离心机的侧壁,毛细管液体上的离心力将液体分配到多孔板36的孔36a底部。使用圆锥形孔时,离心力将孔中的液体集中到孔的中心,使样品定位于更精确的位置。以非常低的离心力将液体从毛细管排出来。
在图1中,自动化系统在分样装置位置可以选择性地包括低速离心机。自动化机器人102使用传输头104提起分配到微量板停留室110旁位置b上的微量反应板。传输头104将微量板转到具有低离心力的平台上。然后使板和盒在离心机中旋转,将液体从毛细管分配到微量板。液体分好后,立即停止离心,用传输头将毛细管盒移开、转到毛细管清洗仪118中。传输头104再从毛细管盒停留室106中提起一个毛细管盒。这个干净的毛细管盒可用于量取第二液体反应组分,同样用离心机分配到微量板中。在该自动化系统中,离心机包括一个与转子相连的传感器,与转子制动系统联用,以便使转子停在传输头104可以够得着的位置。这种传感器可以是磁性的、光学的、机械的,或使用其它传感转子位置的已知方法。
毛细管盒分样实施例2气体置换对毛细管盒中毛细管所含的液体进行分样的第法二种方法是使用气体置换装置。如图1所示,来自微量板停留室的微量板由传输头104转到分样装置位置122处。此处装有一个气体分样器,例如图4A~C所绘的分样器。然后传输头104再提起一个毛细管盒,用来自多孔板的样品或用反应试剂灌注。毛细管盒移到分样装置位置122,并与气体置换装置头接触。毛细管盒的基片置于气体置换装置头上的接收平台上。此外,气体置换装置头可与自动化机器人102相连。
如图4A所示,图中所示气体置换装置头301与停在底板302上的毛细管盒一起显示。底板302通过铰链318附到管道上。毛细管盒基片10泡沫橡胶垫304上,该橡胶垫与底板302牢固的连接。一组孔325延伸穿过橡胶垫304和底板302,这样当毛细管盒位于底板302上面时所流出的空间可以让毛细管12延伸穿过橡胶垫304和底板302。气体置换装置头的管道由上面的机架306室单元310及一组夹子314构成。夹子314将膜312固定于室单元310的下侧表面。当管道在毛细管盒上关闭时,膜312封闭了毛细管盒15的顶部表面。当毛细管盒位于底板302上面时,膜312具有与毛细管盒中毛细管位置相对应的孔316A。当气体置换装置头301的顶部管道向底板3102关闭时,毛细管12处于延伸穿过莫312上接收孔316的位置上。但气体置换装置头301关闭时,可用插销322固定,该插销于孔324配合将毛细管盒夹在泡沫塑料垫304和膜312之间,从而在盒15与膜312间形成一个封闭。
图4B图解了气体置换装置301的横截面视图。上室306由金属、丙烯酸树脂或其它刚性的材料构建。气体输入耦合器303位于上室306之上。当加压气体或真空管305附着于气体输入耦合器303时,可将压力或真空里引入上面室307。位于上室306和室单元310之间的是不透气的弹性膜308。弹性膜308和上面室306的区域界定了上面室307。固定于夹子314上的是膜312。膜312压向插入气体装置头301的毛细管盒基片10。基片10通过底板302固定在气体装置301的内部。橡胶垫304提供了一个可变形的表面,具有将基片10压向膜312的统一压力。膜含有一组孔316,可让毛细管盒的毛细管12延伸穿过膜312。当毛细管盒插入气体置换装置头时,基片封闭了围绕下面室313的孔316。当加压气体经气体管线305引入室307时,弱性膜将压入下面室313。膜308位于上面室307和下面室313之间。膜308同时用作上面室307和下面室313的封条,以及通过耦合器303向上面室307施加压力时的室置换调节器。置换的程度取决于施加的压力及膜308的弹性。所产生的气体置换将使液体从延伸穿过毛细管盒10的毛细管12进入下面的室313。通过调节经过管线305压力量,可对每一毛细管施加一致的置换压力。对于毛细管片段的亚微升体积来说,分样压力的波动不会对毛细管的置换造成不好的影响。
图4C图解了关闭的气体置换头301。上室306通过插销322拉向底板302以便将膜312压向毛细管盒的顶端从而形成封闭。夹子314将膜312固定在室单元310上。气体置换头装在臂320上。臂320可从图1中所示自动化机器人102扩展而来,或位于分样位置122。可通过气体入口耦合器将加压气体引入上室306中。
该气体置换装置头为各分样的毛细管提供了单独的室。尽管描述的是16管毛细管盒,气体置换装置头可以构建成对具有96个毛细管或更大毛细管密度的毛细管进行分样。对各毛细管施加的分样压力足够小,使得可以直接分配到基片上,与分配到上面的样品处于分开的位置。
气体置换或离心力置换可用于对毛细管盒中毛细管片段内的液体分样。也可能使用一组注射泵、使用气体可渗透/液体不可透(疏水)膜施加压力、使用电子动态分样或其它已知的分样方法对来自毛细管的液体进行分样。气体置换头也可用于把结束了的反应混合物分配到用于随后分析的基片上。
反应混合物装配实施例2脱水试剂装配反应混合物的第二种方法是将反应所需试剂以脱水包被物的形式储存在毛细管的内表面或基片上,如多孔板的孔内。如果反应试剂在毛细管盒中的毛细管内表面干燥,将样品引入毛细管将导致重新水化、混合及反应混合物的形成。类似的,如果用脱水反应试剂包被微量反应板的孔,向孔中加入核酸样品将会使反应试剂溶解形成测定混合物。样品可以用毛细管盒量取,并用上述方法之一从毛细管盒中分出来。样品将使脱水的反应试剂形成溶液并经扩散作用与含核酸的样品混合。这就提供了一种以非常简单的方式装配反应混合物的方法,有可能不需要用离心机或气体置换装置对毛细管进行分样。这样可以简化反应处理系统并缩短反应装配时间。
对于PCR来说,脱水的反应试剂可从商业途径获得,以Ready-to-Go出售(Amersham Pharmacia Biotechnology,Pixcatawaq,N.J.)。稳定、脱水的试剂可包被到毛细管片段的内表面或多孔板的孔内表面。Ready-to-Go产品使用碳水化合物基质来稳定粉末状态的反应试剂(DNA聚合酶、缓冲试剂、dNTPs)。用液体的核酸样品和溶液中的引物将Ready-toGo混合物变成溶液,生成反应所需的最终反应混合物。Ready-toGo、模板DNA、引物及足量水的组合生成了最终的反应混合物。可以考虑的是链终止测序反应及其它反应所用的试剂也可以粉末状态储存。
有大量不同的方法将包被物施用到表面上,包括蒸气分期包被、用Ready-toGo混合物灌注毛细管(通过毛细管作用,加压灌注等)和倒空体相(在真空、压力或或其它力量下),或将基片(如珠子)浸入试剂中然后使之干燥。
反应混合物装配实施例3固相捕获装配反应混合物的第三种方法是从基片表面如毛细管片段内表面上的样品捕获物质。所捕获的物质可以是核酸、酶、其它生物聚合物或化学物质。从样品中捕获的理想物质可用多种方法附到表面上。这些方法包括共价结合、抗体结合、DNA杂交、疏水相互作用、电场、磁场或其它化学或物理的力量。样品结合之后,悬浮样品所剩下的液体可通过化学反应或物理力量从毛细管或微芯片排掉。毛细管可用气体置换或离心分样方法,真空法也可使用。样品物质将仍留在基片的表面。在此单一的步骤中,样品物质也得到基本的纯化。然后反应试剂可与样品物质合在一起,生成反应混合物。
对于核酸来说,固定核酸样品的方法之一是将核酸直接粘附到一个表面上。可用非共价修饰(如用NaSCN、DMSO等处理表面)或共价连接达到目的。对于DNA,已知本领域内有大量不同共价粘附方法。例如,氨基团可粘附于DNA的脱氧核糖碱基,并在合成反应时引入,如在DNA质粒插入片段的PCR扩增期间。毛细管的玻璃或硅可硅烷化,修饰DNA上的氨基团将共价结合于硅烷化的毛细管内表面。此外,可用其它化学方法将DNA共价固定到表面上。DNA结合到毛细管或其它基片的表面后,悬浮DNA的液体从毛细管中除去,用反应试剂灌注。
将核酸粘附到毛细管盒中的毛细管内表面的另一替代方法是亲和化学作用。一种通用的亲和化学作用方法是用生物素标记生物分子,然后将生物素化的生物分子与抗生物素蛋白或链霉抗生素蛋白。该抗生物素蛋白/链霉抗生素蛋白可用于连接生物素化的分子。随后,生物素标记的核酸可粘附到一种表面如毛细管的内表面上。可将链霉抗生素蛋白结合到所述毛细管的内表面上达到此目的。
No.5,846,727号美国专利公开了一种利用亲和化学作用将DNA结合到毛细管内表面的实例,在此将其内容引入作为参考。该参考文献描述了将DNA与毛细管内表面的结合。此技术需要与dNTPs合在一起、用生物素标记的引物、DNA聚合酶和反应缓冲液。将这些与模板DNA合在一起,如质粒或来自DNA文库、带有亚克隆DNA插入片段的M13,从而形成反应混合物。本发明中微量反应板可含有96或更多份反应混合物,每一份混合物有着含不同亚克隆DNA序列的唯一片段。此反应混合物可用反应混合物装配实施例1所述方法即反应试剂和模板样品分别量取、然后分配到384孔微量板中。在微量板的孔中液体合在一起形成反应混合物。将反应混合物分配到毛细管盒的毛细管片段中。可如下所述将毛细管片段的末端封闭,并将毛细管盒暴露于热循环中,从而完成PCR反应。PCR反应的结果是含生物素标记引物的亚克隆质粒DNA插入片段其指数级的拷贝数扩增。
然后将含生物素标记引物的PCR扩增DNA固定在毛细管盒的毛细管管壁上。粘附抗生物素蛋白/链霉抗生素蛋白所用的化学物质可以是如L.Amankwa等,“毛细管区带电泳的在线肽映射”,Anal.Chem.,Vol.65,pp.2693~2697(1993)所公开的。毛细管用(3-氨丙基)-三甲氧基硅烷(3-ATPS)灌注,培育30分钟,风干。毛细管盒中的干燥毛细管用磺基琥珀酰亚胺基-6-(生物素酰氨基)-己酸酯(NHS-LC生物素)灌注,然后再次培育、干燥。每个毛细管中加入溶于pH7.4磷酸盐缓冲液中的抗生物素蛋白或链霉抗生素蛋白。抗生物素蛋白与固定在各毛细管内表面的生物素结合。将扩增后的双链生物素化PCR产物悬浮于缓冲液(如Tris-HCl或加入1~3mol/LnaCl或LiCl以有效结合的EDTA)中,加到毛细管中,培育5~10分钟。这样就使毛细管的管壁得到如下修饰毛细管壁-Si-C.sub.3H.sub.6-NH-CO-生物素-抗生物素蛋白或链霉抗生素蛋白-带相关生物素引物的扩增寡核苷酸。
在此实施方案中,生物素而不是抗生物素蛋白或链霉抗生素蛋白先共价粘附到毛细管壁。这样会帮助毛细管盒再生用于随后的结合反应。完成循环测序反应后,除去扩增的生物素化DNA而不使抗抗生物素蛋白变性会有困难。使生物素与毛细管内表面结合,可以通过于65~90℃用酚或甲酰胺溶液灌注毛细管而轻易地除去扩增DNA。然后对混合物分样。毛细管盒可再次用含抗生物素蛋白的溶液灌注、再次用于与随后生物素化的扩增模板DNA结合。
一旦DNA固定于毛细管的内表面,可用所述方法之一将毛细管的内含物分样,DNA仍结合于毛细管的内表面。这样就除去了存在的碎片和其它杂质,这样就提供了一种快速、有效的DNA纯化方法。毛细管可用缓冲液清洗进行额外的纯化。毛细管内表面的界定区域提供了已知量与粘附DNA的结合位点。这就提供了一种校正DNA浓度的简单方法。校正DNA浓度对于改善循环测序反应CAE分析的成功率非常重要。然后将毛细管盒浸入孔中或含循环测序所需试剂的容器中。将毛细管的每一端压向可变形膜,使毛细管的末端临时封闭,以这样的方式来实施循环测序反应。将毛细管盒暴露于实现所述循环测序反应的热循环中。
灌注前,毛细管盒的毛细管片段可用各种化合物包被。已表明用牛血清白蛋白(BSA)或聚乙烯醇包被毛细管内表面可以提高一些反应的性能,如链终止测序反应的制备。
B.热循环一旦反应混合物引入毛细管盒的毛细管中,就将毛细管盒的毛细管两端封闭,将毛细管盒暴露于温度循环中。将毛细管的每一端压向可变形膜,使毛细管盒的毛细管末端封闭。回到图1,一旦毛细管盒用反应混合物灌注,将毛细管的末端封闭,暴露于热循环装置116的热循环中。
如图7A~7C所示,在热循环装置中整合了封闭毛细管末端及将毛细管盒暴露于热循环的膜。在此装置中,将封闭毛细管盒中毛细管末端的方法引入热循环装置中。
如图7A和图7B所示,毛细管盒15固定于可变形膜264a和264b间内部通道256内的lip 280。如图7B所示,可变形膜264a装在上部平台261上。盖子262固定于上部平台261上。平台261通过枢轴286粘附到基底265。气动装置284a、284b在上端与上部平台261于枢轴263处粘结。当上部平台261下降到室270、关闭内部通道256时,螺丝282用作上部平台261的制动器。扩散器258促进内部通道256中循环的空气温度一致。热电偶260测量循环气体的温度。枢轴277和平台200底膜的功能与图7C一起描述。
图7C显示了毛细管盒保留室与插入内部通道256的毛细管盒15的横截面。毛细管片段用样品和反应混合物灌注后,可用图1自动化机器从102将毛细管盒插入此区域内。
毛细管盒15放置成基片10搁在突出边缘280上。毛细管合放置成当上部平台261下降越过毛细管盒及下部平台271上升时,毛细管片段末端向下压向顶部的可变形膜264a和底部的可变形膜264b。当上部平台261下降以提供平整的封条时,盖子262封闭室270。螺丝282用作上部平台261的制动器以防止平台下降过低以至于毛细管片段弯曲或损坏。基底平台266固定到柱273和固定到室270。气动装置的下端,284b于下部的枢轴271a固定到下部平台271。延伸穿过下部平台271是延伸穿过室270的侧部螺丝268,以及静止平台266,并固定于下部平台200。当上部平台261经气动装置284b下降时,下部平台271也向室270上升。当气动装置园柱284b、284a缩回时,气动柱移动到垂直的方向。上部平台261下降,同时下部平台271呈弧形轻微上升。当气动装置柱完全缩回时,下部平台271将呈弧形向上朝枢轴277移动以放置成与上部平台261基本平行。当毛细管盒15插入内部室258时,平台200在弹簧上浮动的能力可以防止过度压力损坏毛细管12或膜264a、264b。平台261及200在毛细管12上施加的每平方英尺压力为400磅,提供了足够的封闭压力。上部平台261下降的同时,毛细管片段12的每一末端用可变形膜264a、264b封闭。可变形膜264a、264b可由硅橡胶或其它可变形材料制成。
回到图7A,发动机250转动旋转鼠笼鼓风机253的轴杆251。鼓风机253通过扩散器使气体产生运动流入内部通道256。鼓风机产生充足的循环气流,经过内部通道的气流以每分钟2,000英尺的速度循环。扩散器254保证经过内部通道、鼓风机253产生的气流热度一致。扩散器254上的锥形体255辅助混合流动气体,促进经过内部通道256的温度统一。扩散器254可保证经过通道256的气流在毛细管盒区域保持平稳,减少内部通道256管壁损失的非一致性。
内部通道256由外室270划定。外室优选横截面为矩形,由金属板、塑料或其它耐久材料构成。外室270除了入口278之外所有位置的内表面均用泡沫热绝缘体272排列。绝热体272防止外室过热,并辅助保持热量和辅助循环穿过通道256的气体温度一致。气体流经第一扩散器254后流过第二扩散器258。扩散器254及258促进流经内部通道256的气流统和温度一致。内部通过256越过第一扩散器254后发生转换以与毛细管盒的方向匹配。热气流穿过热电偶260,它垂直位于紧随第二扩散器258后的内部通道256的中心。热电偶260用于监测内部通道256内的温度。热电偶260可以是插入延伸穿过外室270及泡沫绝热体272的毛细管部分的温度监测装置。此外,只要可以精确反映毛细管内部温度就可选择用作热电偶260。
循环流过内部通道256的气体,经过热电偶260,并流经毛细管盒15的毛细管片段12。毛细管片段的末端用可变形膜264a于其上端封闭,该膜装配于已下降从而与室270形成气体紧密封闭的上部平台261上。毛细管片段12的下部末端用可变形膜264b封闭。可变形膜264b装在平台200上,此平台用侧翼螺丝268固定于底部表面上。侧翼螺丝268穿过室270并中止于平台271边。位于平台200和平台271之间的弹簧275提供了偏向力的同时允许平台200移动以便可变形膜264b偏向于毛细管12的末端。双功能气动装置在封闭盖262和向平台271位置施加压力的功能于图7C中一起说明。盖262装到室270上,以便金属板或其它构成盖262边缘的材料装到室270的顶部。优选将膜264a装到上部平台261上,以便膜264a延展入内部通道256到至少与绝热体272平齐。因为气体经过毛细管片段12,位于基片12下面的毛细管片段迅速变热及冷却到与快速流过内部通道256的气体相同的温度。
由马达276控制的门274用于和热电偶260及加热元件252一起控制内部通道256内的温度。当门274关闭时,内部通道内的循环气体不会与外部的气体发生交换。随着气体持续流过加热件252,气体迅速加热,直到上升到所选定的温度。一旦热电偶260认为温度处于所选定的温度,加热元件就保持较低的热量输出以维持内部的温度。如果需要将温度快速下降,如在热循环反应中,门274可由马达276向274a方向运动,使门274移入内部通道256中,使经过毛细管盒15的所有气体从内部通道256排到外面。可以考虑在门274旁安装滤器或排泄管,防止循环气体中的化合物排入环境中。快速循环的气体将迅速地排到热循环仪的外面,同时周围的气体通过气体入口278吸进来。通过气体入口278吸入内部通道256的气体流过加热器252。气体所流经的区域由阻塞部件259限定,该部件位于内部室256内的加热器252之上。内部通道256内气体的温度仍受热电偶260监测,当下降到所需温度时,门274被带向室270,使通过气体入口278所吸入的气体减少。
将加热元件252、热电偶260和门马达276与电子控制系统如计算机控制器相连,该热循环低度可以实施精确的气体温度变化时序轮换。需要时可通过加热元件252添加额外的热量,通过打开门274将多余的热量排掉,所得温度均由热电偶260所监测。将内部通道内的循环气体经门274排出可以使温度以大于每秒10度的速度下降。
温度的快速变化及热量快速向或从毛细管转移允许有效的温度循环反应。例如,在使用耐热聚合酶的反应中,核酸链的变性及引物与模板的退火每一步可能进行1到5秒。因为气体循环快速和毛细管壁薄使毛细管内部容积快速达到所选定温度,引物的延伸将需要更少的时间。毛细管壁薄及容积小可以实现整个毛细管内部容积的温度迅速变化和热量转移。这样极大的缩短了反应每一循环所需时间,从而可更有效的利用热循环仪,在样品制备时采用更高的通量。目前,30个循环的PCR扩增可在30分钟内完成。有可能将这一时间缩短到少于8分钟。
一旦热循环反应完成,可将上部平台261上升,将毛细管盒15从内部通道256移开。在温度循环过程中,每一毛细管片段中的液体将会在一定程度上膨胀,一些液体会从毛细管中漏出来并由快速流动的气体带走。然而,这样的损失只是毛细管片段容积的几个百分点,应该不会存在污染问题或导致足够多的反应产物损失以至于从本质上影响后面的分析。为了防止毛细管12的小口被可变形膜264a和264b上残留的少量物质污染,必要时可在可变形膜上盖一层易处理的材料如薄膜等。易处理的材料可以单独的薄片或成卷的材料,其每一次使用都可防止毛细管开口与材料已使用的部分接触。另外,毛细管片段12位于基片10和可变形膜264a之间的部分将只接受很少量的气流,将更加不可能快速达到变性温度。然而,这一部分很短,此部分区域不能快速达到变性温度应不会对毛细管其余部分生成充足反应产物用于后面的分析产生不好的影响。
封闭毛细管末端的另一替代装置是封闭毛细管盒中毛细管片段末端的毛细管盒支架。如图3B所示,毛细管盒支架由一对平行的、固定于平台16a和平台16b的可变形膜14a、14b组成。可变形膜可以是硅橡胶密封装置、Teflon、塑料或其它有弹性、可变形的材料。一对平行的柱子9从平台16a底部延伸到支持平台24的顶部,柱子在此由内部有螺纹的螺帽18固定。柱子9穿过平台24,螺帽18保持在平台24的环形突出边缘上。侧翼螺丝20穿过支柱24中的孔,并固定到顶部平台16b。弹簧22将顶部平台16b压向毛细管片段12末端,同时允许16b移动。毛细管盒15的基片10可以设计成含有与柱18间距和方向一致的孔,以便毛细管盒可轻易关牢固的固定在支架23内固定。
一旦毛细管盒的末端在支架23中得以封闭,合在一起的毛细管盒及支架可暴露于热循环中。该支架封闭16个毛细管。然而,支架可以设计成保存具有96或更高毛细管密度的毛细管盒。除了毛细管之外,其它基片的芯片也可用作反应容器。图3E显示了由两个相连基片层72、74构成的芯片基片70。层72有一条延展到芯片长度的沟。所粘附的顶部基片72封闭了一条带相对开口末端的毛细管尺寸通道(dimension passage)76。液体反应混合物可以引入封闭的通道中。与毛细管盒一样,通道的末端可通过将末端压向可变形膜而加以封闭。温度循环可能需要更长的时间,因为构成芯片的材料要大一些,但循环时间应该仍比传统的循环快得多。
对于恒温反应如滚动循环扩增来说,温度循环可不必产生反应。一旦恒温反应合在一起并引入毛细管盒中,在反应温度下培育毛细管盒将可使反应发生。如图1所示,所述自动化传输装置可将毛细管盒转入培养箱124中,在这里毛细管盒在选定温度下培育。培育时,可用一组可变形膜封闭毛细管的末端。正如在其它系统组分所看到的那样,培养箱124可在其它系统组分使用时使用。
PCR或链终止测序反应时,需要将反应混合物暴露于温度循环中。在图1中,传输头104将毛细管盒移入热循环仪116中。热循环装置可以是任意能将毛细管盒的毛细管片段暴露温度循环的装置。可采用使用水、电场、热隔阻或其它方法的热循环装置。此外,基于气体的热循环装置速度快、并适宜于本发明的低容积循环。
使用气体作为温度转移介质的热循环装置如图6所示。反应混合物包含于毛细管片段中,该片段高的表面对容积比值和低材料厚度。这样热量就可以快速传过毛细管壁和液体反应混合物各处。毛细管中各处液体的温度快速达到等温。使用气体作为热传输介质可以使反应室中的温度快速变化。气体的快速循环保证毛细管片段及期内含物快速、一致的加热或冷却。
如图6所示,封闭于支架8内的毛细管盒插入热循环仪室202的开口215中,该循环仪以气体为基础。支架8由热循环室210的室表面215支撑。装在基片10上的毛细管12暴露于热循环室210中,以便气体可在毛细管片段12四周流动。热电偶216监测流经毛细管12的气体温度。
在基于气体的热循环装置中,马达206驱动的桨208使气体在室210内快速循环。气体快速循环经过毛细管盒15的毛细管12。卤灯220用作加热循环室210内气体的热源。为了产生热循环反应,循环气体于选定温度保持设定的一段时间。热电偶216将毛细管片段12的温度传递至微处理器218。为产生所需温度变化,微处理器指示调节器222打开门226,使气体可以经过通风口224。当所体经过通风口224时,风扇叶片204通过气体入口203将额外的气体吸入反应室。风扇叶片204由马达206驱动。热气的通风及用温度低一些的周围冷气替换与风扇208驱动的气体快速循环、相对较小的热循环室210及热电偶216对样品温度的精确测量一起,可以实现快速温度变化。产生热循环所需时间大缩短了。典型的热循环反应对于核酸链变性、引物退火及聚合酶的延伸来说需要不同的温度。变性和退火步骤在毛细管中快速发生,在这里小内部体积液体快速达到平衡,而对DNA分子的延伸来说延伸500碱基只需不到10秒。使用基于气体的热循环装置带来的快速气体传输,每一次三个温度(退火、延伸、变性)的热循环所需时间可减到少于15秒。每一循环中毛细管暴露于三个温度中不同的时间,这样一个30循环的程序理论上可以在不到8分钟内完成。
将毛细管盒与基于气体的热循环仪联用可以获得额外的优势。毛细管支架临时封闭毛细管,可以快速及简化每一毛细管片段的封闭。毛细管盒包含大量平行排列的毛细管,可以更有效地利用热循环仪并实现更大的样品的通量。一旦热循环完成,包含于支架8内的毛细管盒15移到开口215。毛细管盒15从支架释放出来,随后进行分样。
图解图6和图7A~C的热循环仪与毛细管盒一起使用。同一装置可适宜于其它带相对末端的容器。例如,带大量延伸穿过芯片(如图3E所示)的通道的芯片样基片与毛细管盒一样具有均匀分布相对开口末端。可将数个芯片放入一个热循环仪中,开口末端暂时封闭并暴露于热循环中。快速温度变化可能稍慢一点,因为材料的厚度增加了。其它带开口末端容器也可与任一温度循环装置一起使用。
C.分配完成的反应混合物热循环或恒温反应完成之后,制备好的反应混合物分配到基片上以用分析系统进一步分析。正如前面所提到的那样,毛细管盒可通过气体置换、离心力、真空或其它任何置换方法进行分样。反应混合物所置换入的基片可以是多孔板的孔、平面基片上的位置或引入分析芯片的孔。反应混合物虽然少仍可产生需要稀释的足量反应产物。
分配完成的反应混合物实例1直接稀释如图1所示,温度循环过程结束后,可用传输头104将毛细管盒从气体热循环仪116移开。然后用传输头104毛细管盒移动、放入从已完成样品停留室112分样好的板上。该板位于位置C,可以是诸如384孔微量反应板的多孔板。板的孔包含稀释液,如甲酰胺、水、TBE或其它选定的缓冲液。反应混合物可通过主动置换、离心或其它分样方式从毛细管盒的毛细管片段分样下来。反应混合物也可分配到溶液中用于进一步的化学或生物化学反应。
分配完成的反应混合物实例2乙醇沉淀乙醇沉淀是可以实现与直接稀释方法类似的分样方法。图1的传输头104将从气体热循环仪116取走毛细管盒并把毛细管盒的短端放入位置C处的多孔板中。在这种情况下,板的孔会包含乙醇,如冷却到4℃的90%乙醇。反应混合物通过离心从毛细管盒分配到乙醇中。也可使用气体置换或其它分样方法。沉淀完成之后,可将多孔板用传输头102移入离心机中,进行低速离心收集沉淀于多孔板底部的核酸。然后用抽吸或其它方法除去乙醇。沉淀下来的DNA可重悬于甲酰胺、水或其它适当的稀释剂中。一旦样品板已用直接稀释或乙醇沉淀方法制备好,用传输头104将板转移至分析平台120。分析平台120可将样品酸直接送入分析装置中,例如由Amersham Bioscience,Sunnyvale Calif.公司生产的MegaBACETM等毛细管阵列电泳系统。此外,分析平台可指导产物引入其它系统中进一步处理。也有可能将样品分配到基片上进行质谱分析、热量分析或其它分析。
分配完成的反应混合物实施例3直接分样到分析系统中在前两个实施例中,样品是分配到多孔板中。然后这些板可以手动或由机器人移到一个平台上以便让分析系统进行分析。此外,毛细管盒可以直接分样到分析装置如电泳芯片的孔中。例如,16个毛细管以两行8个毛细管平行放置的毛细管盒可入坞分析芯片的16个孔中。这样的微芯片将一组流体与样品端口相通的分析泳道。
毛细管盒可以设计成毛细管间距与样品储存器入口的间距相匹配。例如,图3C所示的毛细管盒包括延伸穿过可变形长条11的毛细管12。可变形长条11可单独使用或与其它此类的长条联合使用。基本成直接线排列的毛细管其方向可以通过将长条11弯曲形成弧形而发生改变。图3D说明长条11发生弯曲从而使毛细管12与放在圆形模式中基片上的输入端口相匹配。然后如果使用合适的电极阵列或其它分样方法,毛细管12中的液体可以动电注射或者从毛细管分样到分析芯片的端口。将长条11压成一个曲线形状如弯曲的金属块,可将其放置成曲线的方向。可以使用引入自动化样品制备系统的自动化长条移动机来完成。毛细管盒可用气体置换或其它优选使泼溅及泡沫形成最少的分样方法进行分样。在制备好的反应混合物分样入孔中分析之前,可在每一分析微芯片孔中加入小量的稀释液。毛细管分样后稀释液将稀释样品孔中的样品。在毛细管盒中制备的亚微升体积产物混合物如DNA测序反应产物混合物,可轻易与测序或其它分析方法的分析芯片集成。
D.清洗毛细管盒毛细管盒每次使用后,可以弃去或进行清洗、再利用。毛细管盒的内含物分样出来后或毛细使用完毕后,毛细管盒放入盒清洗器118中,毛细管在这里清洗。清洗之后毛细管盒反回到盒停留室106中,在此毛细管盒再次利用。
如图8A所示,毛细管盒清洗器410由清洗管412和清洗槽平台416。在清洗管412和清洗槽平台416之间是毛细管盒平台414。立柱419从清洗槽平台416延伸出来。在该清洗系统中,清洗液从容器452、454、456、458中一个或多个通过各自的管道1、2、3、4泵入各自的路由入口453、455、457、459。路由器将选定的流体导向路由流出口451通过管线451a进入清洗槽440。流体从清洗槽440吸入毛细管盒的毛细管片段。毛细管盒基片固定于清洗管412和清洗槽之间,这样如果用抽吸器洗涤清洗管412,清洗流体将从清洗槽440吸入流过毛细管片段。清洗溶液通过真空吸入清洗管412并进入废物接收容器490。
图8E提供了清洗工作站的工作示意图。氮气罐460提供了推动流体流动的压力源。打开人工阀462可以使气体流经调节器466和过滤器。调节器466调节来自压力源的压力。压力传感器464监测来自氮气源的气压并指示是否气压低于所选定的气压。加压气流经过滤器468进入管道470中。加压所气体管道470分成几支进入密闭清洗瓶471、472、473和474的顶部。加压的氮气将各清洗瓶里的洗液泵入各自的流体管线471a、472a、473a和474a,并经过各流体管道上的入口滤器476。各密闭的清洗溶液瓶可包含不同的洗液,如水、醇、缓冲液或其它洗液。尽管演示的是四个瓶子,该系统可适于使用更少或更多的清洗流体。另外,清洗瓶的交换中需要在瓶471、472、473和474上于阀门462处施加氮气压,从所选定的瓶去掉盖并用压力和流体管线附到新的或重新灌注的清洗流体瓶子取代此瓶盖。流体管线471a、472a、473a和474a均终止于选择器阀门478。按照预设的程序,该选择器阀门将所选定的一种流体从输入管线引入阀门出口管线480。然后阀门出口管线将加压的液体运入清洗槽440中。
毛细管盒中的毛细管起着将流体人清洗槽440运入清洗管内部425的导管作用。当阀门492开启时,真空源496提供了真空力。当真空阀498开启时,真空力进入瓶490中,在管线490a内产生负压。当阀门495开启时,抽吸管线490a、424a、495a将会施加一个抽吸作用。当用抽吸管线424a向抽吸端口424施加抽吸作用时,经过清洗管425的负压会反液体从毛细管中吸上来并进入清洗管内部425。该液体将流经抽吸通道424,进入抽吸管线424a,经过阀门495、抽吸管线495a和490a进入清洗瓶490。
图8D演示了清洗管的视图。清洗管的底部包含毛细管所插入的孔426。清洗管内部425由第一末端与抽吸通道424、第二末端与净化通道423相连的泳道构成。当管线424a施加抽吸作用时,流体会从毛细管吸入包括内部425的泳道,经过通道424时入管线424a。当净化阀门开启时,气体会经过管线423a、通道423进入内部425并进入通道424,清除残留于内部425中的任意液体。
经过一个清洗过程后,清洗槽440下降到低于毛细管盒平台的位置,从而毛细管片段不与清洗槽440中的液体接触。当阀门485开启并抽吸管线490a施加抽吸作用时,清洗槽440中的液体通过引流器484引入引流管线484a中。然后清洗槽440中的流体将引入清洗瓶490中。
将备洗液引入清洗槽440之前,将清洗流体供应管线480和清洗槽分布管480a净化以将管中的所有液体清空。可以打开选择器阀门478中的阀门之一,使清洗流体通过供应管线480和排出管线482,从而完成上述过程。打开阀门487可以将真空力通过管线490a传过提代抽吸作用的管线488,该抽吸作用与流体压力一起通过排出管线482净化分歧管。旦流体供应管线480及分歧管得以净化就将阀487关闭,将清洗槽上升并加以灌注。清洗槽440的灌注水平由所选定的流体灌注时间和清洗压力控制。过流端口486用作安全引流器将过量灌注的流体引流。如果清洗槽440内的流体水平太高,液体将从清洗槽440流入过流端口486进入管线486a。当阀门487开启时,来自管线490a和488的抽吸力会反过量的液体从过流端品486吸入清洗瓶490。限制流量阀门限制液体流体流过管线482。
图8F显示了清洗槽440的顶视图。输入管线将清洗渡假地入清洗流体分歧管480a。该管供应灌注槽440的流体端口481。清洗流体端口481的间距辅助使灌注通过槽440的宽度均匀。灌注时间和流体压力调节灌注槽440的流体量。如果进入槽440的流体过量了,将从过流端口486吸走。
为了清空此槽,用所述气动装置将槽下降并打开引流器484。当含引流器484的槽440其末端下降时槽440的形状将流体导向引流器484。该结构为高效灌注、清空及净化槽440和相关灌注管线而设计。
再参考图8E,一旦完成了一次清洗循环,残留在清洗管内部矛盾425的任意气体可通过开启阀门491同时施加通过管道的抽吸而得以清除。开启阀门491导致气流吸入通风口493。此所体通过净化管线423a引入清洗管内部425并由抽吸管线424a除去。如果该管与毛细管接触,毛细管盒中毛细管相对狭窄的孔提供了有限的吸入气体经过清洗管能力。打开阀门491,更大量的气体可通过净化管线423a通过该清洗管,净化管具有大得多的吸入气体能力。这样将会产生突然的气体吸入该管。这样可以清除掉残留于清洗管内部425内的任意液体。优选在清洗管上升之前及之后将清洗管内部425净化。
如图8B所示,清洗工作站410以侧视图显示。毛细管盒平台414装在支撑柱445上。以内部横截面显示的储存器部分在该储存器下端后面有一个引流出口484。在槽后壁引流出口向上放置的是过流出口486。排泄出口446位于该储存器的前面。各出口与8E中各自的管道和阀门相连。当相关阀门开启并施加真空力时,各管从相关的出口携带液体流。
毛细管盒平台414放在支撑柱445旁的固定位置。从毛细管盒平台414前面向下延展的是带枢轴432的绞链418。与绞链418下端相连的是清洗槽平台416。从清洗槽416下面延展的是支柱419,它在枢轴443的下端与气压缸429相连。在固定毛细管盒平台414的后端,清洗管附着于构轴420。当气压缸429因所施加压力从上端延伸时,清洗管412将呈弧形从毛细管平台414上升。
清洗管412放在毛细管盒平台414上面。该清洗管前端有净化通道423,并且后端有抽吸通道424。将气体携带到清洗管或从该管除去气体或液体的各管道与图8E一起说明。
如图8C所示,气压缸429显示为从下面支柱上的枢轴443完全延展开来,穿过毛细管盒414中的孔333,抵达清洗管412上面的枢轴428上端连接。清洗管延伸的高度由固定于近412顶部的板430决定。当清洗管上升到设定水平时板430与毛细管盒平台上的插头衔接并防止清洗管上升超过此水平。当通过抽吸通道424进行抽吸向清洗管内部425施加抽吸力时,流体从槽440吸入经过毛细管12。
毛细管盒平台414的前部末端于枢轴432处与绞链418和清洗槽平台416相连,后端于枢轴420处与清洗管412相连。断流器434延伸穿过毛细管盒平台414。断流器434的方向设计成当置于毛细管盒平台414上时毛细管盒15的方向与断流器一致,该盒具有延伸穿过毛细管盒平台414的相关毛细管片段12,而毛细管盒基片10的四周仍停在断流器434边缘毛细管盒平台414上。可将定位销加到毛细管盒平台414以适当地定位毛细管盒。
为了按次序完成盒的清洗,用电子控制仪实现一系列步骤。该电子控制仪指示清洗工作站相关的受控装置执行编好程的清洗指令序列。编程指令序列开始是用机器人传输装置将毛细管盒置于毛细管盒平台上。清洗管下降至毛细管盒上,以便毛细管片段的短末端延伸入清洗管中,毛细管的相对末端在清洗槽内所灌注的液体中。洗液供给管线用第一选定溶液净化以便将前面的溶液从管线中清除。象相关图8E所提到的那样,净化溶液经过分歧管、引流器484、排出管线482,到清洗废液管线488和490a,然后进入废液瓶490。然后将清洗440上升,用选定洗液灌注。
向清洗管施加真空力,使清洗槽中的溶液吸上来经过毛细管盒中的所有毛细管盒片段。经过编程清洗过程后,将清洗槽排干并下降。真空力继续通过清洗管,将气体吸入通过毛细管片段。毛细管片段干燥后就将清洗管的真空管线关闭。洗液供应线用下一种洗液净化,对于各种选定的溶液来说,重复上升并灌注清洗槽、吸入洗液并经过毛细管片段、清空清洗槽这些步骤。对于任意数量的洗液来说,特定的指令序列可以重复这些步骤。当最后的清洗完成并清洗槽清空时,向清洗管施加真空力,使所体吸入并经过毛细管,使毛细管片段干燥。净化阀门491定期开启,气体通过通风口493吸入净化管线423a并进入净化入口423。这样可吸入一股气体经过清洗管内部425并将清洗管内部任意残留的液体,以保证清洗管内的任何残留液体不会吸回到毛细管中。然后关闭清洗管真空力,将清洗管上升,将清洗管从毛细管盒移开。再次施加清洗管真空力,打开净化阀门491,将气体吸入经过通风口493、进入净化管线423a和净化入口423。这样就保证将所有残留液体从清洗管内部清除。然后将真空力关闭。清洗过并已干燥的毛细管盒可以用传输机器人移至毛细管停留室或其它位置。
系统集成该系统的部件可以集成组合的系统,使图1完整系统中的数个元件同时操作。例如,电子控制装置123可用于向该集成系统的部件发送指令。该电子控制装置可以是向各系统组件发送电子信号以完成一组编程指令的计算机。系统的元件可同时操作,提高系统的效率。例如,自动化机器人102可以接收来自盒停留室106的毛细管盒,将毛细管盒放在平台a处的样品板中。来自该板的一定量样品通过毛细管作用吸入毛细管中。然后将毛细管盒移开,放到微量反应板的上方,使毛细管片段的短端在微量反应板的孔内。然后机器人102可以将合在一起微量反应板/毛细管盒转到分样位置122进行分样。机器人102、传输头104和位于分样位置122的分样装置它们的运动均受电子控制装置123控制。
在反应混合物装配的同时,电子控制装置也可同时向热循环仪116发送电子信号。通风口的门、加热元件及热循环仪116的热电偶可与电子控制装置123相连,使电子控制装置123通过调节热循环仪内循环气体的温度来产生选定的温度循环程序。这一精确的监测可以使温度循环程序在最少时间内完成。一旦热循环程序完成,电子控制装置发送电子指令使热循环仪风扇和加热元件关掉,并以气动方式打开盖子,让毛细管从热循环仪的内部移走。
当自动化机器人102将毛细管盒移动以装配反应混合物及热循环仪在运转时,毛细管盒118也可正在清洗毛细管盒。同样电子控制装置123可指示盒清洗器118执行清洗指令序列,使其中的毛细管盒用选定的一系列清洗液体洗净并风干。
电子控制装置123可使系统的每一部件得到最大限度的利用。向电子控制装置123发送一组简单的指令可以完成反应混合物装配,产生所需反尖的反应混合物热循环,反应完成后反应混合物分样到分析基片,将分析基片送到平台上用分析设备处理,以及用过的毛细管盒清洗。
亚微升模板校正的核酸反应另一方面本发明提供了核酸反应以更少体积进行以及校正此类反应中核酸模板量的方法和装置。
本发明部分地基于核酸通过一定材料所介导饱和但可逆性结合的一种新用途,该用途可控制作为模板向随后反应输送的核酸量,而不需要预先测定该核酸将要被捕获的溶液中的核酸浓度。在一特定的实施方案中,毛细管的内表面用于完成核酸捕获,允许核酸模板直接在反应随后将要进行的室中捕获。
本发明的更多优势本发明的说明详细参考了其进行DNA测序反应的用途,尤其是采用毛细管电泳的高通量背景下样品处理系统,本发明的方法和装置对此特别有优势。但是,正如下文更详细的说明那样,对于熟练技术人员来说,显然本发明可用于进行多种以DNA及RNA为底物的生物化学及化学反应过程。正如下文的详细说明一样,本发明提供了将核酸可逆性直接固定于反应室如毛细管或其相同功能物体的内表面上的方法。经过固定及其它处理步骤后,核酸可马上在毛细管内部进行的化学、生物化学或酶反应中使用。此外,核酸可从毛细管中洗提并取出来以便为进一步的使用将一受控量的核酸进行分样。
为了使用高度灵敏毛细管电泳系统如MegaBACETM(AmershamBiosciences,Sunnyvale,CA)成功分析DNA测序反应,在反应中使用的模板DNA量一致、预先测定以使模板量不会过少也不会过多这一点非常重要。使用DNA结合能力一致的毛细管就有可能“校正”所有反应中所用模板DNA的量,从而保证所有反应均以类似模板量开始。尽管可用其它方法进行校正,使用毛细管可以减少保证一致性所需步骤而极大节省了时间。
尽管与核酸结合是玻璃表面的内在性质,捕获表面可以修饰成结合能力或结合选择性发生改变是可以理解的。例如,对于捕获非修饰DNA来说,主要的结合力是疏水力、电荷-电荷(静电)力及氢键结合。因此,为了捕获非修饰DNA,可在捕获表面通过固相反应加入乙烯基团、CVD反应加入丙胺基团或其它已知反应加入其它胺,优选叔胺,以便使电荷-电荷相互作用最大化。在其它替代方法中,可将寡脱氧胸苷与胺化的表面相连,增加其捕获多聚腺苷酸mRNA。可在硅表面和官能团之间加入一般Cn形式的分隔物。对于这此方法的每一种来说,可以通过改变官能团的浓度来改变特性及/或结合能力。
本发明的一个额外优势是可减少与进行有核酸参与的反应尤其是高通量背景下样品处理系统反应相关的处理步骤和所需核酸及试剂的量。例如对于DNA测序反应来说,在进行激活该反应的热循环之前,需要将模板DNA与包含测序引物、DNA聚合酶、双脱氧核苷酸、dNTPs、缓冲液、盐及水的反应混合物合在一起。典型地,这样要包括将反应混合物等分入试管中来制备20μl反应,加入200ng模板DNA。等分DNA所用吸管尖头通常丢弃,以避免污染DNA原种物。然后将各组分混合,热循环,进行分析。
按照本发明的实施方案,用DNA溶液灌注毛细管,使5ng模板可逆地固定于毛细管的内部。经过几个处理步骤后,用500nl反应混合物灌注毛细管,使模板从管的内部洗脱下来进入混合物中。然后将毛细管封闭、热循环,用高度灵敏的毛细管电泳系统对反应产物进行进一步的分析。因为毛细管同时用作因毛细管作用而灌注的吸管以及反应室,就不必用专门的吸液系统分别等分模板DNA溶液或反应混合物。只需要提供各自的原种物供毛细管灌注即可。这样就省掉了处理步骤和诸如一次性吸头之类的材料。这样也可节省处理步骤中带入而不引入反应中的试剂。
在毛细管中进行测序反应可在1/10至1/40反应体积中进行从而仅耗费1/10至1/40试剂,这一点也是显而易见的。总而言之,这些优势可以减少处理、加快速度并降低成本。在设计高通量样品处理系统时,毛细管或其功能相同物可呈本领域内熟练技术人员所熟知的平行方式排列以增加可同时处理的反应数量。采用本发明此处所公布各种实施方案所带来的好处其范围的增长与所处理样品的数量与正比。
将核酸可逆、直接固定于反应室中图15是是显示本发明实施方案相关步骤的流程图,图16是示意图;其中核酸可逆性固定到反应室如毛细管的内表面。用这种方法制备的反应室可用于进行含核酸的测序反应以产生另一种含核酸的酶学或生物化学反应,或将预定量的核酸分样到基片上,如微量滴定盘的孔中,或分样到分析设备中,如毛细管电泳装置。
参考图15和图16,第1步中从合适来源制备核酸样品,在第2步中核酸80溶解于含离液序列高离子的溶液81中。在第3步中,反应室用核酸-离液序列高溶液灌注并培育,在第4步中,留下充足的时间让核酸80可逆性结合于反应室的内表面82。在第5步中,除去核酸离液剂溶液,随后进行第6步的反应室清洗和第7步的反应室干燥。此时反应室可以使用了。第12部分指毛细管,或更泛指包括毛细管及其功能相同物在内的反应室。第80部分指DNA,或更泛指核酸,包括DNA、RNA及其衍生物。
图15中,该过程第1步以从合适来源获得核酸开始。核酸可以是脱氧核糖核酸(DNA)、核糖核酸(RNA)或这些分子的衍生形式。核酸可以按照本领域内的已知方法(参见《当代分子生物学方案》,JohnWiley&Sons,Inc.,2000,Fred M.Ausubel等编,ISBN 0-471-50338-X)从各种生命有机体或依赖于活细胞的自我复制系统分离及纯化。细胞可以是真核细胞,包括人细胞或非人哺乳动物细胞、非哺乳类动物细胞、植物细胞及真菌细胞。另牙,真核细胞可以是游离单细胞的生物体,如变形虫或其它寄生虫。细胞也可以是原核细胸,包括细菌及原始细菌。核酸也可从病毒获得,RNA及DNA病毒、感染动物细胞、植物细胞、真菌细胞及细菌细胞的病毒。核酸也可按照本领域内众所周知的化学合成方法生成。
从合适的来源获得模板核酸后,将核酸即图16中80部分重悬于及/或溶解到含离液剂的溶液中,即图15中第2步和图16中82部分。该离液剂应有足够高的浓度(如约0.5M至8.0M)以完成所述核酸的可逆性结合,但不至于过高以导致核酸或离液剂本身在该溶液实施本发明所经受的各种条件下从溶液中沉淀下来。
离液剂是对水局部结构具有破坏性的作用从而影响分子从非水相分配到水相的物质。离液剂是离液离子的盐,在水溶液中具有高度溶解性。由此类盐所提供的、水溶液中的离液离子浓度足够高时使核酸的二级或三级结构丧失、双链结构的核生发生熔化(即链解开)。据认为离液离子通过破坏存在于水中的氢键网络、使变性形式的核酸与典型水性环境中所存在的高度有序结构(如双螺旋)相比更能耐热,因而具有这些作用。
正如以前Vogelstein等,Proc.Natl.Acad.Sci.USA 76,615-619(1979)以及Chen和Thomas,Anal.Biochem.101,339-341(1980)所述,在足够高浓度(如约0.5M至8.0M)的离液离子存在时,核酸将可逆地与一些物质如硅结合。核酸与硅结合的机制可能涉及离液离子在带负电荷的硅表面上破坏水结构,从而在硅和带负电荷的核酸链磷酸骨架之间形成阳离子(如Na+或K+)介导的盐桥。为了完成核酸与硅的结合,可将离液剂单用或是两种或更多离液剂以混合物使用。盐桥不是永久的键,当该键邻近的离子浓度下降时会遭到破坏。通过这种方法,可用水或其它合适的低离子强度水性缓冲液将核酸从硅或类似材料洗脱下来。
离液离子包括胍盐、碘化物、高氯酸盐和三氯乙酸盐。离液盐包括高氯酸钠、高氯酸钾、溴化钠、溴化钾、碘化钠、碘化钾、硫氰酸钠、硫氰酸钾、硫氰酸胍、异硫氰酸钠、异硫氰酸钾、盐酸胍、异硫氰酸胍、氯化锂、三氯乙酸钠和三氯乙酸钾。其它具有离液性质的物质包括二甲亚砜(DMSO)、尿素及包括在氯化四乙胺在内的四胺卤化物。
核酸溶解于离液剂的溶液中后,将核酸-离液剂溶液即图16中第83部分引入反应室中,即图15中的第3步和图16中的12部分。
对于降低用于完成测序反应所需试剂的成本这一目的,反应室典型的是体积非常小,理想的是约1~1000纳升(nl),更理想的是约10~500nl,最理想的是约100~500nl。
大部分情况下,反应室设计成溶液可以利用毛细管作用的优势被动引入室中。毛细管作用是液体与固定如试管侧面接触从而使液面升高的现象,该现现在毛细管即直径非常小的试管中最为明显。毛细管作用依赖于表面张力所产生的力量和试管侧面的湿度。如果液体对固体(潮湿度)的粘附力超过了液体内部的凝聚力(表面张力),液体将沿着试管上升,也就是说会超过静水位。此外,可将溶液诸如使用正性或阴性大气压泵等主动方式引入反应室。
最简单最经济的是利用毛细管作用的优势用核酸-离液剂溶液来灌注反应室,此时毛细管用作反应室。如果毛细管的孔径已知并且横截面一致,就可以很容易计算该管的容积,该容积与其长度成正比。这样可将管截到计算所需长度从而获得指定容积的毛细管反应室。然而,根据流体动力学规律,应注意溶液的密度不能太大导致其表面张力过小,管的直径不够小导致溶液柱不能克服重力,从而不能灌注试管。
在灌注过程中,管的一个末端浸入图16中83部分的核酸-离液剂溶液,该溶液通常以超过任意管需灌注的总体积供应。该管以这种方式在一步内完成灌注,减少了在入口形成泡沫的机率。毛细管的另一端必须打开,否则就不能使气体从灌注管选出。
反应室的外侧不一定是像毛细管那样长而细的大致圆柱形状。相反,正如对熟练技术人员来说显而易见的那样,毛细管的功能等同物可以各种各样的方式制备。在说明书各处,术语毛细管应该理解成不仅代表通常所指的毛细管意义,还指其任何功能等同的任意结构。例如,管道、通道或槽等形式的可以配置成流体通过毛细管作用进行灌注,或通过直接施加某些压力如正性或负性压力,或离心力进行灌注。管道、通道或槽可以通过机械、化学、热或其它对于领域内熟练技术人员已知的方式来形成。可以通过从基质中除去物质来形成通道或管道,如使用钻头、激光或化学蚀刻。
如图3E所示,基片72表面内的槽或通道78,如任意形状及尺寸的玻璃切片,可以用锯子截断,或用激光切除或化学蚀刻形成以产生称为芯片或微芯片70的构造。例如,可通过本领域内已知的照相平版印刷方法在硅片中形成沟,而玻璃薄片中的沟可以用氢氟酸蚀刻而成。
如果在基片72表面内形成沟或类似的凹陷78,通常有利于用盖子74进行覆盖以形成密闭的空间。将沟或凹陷78盖住可确保流体有最大的表面面积来相互作用,从而促进毛细管作用,使污染物接触反应的机率最小化,并创造一道蒸气屏障以确保在反应温度升高的过程如热循环过程中反应汽化的倾向最小化。
由与基片72相同或不同的材料所构成的盖74,其中沟在该基片内切成,可用本领域内已知的各种方法加以应用。例如,盖子74可以用环氧树脂、氰基丙烯酸酯或其它类型的粘合剂粘到该基片上。可以通过使用热或光将其及其下面的材料熔化直到它们熔合,使其焊接起来。盖子74也可用机械方式如夹子甚或磁学方式固定住。
构成反应室的材料优选模板DNA或其它核酸在足够高浓度的离液离子存在时可以可逆并饱和性地与其结合的材料。反应室常常由玻璃组成,尤其是设置成毛细管时。各种内径的高质量玻璃毛细管可从包括Polymiccro Technologies(Phoenix)在内的各厂商方便获得。
如果毛细管由易碎的疏水材料如玻璃构成,则可以方便地用聚合物如聚酰亚胺包被毛细管的外部。用聚酰亚胺包被外部提供了避免磨损及因弯曲而折断的保护层。聚酰亚胺也在毛细管的外表面产生了一层疏水层,当毛细管浸入反应混合物中灌注时可帮助防止水溶液粘在上面,从而防止试剂浪费。其它可能的包被材料为丙烯树脂、硅枝脂、氟聚合物及铝。
可使用的玻璃有多种类型,包括碱-硼硅酸盐玻璃、氧化铝硅酸盐玻璃、钡火石玻璃、硼硅酸盐玻璃、含氧化硼的硼酸盐玻璃、含二氧化锗的锗酸玻璃、硫属化物玻璃、含二氧化硅的硅盐玻璃、石英玻璃、熔融石英玻璃、合成的熔融石英玻璃、水晶(二氧化硅晶体)、熔融水晶(无定形二氧化硅)、含杂质的合成熔融石英玻璃(掺有诸如锗、氟、硼、磷及钛的微量元素)、镧玻璃、光学玻璃、磷酸盐玻璃,以及苏打-钙玻璃。
此外,反应室可以由金属或类金属如玻璃等可以制成毛细管或晶片的材料构成。合适的纯金属或合金包括镁、铝、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锆、铌、钼、钯、金、银、钴、铌、铟、铑、锡、钢、不锈钢及青铜。合适的纯合类金属或杂合类金属包括硅、锗、砷及砷化镓。
反应室也可由多种同素异形体的碳构成,包括石墨、钻石、C60及含诸如nanotube之类的相关同素异型体,或由有机化合物如塑料构成。对于这些材料来说,可能需要在离液离子存在的条下将碳或塑料衍生化。
当图16中12部分的反应室如玻璃毛细管用核酸-离液剂溶液83灌注后,培育溶液,培育的条件和时间应可使溶液中的至少一部分DNA经过图15中第4步可逆地与室或管的内表面即图16中82部分结合。在其它实施方案中,可完成不可逆结合。
正如前面所讨论的,与理论所希望的结合不一样,如果内表面是含二氧化硅(硅石)的玻璃,大家认为在足够高的离液离子存在时核酸很有可能与硅石通过磷酸盐骨架形成盐桥类型的结合。通常,结合可能在接近室温的温度(约24℃)下进行,但只要认为合适,只要高效结合及DNA和离液剂不会遭到显著的防碍,其它温度也可使用。
核酸-离液剂溶液中的核酸与反应室或管的内表面82结合后,含未结合DNA及离液剂的溶液进行第5步的除去、第6步用洗液清洗内表面,然后用第7步干燥将洗液带进来的残留痕量液体除去。
多种核酸-离液剂溶液通过各种方法从室内除去,包括使用正性或负性气压或使用离心使溶液排出。
进行清洗,除去过量、未结合的核酸、离液剂及任何已污染核酸的杂质,从而纯化已结合的核酸。除去离液剂很重要,因为这些离子会严重干扰随后进行的多个化学及生化反应,即使浓度很低也是如此。可用各种方法清洗。例如,洗液以与核酸-离液剂溶液相似的方式排出后,可通过毛细管作用将毛细管灌注。此外,也可用泵抽吸洗液来使反应室灌注及排空。使用充足体积的洗液使所有存在的污染物均基本除去。清洗之后,将洗液从室或管中除去。
洗液组成的选择以不会因洗脱而除去任何已牢固结合于室或管内表面的核酸为准,通常是醇与纯水的溶液。适当的醇包括甲醇、乙醇及异丙醇等分子质量较低的醇。醇的浓度应足够高,使核酸的洗脱程度最低,优选体积比至少50%、更优选至少60%、最优选到少70%。一般的,使用乙醇时浓度高于约70%~80%体积比。
洗液也可包含盐,优选缓冲液形式的盐,如乙酸盐缓冲液或tris-EDAT缓冲液(例如含10mM Tris-HCl和1mM乙二胺四乙酸(EDTA),pH8.0)。盐可以具有缓冲pH的作用,可在清洗过程中使pH保持在约6.5~8.5,并稳定DNA与室或管内表面的结合。
常需要通过干燥基本除去室或管中所有来自小体积洗液的痕量液体。尽管液体中某些组分如乙醇低浓度时不会明显干扰随后的生化反应,浓度高时会发生干扰。使室或管经受足够高的真空力使液体气化并被运走,从而完成干燥。此外,干燥的气体如空气、氮气或氢气,可在施加一定压力条件下经过室或管以促进液体的蒸发。干燥气体可加热以进一步促进蒸发。
干燥后的室或管现已具有可逆性固定的核酸,可立即使用以进行与该核酸的生化反应,或在合当的条件下储存备用。按照上述所讨论方法制备的反应室可方便地用于校正平行反应中要用的核酸量,将预定量的DNA或RNA分样到基片上,以及进行纳米级反应和其它多种与DNA和RNA的反应。然而,正如本领域内熟练技术人员所清楚的那样,这些具体的应用不应视为对此类反应室可应用范围的限制。
本发明在自动化系统中的应用毛细管形式的反应室可如图15所示单个地进行处理和使用,但常方便地与多个毛细管以平行方式组合,以便可以提升样品的通量,是在自动化系统中更是如此。就此目的来说,毛细管可常规组成毛细管盒;每一毛细盒的密度越高则可能的样品通量就越大。诸如第09/577,199号共同未决的美国申请所述之类的装置,可用于图1中所示处理步骤以及任意与进行与固定核酸反应相关后继步骤自动化,包括毛细管灌注、排空、清洗、干燥及/或热循环。以此方式使用,毛细管盒可以成为自动化、容积固定的平行吸管,使所有毛细管同时通过毛细管作用从样品板的孔中进行灌注。
毛细管盒如图3A所示。该毛细管盒由大量延伸穿过基片10的毛细管组成。优选的是毛细管盒一排至少含有8个毛细管,并且间距相等。所示毛细管盒具有带96个毛细管以8×12阵列形式排列的基片10,管的间距与96孔微量反应板的孔距匹配。
毛细管12延伸穿过基片10,优选以统一模式排列。毛细管长度相等,并以基本平行的方向延伸穿过所述基片,从而使毛细管12两个末端的每一端均处于同一平面,并且毛细管12末端所确定的平面基本与基片10平行。毛细管的间距可统一起来,并设定成与微量反应板上孔的中心间距匹配。例如,在标准的96孔微量反应板上毛细管将排成中心间距为9mm,在384孔微量反应板上毛细管将排成中心间距为4.5mm。毛细管格子密度越高、兼容1536孔的微量反应板或更高孔密度的反应板,也是有可能的。毛细管优选固定面基片内部,从而使毛细管12延伸穿过基片一侧的长度短于毛细管在基片10另一侧的长度。毛细管在基片短侧的长度与微量反应板的孔深相匹配,从而短侧的长短于微量反应板的孔深。这一特性使毛细管盒可以插入微量反应板中,从而基片10搁在多孔板的顶部边缘上,并且在基片一侧的毛细管可伸入多孔板的孔中而不触及孔底。例如,在96孔微量反应板中毛细管可以放在基片以,使自基片延伸的毛细管短端可以插入微量以应板而不触及孔底。这样就可保证分配到孔里的液体不会粘到毛细管上,从而避免重新进入毛细管中。
毛细管盒基片10可由玻璃纤维板或其它干性的或半柔软的材料制成。毛细管12可完全插入基片中隔开的孔中并用粘合剂固定。在一实施方案中,基片的长和宽与标准96孔微量反应板的长和宽相同。这就简化了对自动化系统的改动,其中该系统设计成用于操纵微量反应板以处理毛细管盒。
生化反应中所用核酸量的精确控制和校正当进行含核酸的生化反应时,输入已知精确度的核酸量对于反应的成功来说至关重要。这样可以使实验人员合理地计算其它反应组分如酶的合适比例。例如,正如在背景部分所讨论的那样,如果在测序反应中使用的模板DNA超过毛细管系统电泳系统所分析的量,就会常常导致低质量测序数据的结果。储备样品中的核酸浓度可通过测定260nm处的吸光度或测量相对于标准曲线的染料结合量而较容易地测定。然而,这两种方法均会消耗一部分样品,而且它们均不易在高通量样品处理系统背景下实现。幸运的是,本发明可用于精确控制各种应用所需的核酸量。
如果在反应室内进行结合反应的过程中,核酸-离液剂溶液允许与室或管保持接触充足的时间,而且溶液中的核酸浓度足够高,则有可能使室或管内表面的可用的核酸结合位点饱和。这通称为饱和性地结合。不管开始时溶液中的核酸量有多少,只要培育前溶液中的核酸量超过室内表面的结合能力,固定、最大量的核酸将会得到固定。在此方式中,如果溶液中的核酸浓度超过了最小值,并不一定需要得知精确的浓度;所结合的核酸量将只由该反应室的结合能力来决定。相应地,如果毛细管盒中已饱和性地结合的核酸洗脱入一已知体积的液体中,则液体中核酸的浓度和量就可高度精确地确定。
因此,基于毛细管或其它反应室结构,使用本发明可能可以获得或测量出精确度出色、少量的统一核酸量。例如,如果需要进行使用10ng核酸的反应,只需要取一个核酸总结合力为10ng的毛细管或其它反应室就可以了。然后此毛细管用核酸-离液剂溶液灌注,其中核酸和离液剂的浓度均足以支持在合理时间内完成饱和性地结合。完成培育、排空、清洗及干燥步骤后,实验人员就可以确信该毛细管含可被洗脱用于分样或留在毛细管内备用的10ng核酸。
通常内表面的结合能力或可饱和性地结合的核酸量由经验来确定。例如,按照领域内的已知方法用放射性如35S、33P、32P标记已知量的受试核酸。标记后,测定标记核酸的特异性活性,建立每分钟每个质量单位或核酸浓度的分解比值。然后将标记核酸以预定浓度溶于含离液离子的溶液中。然后用代表了一般供应的标准反应室进行测试。例如,截下预定长度的毛细管盒,用标记核酸-离液剂溶液灌注。结过足够长时间的饱和性地结合后,将该毛细管排空、清洗。然后,测定仍保留于管内部的放射性活性,根据特异性标记活性的常识转化成核酸的量。然后只要在随后的实验中使用的条件类似,就可将此因子用于计算从同一批毛细管中截下来的任意长度毛细管中所保留的核酸量。
使用本发明来精确获得预定量核酸的优势之一是校正随后所用核酸的量。当处理许多样品时,此优势特别明显。例如,在领域内的当前情况下,制备不同的测序模板DNA时保证各模板的浓度相同是不可能的。因此,按照以前的方法,需要通过测定每一制品中的DNA浓度、将各样品稀释到适当的浓度,来校正不同的模板DNA样品。这一点对毛细管电泳来说尤其重要,因为该技术对模板DNA在毛细管中上样过量非常敏感。需要校正模板DNA显著增加了使用此系统获得高质量DNA测序数据所需时间和成本,或需要研究人员接受升高的失败机率。
然而,本发明可以实现快速的校正,使起始模板浓度的差异降到最小。为了将不同的模板校正到预定的浓度,只需提供饱和性地结合能力已知的功能性相同毛细管(每个模板一个)和DNA及离子浓度均足够高的模板DNA离液剂溶液就行了,其中毛细管内的所有DNA结合位点均在一合理的时间段内被占据。经过排空和清洗后,所有毛细管将含有同样量的模板DNA,从而完成了校正。
正如对于熟练技术人员来说显而易见的那样,如果不需要使反应室内所有可能的核酸结合位点饱和,则有可能控制可逆结合的核酸量。说它可能是因为结合反应的动力学取决于多种变数,包括核酸浓度、核酸分子平均大小、溶液pH、离液离子浓度、反应室内表面可结合位点的数量以及温度。因此,根据经验分析,熟练技术人员可能确立能产生一致、可预期、可逆结合预定量核酸的结合条件,这些核酸并不会饱和反应室内的所有DNA可结合位点。
毛细管电泳的DNA测序本发明的优势在于可有利地应用于进行DNA测序反应,尤其是使用高度灵敏的毛细管电泳系统如MegaBACETM。为了将本发明用于DNA测序,必须将模板DNA固定在毛细管或其相同功能的物体内。模板DNA是其构成碱基需要测定的DNA。模板DNA可以是单链DNA,或是双链DNA,其中两条互补DNA链杂交在一起,根据Watson-Crick碱基配对互补原则,已知一条链中的情况可用于推导另一条链的碱基序列。模板DNA通常可直接从在宿主中培养、克隆了需测序DNA片段的自主复制遗传系统获得。此外,模板可从任意来源获得,如通过使用聚合酶链反应或功能相同的线形或指数级扩增方法从基因组DNA扩增特定的DNA序列。
自主复制遗传系统包括附加体元件,如含复制起点的质粒或细菌噬菌体(如λ或M13)分别经过转化或感染后二者均可以细菌中细菌如大肠杆菌中复制。可以将其复制足够多拷贝数的所在细菌打开,分离所释放入细菌培养上清液中的细菌噬菌体,并打开细菌噬菌体颗粒、分离DNA,从而获得停留于质粒的模板DNA。也可能在哺乳动物细胞中培养含哺乳动物复制起点的附加体,根据Hirt方法分离DNA。
由于质粒或其它附加型DNA与完整基因组DNA在分子量上的根本差别,当附加型DNA与完整基因组DNA均在细菌或其它类型细胞裂解后释放出来时,使用毛细管作为反应室提供了一种快捷地将质粒DNA从完整基因组DNA纯化出来的简便方法。简单地说,将质粒及完整基因组DNA的混合物与离液离子的溶液合在一起。将质粒欲固定于其内的小孔毛细管浸入此溶液中。灌注时,因为分子量小,质粒可轻易穿过毛细管的孔,从而与玻璃壁相互作用形成盐桥并固定住。相反,完整的基因组DNA因为分子量极大,被排除于毛细管的孔外,从而通过大小排斥与质粒分开来。
正如所提到的,模板DNA也可不需克隆步骤直接从适当的来源扩增DNA片段,例如从病毒、包括细菌在内的原核细胞或包括哺乳动物或其它动物或植物在内的真核细胞扩增。
当模板DNA即图16中80部分直接与毛细管12的内表面82可逆地固定后,按照本发明的方法,用完成测序反应的测序反应混合物84灌注毛细管。反应按照本领域内众所周知的技术进行,DNA测序反应的产物用荧光染料加以标记。领域内已确认的是Sanger双脱氧核苷酸链终止技术。简单地说,将与模板中序列互补的引物与该模板杂交。DNA聚合酶阅读模板中的序列碱基,在延伸引物的3’端加入dNTPs,从而使引物延伸。但是,相应dNTP氢氧根性质缺失的三磷酸双脱氧核苷酸阻止将碱基加到延展的链上。结果使链终止延伸。色谱图中的终止链模式可让实验人员推断模板中的碱基序列。在所延伸引物上接上荧光团或在所有引入延展DNA链、使引物延伸终止的终止子上接上荧光团,使终止的反应产物加上荧光标记。
近年来,使用能量转移、由光接受体染料和荧光发射染料组成的染料偶联荧光系统,使激光扫描测序系统的性能得以改进。第一双脱氧终止子均用两种染料标记,染料之一的荧光素吸收来自激光器所产生入射激光的能量,并将所收集的能量通过无辐射能量转移传给接受体染料。四种链终止子ddG、ddA、ddT、ddC,含有与荧光素供体偶联的不同接受体染料。然后接受体染料如罗丹明110、罗丹明-6-G、四甲基罗丹明和罗丹明X发射其特征性波长的光。用可鉴定哪种核苷酸导致此终止事件的设备对荧光加以检测。使用能量转移系统激发接受体染料可比直接使用激光用更有效,因而灵敏度更高。作为荧光标记双脱氧终止子的替代方案,可标记测序引物。如果使用此系统,可将供体染料和接受体染料连到引物上,从而也使用能量转移染料。与连接引物相连接的供体染料实例之一是5-羧基-荧光素(FAM),用于胞嘧啶的罗丹明110(R110)、用于腺嘌呤的6-羧基罗丹明(REG)、用于鸟嘌呤的N,N,N’,N’-四甲基-5-羧基罗丹明(TAMRA)和用于胸腺嘧啶的5-羧基-X-罗丹明(ROX)是与连接引物相连接的接受体染料实例。能量转长染料偶联荧光系统的更详细讨论见已颁发的第5,688,648、5,707,804、5,728,528、5,853,992、5,869,255和6,028,190号美国专利,在此将其整体内容引入作为参考。
图16中12部分含已固定模板DNA80的毛细管浸入用反应混合物注满的容器85中,通过毛细管作用进行灌注。反应混合物包含完成测序反应所需浓度的所用组分,包括水、盐、缓冲液、引物、DNA聚合酶、dNTPs及双脱氧终止子。与理论所希望的结合不一样,目前假设随着水性混合物爬上毛细管,已固定的DNA很可能重新水合。而且,因为混合物中盐的离子强度相对较低,使DNA固定的盐桥遭到水分子的破坏,DNA人毛细管的内表面洗脱下来并溶入反应混合物中。此外或除此之外,DNA在热循环反应中释放出来。不管基于什么机制,将DNA物理性地混合入混合物对于反应的效能来说并非必须。
当毛细管灌注完毕之后,末端封闭好以防含在里面的液体蒸发,然后进行热循环以激活测序反应的多轮循环,从而产生用于分析的荧光标记产物。可以多种方式完成封闭和热循环,这对熟练技术人员来说显而易见。如果需要平行进行多个测序反应,实际上常常会有这种情况,实验人员可以使用高通量装置,如第09/577,199号共同未决的美国申请所公开的装置,在此将其整体引入作为参考。其所公开的装置提供了封闭多个排列成毛细管盒格式的毛细管的方法,以及在毛细管中完成含测序反应混合的热循环的方法。
测序反应完成后,通常以毛细管电泳分析的制品形式将反应产物从毛细管中排出。
一般地,将反应产物排到基片上或排入某些形式的盛液体装置中,如微量盘的孔中,从而毛细管电泳系统可以对产物取进行分析。但是,熟练的技术人员会认识到,将反应产物从反应毛细管直接排入电泳毛细管是可能的。可施加离心力、电子动力、施加正性或负性气压或领域内其它已知方法将反应产物从反应毛细管中排出来。
而且,反应产物可排到适于其它类型分析方法的基片上,如用于质谱分析的MALDI(基质辅助激光解吸/电离)或SELDI(表面强化的激源程序解吸/电离)基片。
在荧光标记的测序反应产物电泳过程中,用激光扫描毛细管中携带产物的窗口,并激发荧光团。荧光团的光发射被捕获并转化成储存在计算机内存中的强度和光频率数据。扫描和读数完成后,计算机拼装一幅代表扫描系统所检测到的所有反应产物的色谱图。用计算机软件对色谱图中的数据加以处理,将色谱图翻译以推断起始模板DNA中的核苷酸碱基。然后将序列输出存在计算机数据文件,文件位于。随机存取存储器或专门的长期存储设备中,如软盘、Zip盘、JAZ盘、硬盘、CD-ROM、计算机磁带,等等。为方便该数据的最终用户,含序列数据的计算机文件可存在远程客户端计算机可访问的计算机服务器上。当文件传输时,它表现为与通过铜或光纤电话线、有线电视线或无线电波等载体波长所携带的相关数据信号。
毛细管排空之后进行回收用于新核酸样品如要测序DNA模板的固定。回收管需要清洗除去前面有害的微量反应,包括反应产物、反应混合物组分和固定的核酸。
一般地,洗液是低离子强度的水性溶液,以便任意残留的固定核酸易于洗脱和带走。双蒸馏水是有效的。洗液可以加热以增加清洗的效力,每一清洗循环的洗涤次数及/或洗液体积可根据最大化清洗效力的需要而变化。毛细管可通过毛细管作用洗液灌注,并用与排空反应产物相同的方法排空。如果要用电动泵完成清洗,洗液必须包含一些最低浓度的离子。此外,也可用机械泵来驱动毛细管内的洗液。
也可如通常均拥有、于2000年5月23日提交的第09/577,199号共同未决的美国专利申请所公开的用机械毛细管盒清洗机完成清洗,其公开内容在此引入作为参考。
毛细管清洗装置设计成清洗排在盒内的多个毛细管的设计于第09/577,199号共同未决的美国专利申请公开,在此将其整体引入作为参考。
水洗之后,通常进行醇清洗以除去大部分痕量的水和洗液的其它组分,醇通常包含高浓度的乙醇。然后将毛细管干燥,一般将干燥气体吹过毛细管,之后就可储存或再利用了。
就某些应用来说,毛细管中基本不含来自前面反应的核酸是非常重要的。实例之一是PCR,这里原来残留的模板DNA可得到指数级的扩增,造成对新反应的污染。在这样的情况下,回收过程可包括有效破坏痕量核酸的步骤。这样的方法包括用含外切酶的溶液灌注毛细管并培育足以消化任何核酸的充足时间。其它方法包括核酸化学变性,如用强酸或强碱溶液清洗,用电离辐射照射毛细管,高温烘烤。残留核酸破坏后,通常用标准溶液清洗毛细管。
一种应用但决不是仅有的一种应用中,对将要用于高通量全新测序如发现单核苷酸多态性(SNPs)的DNA序列通常是PCR产物进行确认,将证明用毛细管盒中的毛细管进行平行处理是很有用的。就SNPs发现来说,本发明的方法和装置使“深度”测序成为可能,所谓深度测序就是对来自大量个体的相同基因或基因座进行测序,序列的不同之处鉴定存在于所测序人群中的多态性。SNPs中有一些将证明与重要的表型相关,如疾病的易患性、存在及恶化的潜能。
SNPs是约每1000个碱基中发生一次的单碱基改变,是人类基因变异最常见的形式。如果这样的多态性发生在基因的编码区或调控区,可能会改变该基因或基因产物的功能。根据基因功能所改变的程度不同,其对生物的影响可以是微不足道,或导致包括遗传性疾病在内的有害表型产生。
SNPs及其相关表型的分析在寻找已知疾病状态所涉及基因以及遗传药理学这一新领域内均非常有用。
就鉴定疾病基因这一目的来说,SNPs用作基因连接分析的标记来辅助鉴定含有强遗传性组分、负责该疾病的基因。类似地,SNPs已证明在鉴定与重要表型成正相关的基因等位变体中的改变时很有用,如对药物化合物或其它治疗方案的应答,以及疾病的易患性和恶化的潜能。
SNP分析在以患者独特基因特征为基础针对个体患者的个性化药物或其它治疗方案时也很有用。这是一个遗传药理学领域中处于快速发展的概念。例如,单个或一组多态性可以与对某一特定药物应答能力极低相关。进一步研究可显示在编码负责代射该药物的酶的基因中的多态性发生了改变,并且该改变使酶的动力学速率发生变化。结果,与野生型酶相比,它代谢该药物的速度就快得多。
因此,SNP和酶表型相关的信息为个性化护理具有该SNP的患者提供了机会。例如,如果医生可以在服用药物之前可以根据SNP分析测定该患者表达的是何种形式的酶,则可以对该患者开更高剂量的药物以补偿其更高的代谢速度,从而使该患者获得理想的治疗效果。
上述所示途径可以普及到包括影响一种药物或其它治疗方案的任意基因产物。实际上,只要具有或缺失特定的SNP与治疗结果相关,就可不必知道是与野生型相比哪个基因型改变导致了表型改变。仅凭相关性信息就足以指导医生修正治疗方案以适应于特定的患者。
因此SNP分析对于鉴定影响人类及非人类患者治疗方案的基因,以及鉴定与缺失SNP标记的患者群相比需要修正治疗方案的患者时均很有用。但是,SNP分析用途不局限于只与医疗护理相关的应用。实际上,鉴定任意生物基因中SNP与目的表型相关,对于鉴定负责某一特定表型的基因以及可导致该表型改变的基因改变均变得越来越有用。这样的信息让人们更明白特定的基因产物如何行使功能并且对这些功能加以有利的修正。
一般说来SNP分析最好是以高通量方式进行,本发明正是特别适宜于这类应用。根据所要获得的信息,从来自患者或其它类型非基因相同来源包括非人类来源在内的大量样本中分析所存在的一个或数个SNP。通常但不是绝对在所设计的研究中采用这一途径以获得特定SNP与特定表型相关的大量数据集。也经常方便地采用这一途径分析大量人类或动物患者的基因中所存在的SNPs,将此信息用于个性化个体患者的治疗方案。此外,可对从相对少数患者所获得的大量基因进行高通量SNP分析。当需要对一个患者所存在的SNP进行全面分析时,这一方法特别方便。这些信息对于在复杂的多基因病因学背景下个性化治疗方案来说可能是必需的。
正如本领域内众所周知的,不同的方法对于检测已知基因或基因片段中的SNP一来说都有用。这些技术绝大部分依赖于单个碱基改变的非直接荧光检测,更详细的说明可见“通过高通量突变检测有基因型分析技术实现大规模遗传药理学研究”,M.Shi.,ClinicalChemistry,47(2)164-172(2001),将其整体在此引入作为参考。实例包括寡核苷酸连接测定基因型分析(OLA)、微型测序、TaqManTM基因型分析、InvaderTM测定、染料标记的寡核苷酸连接、高温测序、滚动循环扩增(RCA),其更进步一的细节见“Sniper引入滚动循环扩增、用于可伸缩及高通量SNP评测的完全自动化、荧光平台”,Z.Clark和Pickering,Life Science News 6(2000),Amershampharmacia Biotech,将其整体在此引入作为参考。
检测SNPs特别有用的方法是用带荧光检测的单碱基延伸,也通称为单碱基延伸(SBE)。SBE部分地基于上述DNA测序的双脱氧终止子途径。提供用于分析的模板核酸以测定该序列是否在序列中特定位置含有一个或多个SNPs。特异性识别紧接模板中所要查询碱基5’端已知序列的引物与模板接触并通过Watson-Crick碱基配对原则结合。然后,DNA聚合酶,可包括其耐热形式,在需查询碱基处开始阅读模板链,并通过酶作用将互补的双脱氧终止子三磷酸核苷酸(ddNTP)附在引物的3’氢氧根上,ddNTP存在于反应混合物中。四种碱基A、C、G、T的每一种代表了反应混合物中存在的双脱氧终止子,四种碱基的每一种均用荧光团标记,该基团在可唯一鉴定与特定荧光相关的存在碱基的波长处发射激发光子。因为双脱氧终止子本身并不能支持DNA聚合酶引导的链延伸,当加入单个互补的标记双脱氧终止子后,延伸停止。当延伸反应完成后,用加热或化学方法将延伸引物从模板中释放出来,对其进行分析以检测与连到引物3’端的双脱氧终止子碱基相关的荧光团。部分基于其发射光谱的荧光团鉴定允许清楚地鉴定DNA聚合酶在单碱基链延伸过程中所引入的碱基,并且该碱基界定了该基因在所推断位置所存在的SNP。
按照另一实施方案,在SBE反应混合物中可根据需要及熟练技术人员的偏好包含四个ddNTP的子集而不是所有四个ddNTP。这样的ddNTP子集包括下表所列的子集。
根据熟练技术人员的知识,可利用各种技术完成荧光团的鉴定。例如,可在与DNA测序所用类似的变性胶上将单碱基延伸反应的产物可与未引入的双脱氧终止子分离开来。SBE产物用变性胶分开后,根据熟练技术人员的知识,将胶中与引物相关的荧光团用合适波长的光激发,并对发射荧光进行检测和分析。此外,在对SBE产物分析前用凝胶电泳将未引入的双脱氧核苷酸除去。
根据另一实施方案,引入荧光标记双脱氧终止子核苷酸的SBE延伸产物根据熟练技术人员的知识用荧光扩偏振(FP)进行检测。在此技术中,偏振光用于刺激荧光团的发射。未引入的荧光团很小,因而当荧光激发时发射去偏振光,而引入大得多的SBE延伸引物中的荧光团发射偏振光。因而可以优先检测荧光偏振发射来推断所导扩的特定荧光基因,从而推断引入延伸引物中的碱基。使用FP预先可以不用除去未引入的双脱氧终止子。FP用于检测SNP的更详细讨论可参见NO.6,326,605、6,310,687、6,297,018、6,187,267、6,097,025、6,071,748号美国专利,在此将其整体引入作为参考。
可按照领域内众所周知的技术人各种来源获得模板,包括但不局限于从真核细胞、原核细胞或病毒获得基因组DNA,包括质粒在内的附加型DNA,以及信使RNA或其它种类的RNA。模板可以是单链的DNA或RNA、双链的DNA或RNA或是DNA-RNA杂交链。如果模板基本上由RNA组成,则用于延伸引物的DNA聚合酶是逆转录酶,包括其耐热形式。
根据一个实施方案,模板是从基因组DNA获得的PCR产物。在该实施方案中,在进行单碱基延伸反应前,按领域内众所周知的方法用特异性识别作为PCR模板的基因组DNA的引物实施PCR反应。之后,PCR所产生的DNA片段作为SBE的模板。从基因组DNA或其它核酸所扩增的模板也可由线性扩增方法或与PCR功能相同的指数级扩增方法获得。
SBE反应通常在称为“全体积”的大反应体积中进行,其具体细节如下文实施例22所述。按照这些方法,PCR在多个亚微升反应体中使用基因组DNA模板进行以产生随后在SBE反应中所用的模板。之后,用ExoI和SAP处理PCR产物以分别降解单链DNA及过量的dNTPs。随后,取一部分PCR所产生的模板进行SBE,之后SBE产物用CIAP进行处理,然后用毛细管电泳如MegaBACETM分析。
全体积反应在总体积高至约为10、15、20、25、50、75、100或200微升的体积下进行,也可在体积低至约100、75、50、25、20、15、10或5微升的体积下进行。
尽管所述全体积方法已证明是有效的,它们也浪费了试剂及其它物质,因为需要获得高质量数据所需SBE产物量相对于全体积方法真正产生的量来说很少。另外,全体积方法虽完成PCR和SBE中各热循环步骤以及在各步之间转移流体均需要大量的时间。
相反,将本发明的方法和装置应用于SBE及其先前的步骤可有利的减少所用试剂、缩短完成酶反应所需时间交减少流体转移步骤。模板校正带来的另一优势是不需在PCR或SBE之前预先测定任何模板来源溶液中的模板浓度。
在SBE或其它SNP分析方法中使用本发明的结果是极有利地促进高通量背景下的SNP检测。
当应用于SBE及其它SNP检测技术时,本发明的部分优势在于使用本发明的毛细管可在纳升体积(也称为“微量”)反应中完成一个或多个酶反应。尤其是使用微量反应与全体积反应相比,可减少所用的试剂量,从而节省了成本。微量也缩短了反应的热循环中从一个温度转到另一温度所需时间,因为反应混合物的总量减少了,并且使用毛细管时与全体积反应所用反应管相比反应每单位体积的表面积要大。这两种效应增加了热传输的速度,从而缩短了进行整个热循环系列所需时间。最近,正如下面更详细讨论所述,模板捕获即模板在离液剂存在的条件下与毛细管内表面的可逆结合,可以允许不执行实施SBE所需的一个或多个步骤,进一步减少了实施测定相关的试剂、成本及时间。
正如各处所使用的一样,纳升体积反应可在体积高至25、50、100、250、500、750、1000、1500、2000、2500、5000或更多纳升体积下进行,也可在低至2500、2000、1500、1000、750、500、250、100、50、25、10或更少纳升体积下进行。
根据本发明的一个实施方案,溶于离液剂溶液中的模板通过毛细管作用或本文所述其它方法回吸入本发明的毛细管中,并与内表面接触,直到在约预定量的模板可逆性地结合上为止。结合完成后,按本文他处所述将离液剂中的过量模板除去,并清洗已结合的模板。进一步干燥后,通过毛细管作用或本文所述其它方法将SBE反应混合物吸入毛细管中,SBE反应混合物含完成SBE所需要的所有成分,包括缓冲液、盐、水、SBE引物、荧光标记的ddNTPs及DNA聚合酶。随后含模板和SBE反应混合物的毛细管暴露于完成SBE所需的热循环中。
根据另一实施方案,SBE模板在离液剂存在的条件下与毛细管的内表面发生可逆结合,直到结合的模板量在实施SBE后足以产生可检测的SBE产物为止,这一点由熟练技术人员来决定。也就是说,对于实现本发明的有效性来说,可逆结合于毛细管内的SBE模板量不需要预先估计。
反应完成后,SBE产物一般是如本文他处所述从毛细管中排出来,用于随后的处理,包括除去未引入的ddNTPs,例如按照本领域内已知方法用小牛小肠碱性磷酸酶(CIAP)处理。如熟练技术人员所知道的那样,CIAP处理从ddNTPs除去磷酸基团,使去磷酸化的ddNTPs不带电荷。结果是在电泳如使用MegaBACETM的过程中,处理后的ddNTPs不会为强电场诱导而移协,而该电场使带电荷的SBE产物进入筛选胶中。这一方法促进未引入的ddNTPs与SBE产物分开。
CIAP处理可以在全体积反应中,也可在微量反应中进行。全体积CIAP处理常规是在诸如每板96、384、1536或更多孔的微量反应板孔中进行。相反,微量CIAP处理是在SBE产物与CIAP反应混合物混合后在本发明的毛细管内进行,混合可在诸如微量反应板的孔中等处进行。
作为用CIAP处理SBE产物的替代方案,可以将SBE反应产物与凝胶过滤介质接触充足的时间以便将ddNTPs与SBE产物分开,从而除去未引入的ddNTPs。不需完全分开,其分开程度是否足够属于熟练技术人员的常识。凝胶过滤介质选择可保证ddNTP能进入介质的孔而SBE产物基本排除在外的介质。在此方法中,ddNTP留在全体积中,而SBE产物则留在空隙体积中。适宜于在本发明中使用的介质实例包括但不限于葡聚糖凝胶(Superdex)、Superose、聚丙烯酰胺葡聚糖(Sephacryl)及交联葡聚糖。
最后,分析SBE产物以鉴定引入的碱基。正如他处所述,作用MegaBACETM的毛细管电泳系统是一种这样的方法。与微流体平台相偶联的电泳方法也可用于解析SBE产物。此类方法的更详细讨论可参见NO.6,316,201、6,306,659、6,306,590、6,303,343、6,287,774、6,274,337、6,267,858、6,235,471、6,235,175、6,174,675、6,153,073、6,107,044、6,068,752、6,042,710、5,976,336、5,965,410、5,958,694和5,948,227美国专利,在此将其整体引入作为参考。
此外,SBE产物可用质谱技术分析,包括基质辅助激光解吸/电离(MALDI)或表面强化的激源程序解吸/电离(SELDI)。
根据另一实施方案,SBE模板可与SBE反应混合物混合后吸入本发明的毛细管中,在此情况下未进行模板校正。
根据本发明的另一实施方案,SBE的模板用PCR按照本领域内众所周知的方法制备。
PCR可以在全体积反应中完成。PCR完成后,可如下面详细描述那样对反应进行处理以除去引物和dNTPs。然后,根据一个实施方案,PCR产物与离液剂混合并用于灌注本发明的毛细管,进行SBE模板的模板校正,然后如前面所述进行延伸反应。在另一实施方案中,PCR产物处理后取一部分加到SBE反应混合物中并用于灌注本发明的毛细管,如然后如前面所述进行延伸反应。
PCR也可使用纳升体积反应在本发明的毛细管中进行,此时与前面SBE的情况类似,PCR可在PCR中所用的基因组DNA或其它PCR模板进行模板校正后开始。此外,可在毛细管灌注前将PCR模板加入PCR反应混合物中,在此情况下未进行模板校正。
PCR后,一般是如本文他处所述将反应产物从毛细管中排出来,然后如下文所述进行处理以除去引物和dNTPs。在全体积PCR的情况下,处理后的PCR产物可与离液剂混俣用于SBE模板的模板校正,或加到SBE反应混合物中。然后如本文他处所述进行延伸反应正如前面所提到的,PCR后一般是如本文他处所述将反应产物从毛细管中排出来,然后进行处理以除去过量的未引入PCR引物和dNTP,例如可使用外切核酸酶I(ExoI)之类的单链脱氧核糖核酸酶和北极虾碱性磷酸酶(SAP)之类的磷酸酶按照本领域内已知方法进行处理。PCR产物也可如SBE模板一般进行校正或直接加到SBE反应混合物中,并如前面所述在本发明的毛细管SBE中使用。
ExoI/SAP处理可以在全体积反应中,也可在微量反应中进行。全体积ExoI/SAP处理常规是在诸如每板96、384、1536或更多孔的微量反应板孔中进行。相反,微量ExoI/SAP处理是在PCR产物与ExoI/SAP反应混合物混合后在本发明的毛细管内进行,混合可在诸如微量反应板的孔中等处进行。
根据另一实施方案,PCR之后,不管它是在全体积反应还是在微量反应中完成的,都不进行PCR产物处理。相反,为了除去过量的未引入引物及dNTP,将PCR产物直接加到离液剂中,然后将该溶液灌注本发明的毛细管,直到在约预定量的模板或可产生可检测SBE产物的模板量可逆性地结合到毛细管内表面为止。之后,如本文他处所述通过清洗将过量未结合的PCR产物(即SBE模板)、引物及dNTPs除去。经过可选的干燥步骤后,如本文他处所述将SBE反应混合物吸入毛细管中,用于随后延伸反应的进行。
在使用本发明毛细管中微量反应的方法中,每一阶段可能都要使用新的毛细管。此外,来自前面一个或多相步骤的同一毛细管可以再次利用,使用前可以清洗毛细管的内表面或进行处理以除去或灭活前面步骤带来的痕量试剂、反应或沉积产物,也可不清洗或处理。清洗或处理本发明毛细管的方法在本文他处有讨论。
在一优选实施方案中,本发明的多个毛细管以排列成空间可定位阵列提供,以促进多个样品的平行高通量处理。一般地,阵列中毛细管的数量和模式以及毛细管阵列的大小与一种或多种微量反应板中孔的数量、模式和大小一致,从而毛细管阵列与板的孔相匹配,尤其是在自动化或半自动化机器人作业流程系统中更须如此。阵列通常但不绝对是矩形,也可以是圆形、三角形等。阵列中的毛细管数可包括2、4、8、12、16、24、32、48、64、96、128、192、288、384、480、576、672、768、864、960、1536个毛细管或更多数量的毛细管。将毛细管排列成选定数量、模式及大小的方法在本文他处有说明,或是为熟练技术人员所知。多个PCR及SBE反应可使用毛细管阵列、利用高通量反应装置来平行进行,例如第09/577,199号共同未决的美国申请所公开的装置,在此将其整体引入作为参考。
另一应用中,对要点样到基片上以产生微阵列的DNA序列通常是PCR产物进行确认,将证明使用毛细管盒中的毛细管进行平行处理很有用。此类微阵列在基础及应用研究中使用越来越多,通常由玻璃载玻片上的DNA斑点矩形阵列构成,每个斑点上带有序列已知的不同DNA。实验人员取出标记好的RNA或DNA样品,并检测标记核酸与点样到该阵列上的DNA之间的杂交事件。这样,实验人员可以推断标记核酸的特性及/或其部分或完整序列。
为确保使用微阵列所产生数据的完整性,所点样DNA的序列其特性是必须已知的,并且应高度可信。重排及其它样品操作过程会引入须检测的格式错误。而且,PCR常用于生成需点样的DNA。正如本领域内众所周知的那样,Taq及其它耐热聚合酶在扩增模板时会在每千个碱基中带入一定数量的错配碱基对。如果错配发生了,就必须检测出来,并将所扩增的产物丢弃。通常这需要大量与点样PCR产物相关步骤分开的处理步骤。但是,使用本发明的实施方案可以极大地提高序列测定及确认的效率。
要点样的DNA通常以预定浓度溶于含离液剂离子如硫氰酸钠的溶液中。这样溶解DNA是因为要将它以与核酸固定于毛细管内部类似的方式固定于玻璃微阵列载玻片的表面上。通常将不同的DNA-离液剂溶液等分入384孔容量微量盘的孔中储存,为点样到微阵列上预备好。点样前,用与自动化点样系统相连的机器人将此盘拾起并使之进入点样针或点样笔可同时浸入多个孔一般是12个孔的位置。
本发明可加以改变适应于对384孔多孔盘孔中的DNA取样和分析,该板与作为点样笔DNA来源的384孔多孔备用相同。显而易见的是它也可加以改变适应于从多于384孔的盘中取样。因为要测序的DNA来自于同一个要点样的样品,对不同来源DNA进行测序的相关处理步骤就省去了。这样就从根本上节省了时间和材料成本。根据本发明的此方案,玻璃毛细管以与所述盘中一行或列或多行或多列孔相同的模式和毛细管间距离在毛细管盒中排列。为了获得最大容量,将总共384个毛细管排成尺寸与盘本身相同的模式。点样之前,按照本发明的方法用DNA-离液剂(通常是硫氰酸钠)溶液灌注毛细管。当DNA样品固定和处理后,进行测序。如果发现有模板的序列不正确,点样装置的操作者就知道不点样该DNA,或者如果已经点过了,在相应斑点相杂交相关的数据就不是想要的数据,应从最终数据集中除去。
含可逆性固定核酸的其它生化反应目前的反应混合物装配可用于装配许多种类反应。用于装配PCR反应混合物的同样基本方法可加以改变适应于循环测序混合物、滚动循环扩增反应混合物、酶测定、化学反应或其它反应混合物。
分样预定量的核酸正如将会很容易就变得显而易见一般,实验人员不一定必须在进行反应时将核酸固定于毛细管内。因为各种原因,可能倾向于将固定于毛细管内表面的核酸洗脱下来,然后在另一不同的反应室中进行反应或在毛细管外用其它方式处理该核酸。在这样的情况下,可能使用毛细管作为吸管以固定的液体体积来分样预先测定的大致量核酸。为了这样做,毛细管用洗脱液灌注,该洗脱液可以基本上将所有可逆固定的核酸洗脱下来。之后,将洗脱液和核酸的溶液分样,通常分配到或分入基片中。反应混合物所转移到的基片可以是多孔微量反应板的孔,平坦基片上的位置,或引入分析芯片的孔。反应也可分样入溶液中,以进行进一步的化学或生化反应。
如果多个毛细管如前所述在盒中排列,则该盒成为多通道平行移液器,就有可能同时分样大量已校正的核酸样品。分样可以进入微量孔、芯片及其它室中,以进一步反应。另外,核酸可直接分入毛细管阵列电泳微芯片的容器中或分配到MALDI或SELDI目的地,或分配到或分入已修改成用于其它分析模式的基片。
可用不同的方法将液体从毛细管排出来或分出来。正如将为熟练技术人员所清楚的那样,这些方法不仅可用于分样洗脱的核酸溶液,也可用于将液体从灌注的毛细管除去而不管其目的是什么,如为了除去反应之后的反应产物或除去洗液。
一种将一个或多个排成盒式规格的类似毛细管的内含物分样的方法使用离心机通过离心力来分样。离心力均匀施加到毛细管盒中的所有毛细管,使毛细管独立地将其内含物分样到基片上,该基片位于流体排出毛细管的孔下面。如果基片是微量盘的孔,所分样的液体将会被离心力集中到孔底。第09/577,199号共同未决的美国申请中公开了离心机及相关转子和装盒容器的设计,在此将其整体引入作为参考。
将含在毛细管中的液体分样的第二种方法是使用气体置换装置。第09/577,199号共同未决的美国申请中公开了分样多个排成毛细管盒的毛细管中的液体的气体置换装置设计,在此将其整体引入作为参考。
此外,毛细管的内含物可直接分样到孔中或分析装置(图3E,70)如电泳芯片的样品端口(图3E,76)中。如图3E所示,此类芯片具有一组分析泳道78,流体与其各自的样品入口或端口76相通。可将多个毛细管排成盒状,使毛细管的间距与芯片中样品入口76的间距相匹配。例如16个毛细管排成平行两行8个的毛细管盒可与分析芯片中的16个孔锚定。
作为实例,图3C中所示的毛细管盒包括延伸穿过可变形长条的毛细管12。可变形长条11可单独使用或与其它此类的长条联合使用。基本成直线排列的毛细管其方向可以通过将长条11弯曲形成弧形而发生改变。图3D说明长条11发生弯曲从而使毛细管12与放在圆形模式中基片上的输入端口相匹配。然后,如果使用合适的电极排列或其它分样方法,可以将毛细管12中的液体以电子动力方式注入或从毛细管12分入分析芯片70的端口76。这可以由引入自动化样品制备系统的自动化长条移动机来完成。
毛细管盒可用气体置换或其它优选使泼溅及泡沫形成最少的分样方法进行分样。在制备好的反应混合物分样入孔76中分析之前,可在每一分析微芯片孔76中加入小量的稀释液。。毛细管分样后稀释液将稀释样品孔76中的样品。在毛细管盒中制备的亚微升体积反应混合物如DNA测序反应产物混合物,可轻易地与测序或其它分析方法的分析芯片集成。
洗脱流体优选低离子强度的水性溶液,更优选水或低离子强度缓冲洗液,该溶液的pH使核酸保持稳定和基本完整,通常是在6.5~8.5之间。本发明中倾向于使用1X浓度的TE缓冲液(10mM Tris-HCl,1mM乙二胺四乙酸(EDTA),pH8.0)和双蒸馏水或去离子水作为洗脱溶液。上述优选洗脱溶液形式的低离子强度趋向于破坏核酸和组成毛细管内表面的物质之间所形成的盐桥,确保核酸洗脱入溶液中。基他适宜于在本发明方法中使用的洗脱溶液对于本领域内的熟练技术人员来说是显而易见的。
根据本发明的方法,与玻璃毛细管内表面结合的核酸是可饱和的。在适当的条件下,有可能高度精确地控制固定在任意特定毛细管内部的核酸量。这样,如果核酸洗脱下水性溶液中并分样,就可得知溶液中核酸的浓度以及该溶液中任意特定体积中的核酸总量。例如,如果毛细管的结合能力是10ng DNA,并将其洗脱到500nl洗脱流体中,则该溶液的浓度是0.02g/L,摩尔浓度取决于该DNA分子的分子量。如果将500nl进行分样,则这一滴含10ng DNA。
正如将为熟练技术人员所清楚的那样,由于不同毛细管间存在小差别,尽管高度一致,毛细管之间可固定的和洗脱的核酸量不完全一样,甚至是相同一个管重复使用时也是这样。因为这个原因,洗脱入液脱流体的预定核酸量或质量是大致的量或质量。在此背景下,优选预先测定的大致量意为类似毛细管之间或同一毛细管重复使用,并且其它所有条件相同时,所固定或分样的质量的误差不超过10%,更优选5%,更优选2%,最优选不超过1%的误差。
通常,在特定的毛细管中固定饱和量的核酸并将全部体积分样时利用本发明的发样功能。因此,为了控制分样核酸的量和浓度,实验人员会选择具有预定结合能力和体积的毛细管。然而,正如前面所讨论,实验人员可以凭经验决定在什么条件下结合预定的非饱和量固定核酸。相应地,利用这些条件,可将非饱和的预定量核酸固定于毛细管然后将其洗脱下来,使实验人员可以随意分样任意指定量的核酸。
在两种情况下,毛细管已可逆地结合了预定量的非饱和或饱和核酸,如果实验人员使用熟练技术人员所熟悉的方法控制了从毛细管排出的核酸-洗脱流体量,那么体积的信息就允许分样精确量的核酸。例如,可用机械泵或电动泵将控制量的流体排出。
用于酶反应的高度平行亚微升系统另一方面,本发明提供了在小体积尤其是亚微升体积中,进行酶反应尤其是但不限于恒温反应的方法和装置。反应可以高度平行的方式进行,并且可轻易地与高灵敏度电泳装置对接平行进行分析,而基本上不损失反应。
酶包括通常在大规模测定中所用的酶,包括诸如胰蛋白酶、糜蛋白酶、蛋白酶K、木瓜蛋白酶、胃蛋白酶、内切蛋白酶,内切蛋白酶Glu-C、内切蛋白酶Arg-C、内切蛋白酶Lys-C、内切蛋白酶Pro-C、内切蛋白酶Asp-N、V8蛋白酶的蛋白酶,诸如如β-半乳糖苷酶的糖苷酶,脂肪酶,诸如葡萄糖氧化酶、胆固醇氧化酶、乳酸单加氧酶的氧化酶和加氧酶,包括DNA连接酶和RNA连接酶在内的连接酶,甲基化酶,诸如DNA依赖性DNA聚合酶、末端转移酶、RNA依赖性DNA聚合酶和DNA依赖性RNA聚合酶之类的聚合酶,磷酸酶,激酶,DNA回旋酶,拓扑异构酶,包括外切核酸酶、S1外切核酸酶或绿豆核酸酶在内的核酸酶,诸如限制性内切酶之类的内切核酸酶,其它核酸酶和核糖核酸酶及脲酶。
亚微升体积的蛋白质反应并不仅限于使用酶及其催化的化学反应。例如,蛋白质具有与其它物质结合的能力,因而可以从溶液中捕获它们。例如,蛋白质可以是抗体或其抗原结合片段,如IgG、IgE、IgM;G蛋白和A蛋白;以及链霉抗生素蛋白,在此仅举几个例子。
当蛋白质是酶时,底物由所选酶决定并且随酶相应地改变,包括DNA和RNA等核酸、碳水化合物、脂类及其它生物学及化学底物。
对于此处所说明的目的来说,在此处使用胰蛋白酶的亚微升蛋白酶测定来说明这样的系统在蛋白组研究及作为药物发现平始的用途,其中胰蛋白酶是在质谱肽映射和测序常用的序列特异性蛋白水解酶。使用Asp-N内切蛋白酶作为所用酶的亚微升蛋白酶测定来说明这样的系统在生物测定和药物发现研究中的用作。正如将会清楚的那样,其它酶实际上其它非催化性的蛋白质可在此多元亚微升反应系统中使用。
小体积同质性测定在第一个实施方案中,具有亚微升体积的毛细管(或室)用作小体积酶测定的反应室,可以盒或阵列方式有效地使用以便在高度平行的方式下完成这样的测定而在分析前不造成反试剂或反应的明显损失。
典型地毛细管内部容积不超过5μl,常常不超过25μl,经常不超过1μl,典型的是不超过750nL、5000nL、400nL,甚至不超过约250nL、200nL,甚或不超过100nL。
例如,实施例26说明了胰蛋白酶消化同质溶液中的细胞色素C。制备各种胰蛋白酶-蛋白比例的胰蛋白酶和细胞色素C混合物,细胞色素C的浓度固定在1mg/mL。将混合物等分,通过毛细管作用吸入毛细管盒的毛细管中,于37℃培育过夜,使蛋白酶反应完全。然后将消化合物平行转到96孔微量反应板,其每个孔中均含5-异硫氰酸荧光素(FITC)标记溶液。在避光中反应后,所得混合物在MegaBACETM1000(Amersham Biosciences,Piscataway,NJ)上进行毛细管电泳(CE)分离,MegaBACETM是高分辨率及高通量的设备。
实施例27说明了Asp-N的同质测定,还说明了此方法的多元化能力。另外,实施例27说明分析利用扫描仪平行进行。
简单地说,肽Cy 5Q-YVADAPVKCy3于测定缓冲液中重构,然后与各种浓度的Asp-N内切蛋白酶混合。将500nL混合物等分液由毛细管盒系统经毛细管作用而捕获,于室温培育使反应完成。然后将消化混合物排入384孔干净扫描板里,其中每孔含10μL缓冲液。所得混合物在TyphoonTM(Amersham Biosciences,Piscataway,NJ)上扫描以检测Cy3发射。Cy3发射的信号强度随着Asp-N浓度升高而呈线性增强,浓度可达每500nL反应含50pg。超过此浓度Cy3的信号强度继续随Asp-N浓度升高而增强,可达每500nL反应含180pg(图36)。
多元化毛细管反应中珠子固定的酶在第二个实施方案中,酶固定在颗粒或珠子上,尺寸可调节以便与诸如毛细管盒中存在的毛细管或通道内部吻合,如图3所示的毛细管盒。
优选的是,毛细管或通道内部体积小,理想的是约1~1000纳升(nl),更理想的是约10~500nl,最理想的是约100~500nl;珠子的尺寸其本身灌注不超过毛细管容积的75%,典型的是不超过50%,常常不超过40%、30%、20%,甚或小到毛细管容积的10%。经常是珠子或颗粒足够小,使得它可在反应容积内单独地运动,因此这样的尺寸适合于仅仅通过毛细管作用就可摄入毛细管中。
适合于酶表面固定的珠子是已知的,可通过商业途径从各供应商处获得,如、Dynal、Miltenyi Biotec及其它供应商。
有帮助的是将珠子为磁性或超磁性的,也可衍生成允许轻易粘附蛋白质或其部分。
另外,有帮助的是珠子可包括闪烁剂,可以进行闪烁亲近测定(Amersham Biosciences,Inc.,Piscataway,NJ)。在此类测定中,聚合珠子含刺激后可发光的闪烁剂,刺激仅在目的放射标记分子与珠子表面结后发生。
酶可固定在珠子的外表面,如果珠子是多孔的并且孔的尺寸足够大可允许醇的底物随酶扩散进入珠子本身内部。
在下面实施例进一步说明的一组实验中,使用固定在磁珠表面的胰蛋白酶。小磁珠的引入使得不再需要在分析前将酶与反应混合物分开,使蛋白分解酶带来的污染降到最低,并且为靶分子的最佳利用度提供了每单位体积的高结合表面面积。将链霉抗生素蛋白包被的磁珠M280(Dynal,Oslo,Norway)与生物素共轭的胰蛋白酶(Sigma,St.Louis,MO)一起培育,制备磁珠。用毛细管盒将这些固定了胰蛋白酶的磁珠与细胞色素C混合,进行胰酶消化。在恒温器中于37℃培育过夜后,将消化混合物与磁珠分开,然后用FITC荧光染料标记。所得蛋白片段用MegaBACETM1000(Amersham Biosciences,piscataway,NJ)分析。
细胞色素C的胰蛋白酶消化产物在MegaBACETM上的毛细管电泳分离显示,从两种途径得到的肽特征一致并可再现。来自毛细管反应的细胞色素C消化物的代表性电泳图谱之一如图31B所示。
纳米级酶反应系统提供了优于全体积反应系统的独特优势。小反应体积(纳升级)极大地节省了所需的样品量(皮摩尔级)、试剂以及样品制备时间。也提供了增强的反应灵敏度。协同多元化的方式使得将其整合入高通量分析和生物分子鉴定的全自动化系统中成为可能,也可以手动方式使用。所有这些均转化成每一次测定的运转时间缩短,所耗试剂和样品减少,最终从根本上节省了成本。
在酶反应的反应室中固定蛋白在第三个实施方案中,酶固定在反应室的内表面,反应室通常是具有亚微升体积的通道或毛细管。
简单地吸附到相对疏水的固相上即可实现酶的非特异性固定。酶的被动吸附是通过其暴露的疏水位点完成的。但是,此类过程并不完全是常规的,常需经过试验或错误后才能发现结合的最佳条件。通过多个氨基酸基团结合于固相的酶具有活性位点变形从而反应性降低的危险。
相应的,通常需要用特定官能团修饰粘附表面以固定酶分子。
在一种途径中,用氨基烷基硅烷试剂硅烷化使表面具有氨基的功能,随后多种亲和配体可粘附与之粘附。
这样,诸如图3中及前面所述或具有小体积的基他类型反应室之类的毛细管盒毛细管,可用3-氨基丙基三乙氧基甲硅烷处理,然后用N-琥珀酰亚胺基-3-(2-吡啶基二硫基)丙酸酯处理。吡啶基二硫基官能团通过特异的-S-S-及-SH交换反应提供了结合诸如酶之类的蛋白的便捷途径。而且,如果需要可通过加入过量硫代吡啶酮(硫代吡啶酮)将固定的酶释放出来,使衍生表面再生用于固定胰蛋白酶以确保高度酶反应性。
另一表面固定方法基于特异性链霉抗生素蛋白-生物素反应。链霉抗生素蛋白修饰可以使该表面结合生物素化的酶。在此方法中,毛细管盒可以用3-氨基丙基三乙氧基甲硅烷等衍生化,然后与双官能连接子如双琥珀亚胺酰辛二酸酯反应,该连接子反过来可固定链霉抗生素蛋白;从而使链霉抗生素蛋白可将任意生物素化的酶与反应室(典型地是毛细管)内表面结合。如果酶在独特的位点用生物素化反应,例如通过酶生物素化反应在将生物素结合位点引入酶中,那么高亲和力、高特异性的链霉抗生素蛋白与生物素相互作用使毛细管内表面上的酶朝向同一方向。
这些蛋白质固定技术提供了高表面反应性和最少的非特异性结合。另外,正如下文实施例中进一步说明的那样,我们已发现用此类方法固定的蛋白质即使在完成反应之后仍保持固定及其功能;因此毛细管可连续用于大量反应而不必再补充酶。
也可利用其它表面固定方法。与γ-缩水甘油基丙基甲硅烷反应将环氧乙烷引入固相,使该固相表面可在赖氨酸位点偶联酶。这一修饰预期可提供更多的疏水表面以减少非特异性蛋白质摄取。用表面活化水凝胶共轭酶也是另一种生成固定酶表面的便捷方法(Caldwell,Carlsson和Li,NO.5,516,703号美国专利)。此方法的优势之一是它提供了兼容蛋白质的环境和可再利用的表面。
为了评估上述方案所固定酶的反应性,将一模型蛋白、细胞色素C与用胰蛋白酶包被的毛细管盒毛细管接触,完成蛋白质消化反应。反应于37℃进行过夜。然后用异硫氰酸荧光素(FITC)标记蛋白质片段,并用MegaBACETM1000仪器分析。通过非特异性固定用胰蛋白酶包被的毛细管盒用作对照。
对于特定的固定胰蛋白酶盒来说,在2周的周期内进行三次蛋白质消化反应。每一次消化反应中使用新鲜的细胞色素C,实验间隙固定胰蛋白毛细管盒于4℃储存于0.15M的磷酸盐缓冲液中。从MegaBACETM获得的毛细管电泳分离结果说明所有这些处理过毛细管盒中的毛细管经过三次实验后其肽图谱相同。实验1、实验2和实验3的代表性电泳图谱分别如图32、33和34所示。相反,对照毛细管盒仅在第一次吸附表现出一些蛋白质消化,在第二次或第三次吸附时没有蛋白质消化发生。结果是这样吸附的酶不具备进行重复消化反应的有效能力。使用高效液相色谱(HPLC)进一步鉴定蛋白消化物。代表性HPLC色谱图如图35所示。在共价包被的毛细管盒上所得到的蛋白质消化物其肽特征与文献结果一致(Neue等,HPLC柱理论、技术及应用,VCH出版社,1997)。
实施例下面的实施例说明了本发明方法和装置的用途,是许多不同类型、可用所公开方法完成的生化或酶反应代表。这些反应包括1)染料-引物DNA测序;2)染料-终止子DNA测序;3)PCR扩增;4)PCR扩增,酶纯化及DNA测序;以及5)酶反应。下面的实施例以演示的方式提供,而不构成限制。
实施例1用毛细管电泳分析的染料-引物DNA测序染料-引物DNA测序反应在毛细管盒中进行,其中毛细管盒由96个长2.8cm、I.D.为150μm、O.D.为360μm的未包被熔融石英毛细管组成。用与ddT、ddA、ddC和ddG终止反应相对应的发射特异性引物扩增模板DNA来完成染料-引物DNA测序反应。模板扩增作为单个反应在每个毛细管中进行,并汇总入公共的孔中,进行反应后处理和分析。
颜色特异性的引物基于M13-40正向引物(5’-FAM-GTTTTCCCAGT*CACGACG-3’),同时5-羧基荧光素(FAM)作为供体染料,终止特异性氟粘至指示胸腺嘧啶(T*)上作为接受体染料。该胸腺嘧啶在ddC终止的反应中用FAM标记,在ddC终止的反应(C-FAM)中用FAM标记,在ddA反应(A-REG)中用6-羧基罗丹明标记,在ddG反应(G-TMR)中用N,N,N’,N’-四甲基-5-羧基罗丹明标记,在ddT反应(T-ROX)中用5-羧基-X-罗丹明标记。将65μL反应缓冲液(220mMTris-HCl,pH9.5,33.2mM MgCl2)、100μL染料-引物溶液(或1μMT-ROX,1μM G-TMR,0.5μM A-REQ,或0.5μMC-FAM)、100μL相应的脱氧及双脱氧核苷酸混合物(0.94mM dATP、dCTP、dTTP、7-去氮杂-dGTP,和3.1μM双脱氧核苷酸)、10μL酶(32单位/LThermoSequenase)和225μL过滤去离子水合在起,从而制备100次染料-引物测序反应的主要基质。在与模板DNA混合前,将溶液等分入96孔试剂板中。普通的混合方案需要使用两个毛细管盒和384孔“混合板”。第一毛细管盒(传输盒)浸入模板DNA溶液(20ng/μL M13mp18)中,然后倒置于384孔“混合板”上面,毛细管的短端插入孔中。倒置传输盒和混合板放入台式离心机中。放入平衡板使转子平衡,于3,000G离心5秒。离心统一将传输盒的内含物分入384孔板的各孔中。离心后,传输盒转入毛细管盒清洗机410进行清洗,混合板在随后进行离心、加入反应试剂。
加入反应试剂时,将第二毛细管盒(反应盒)浸入含测序试剂(按前面所述制备),并倒置于同一384孔板的相同孔中。将反应盒和混合板放入离心机中,于3,000G离心5秒,从离心机内移开。此时每孔含500nL模板DNA和500nL测序试剂,形成最终的反应混合物。然后将第二毛细管盒(用于加入试剂)浸入此混合板中的1μL混合物,使反应盒灌注500nL。
毛细管盒插入如图7A-C中所示基于气体的热循环仪内室中,在这里将毛细管末端压着可变形膜264a和264b使毛细管片段末端封闭。95℃2秒、55℃2秒,72℃60秒,进行30个循环,然后打开热循环仪,使毛细管末端与可变形膜脱离接触。取出毛细管盒,放到96孔“储存板”上,毛细管的短端插入孔中。将毛细管盒和混合板与平衡板一起放入离心机中。将反应产物通过离心力(~2500G)分配到含40μL 80%异丙醇的微量反应板中。经过初步的反应后,如前所述清洗毛细管。在四个单个的毛细管盒中完成四种染料-引物反应后将四组产物汇入96孔储存微量反应板的孔内,然后于3000G离心30分钟。温和反向旋转将醇倒出,样品重悬于5μL ddH2O中,用于电动注射和用MegaBACETM毛细管阵列电泳。
DNA测序片段的分析用MegaBACETM进行,它是一种96个毛细管阵列电泳分析仪器(Amersham Biosciences,Sunnyvale,CA),使用扫描共聚焦激光诱导的荧光检测。分离在长62cm、I.D.75μm、O.D.200μm、工作分离距离40cm的熔融石英玻璃毛细管中进行。将乙烯基团与毛细管表面偶合并进行丙烯酰胺多聚化,从而减少电渗流。毛细管用3%线形聚丙烯酰胺(LPA)(MegaBACETMLong Read Matrix,Amersham life sciences,Piscataway,NJ)新鲜溶液灌注,此溶液在高压入从正极室穿过毛细管进入负极室中96孔缓冲液板的各孔中。每孔用100μL Tris-TAPS工作缓冲液(30mM Tris,100mM TAPS,1mM EDTA,pH8.0)灌注。基质平衡20分钟,然后于180V/cm预电泳5分钟。样品注射前,负极毛细管末端和电极用双蒸馏水(ddH20)漂洗,以便在样品注射前除去残留的LPA。
DNA测序样品按照设定条件以恒定电压电动注射;对于500nL样品来说优选的一个注射条件是于2kV实际电压下注射40秒。注射后,毛细管末端用水漂洗,将缓冲板放入负极室中,开始电泳。典型的分离是于8kV进行120分钟。利用LabBench软件(Amersham Biosciences,Sunnyvale,CA)完成仪器原电脑控制自动化和数据采集。根据要分析的反应混合物设定具体的注射和运转条件。
用于亚微升染料-引物循环反应测序的所述方法其再现性如图9所示。此柱图显示了样品在不同阅读长度的百分率,表明该方法可高度再现。所测序的DNA插入片段有80%以上的阅读长度超过600碱基。总体来说,该板96个样品产出55,000个高质量的“Phred 20”碱基,平均阅读长度为605个碱基。
实施例2用毛细管电泳芯片分析的染料-引物DNA测序在另一分析实施例中,相同毛细管盒中完成的染料-引物反应直接注入16通道“基于芯片”的微型化分析仪进行分析,此分析仪的详细说明见S.Liu,H.Ren,Q.Cao,D.J.Roach,R.t.Loder Jr.,T.m.Armstrong,Q.Mao,I.Blaga,D.L.Barker和S.B.Jovanovich,Proc.Natl.Acad.Sci.USA,5-00。该16-通道芯片这样形成将两个玻璃晶片结合起来,通过标准的微型化制作方法在上面晶片固定50μm深×100μm宽的通道。固定模式含有两组8通道的组合,每一组合有一个公用的正极储蓄池。16个负极储蓄池和16个样品及16个废品储蓄池一样,以4.5mm的间距均匀排成一条线。钻孔机穿过顶部固定晶片形成洞,从而形成储蓄池。将通道从连接主要分离通道的样品及废品储蓄池偏移,形成16个长250μm的成对T注射器。在检测区,相邻通道(中心对中心)的距离是600μm。两个对准的洞用于将芯片与检测器对齐。
在此实施例中,由ddT终止的染料-引物反应按所述完成,然后分入含1.5μL ddH2O的微芯片样品孔中。分别向废品及负极储蓄池施加50V和10V电压,通常是60秒,同时样品及正极储蓄池接地,以此完成样品的注射。样品注射后,立即向正极储蓄池施加2,000伏、向样品及废品储蓄池施加140伏电压,将负极储蓄池接地,从而完成分离。相应的分离场强为ca.227V/cm。对激光所诱导的荧光进行采集、数字化,并加工成如图10所示的电泳图谱。该电泳图谱论证了微芯片分析在所细毛细管盒系统中完成的反应。
实施例3醇沉淀纯化的染料终止子循环测序使用毛细管盒系统并在毛细管电泳前用醇沉淀进行纯化论证了染料-终止子循环测序。在此实施例中,将400μL测序试剂(Dynamic ET终止子试剂盒,Amersham Pharmacia Biotech,Part 81600)与100μL的5pmol/μL M13-28正向引物(5’-TGT AAA ACG ACG GCC AGT-3’)混合,以此制备测序混合物。模板DNA与测序试剂的混合按实施例1中所述一系列步骤完成,使用传输盒用于将500nL DNA样品和反应盒将500nL测序试剂从试剂板转到混合板的孔中。用模板/试剂混合物通过毛细管作用灌注同一反应盒。
将毛细管盒转到基于气体的热循环仪中,在这里毛细管在热循环仪内的可变形膜间封闭。热循环由95℃2秒、55℃2秒,60℃60秒30个循环完成。热循环之后,将毛细管盒从柱形室移走,用离心力(3000G)将毛细管内含物分入含40μL 80%乙醇的96孔板中。样品于3,000G离心30分钟。温和反向旋转将醇倒出,样品重悬于5μL ddH2O中,用于电动注射和用MegaBACETM毛细管阵列电泳。醇沉淀清洗染料-终止反应、该技术的再现性以及“真实世界”的应用以成功百分率时阅读长度的柱状图于图11中显示。图11说明来自小鼠细菌人造染色体亚克隆文库的M13亚克隆插入片段具有优异的阅读长度和成功率。
实施例4大小排斥纯化的染料-终止子循环测序在另一实施例中,染料-终止子循环测序如实施例3所述在500nL的毛细管中完成,将反应产物用离心力分入15μL ddH2O中。将15μL样品转到含45μL含水Sephadex G-50的过滤板中。样品于910G离心5分钟,通过交联葡聚糖基质,液体物质收集到一个干净的注射板中。样品不经进一步的脱水或处理就电动注入MegaBACETM。对于16个样品来说,获得增均650个碱基的阅读长度论证了用大小排斥纯化亚微升染料-终止子循环测序的相容性。
实施例5质粒插入DNA的PCR扩增此技术使用用于插入DNA(如来自DNA文库的亚克隆插入体)的PCR扩增的所公开系统。将5μL 10μM的M13-40正向引物(5’GTT TTCCCA GTC ACG AC3’)及5μL 10μM的M13-40反向引物(5’GGA TAA CAATTT CAC ACA GG3’)与25μL 10X GeneAmp缓冲液、15μL 25mM MgCl2、5μL AmpliTaq Gold、2.5μL 1mg/mL牛血清白蛋白(BSA)和67.5μLddH2O混合,制备PCR反应混合物。此混合物等分入16个0.20mL试管中。
用所述双毛细管盒及混合板方法将模板DNA与PCR混合物混合,开始反应。传输盒浸入亚克降文库的甘油原种液中,并通过离心力分入384孔板的孔中。第二“反应盒”用于将500nL PCR混合物通过离心力转到相同的孔中。然后反应盒的毛细管浸入模板DNA和PCR试剂的组合混合物中,通过毛细管作用灌注毛细管。将毛细管放入循环室中,95℃12分钟激活,然后64℃4.5分钟、95℃5秒30个循环,以此完成扩增。
PCR产物用琼脂糖凝胶电泳分析,并与于0.2mL试管中所完成全体积(25μL)扩增反应的同一亚克隆比较。将纳米级毛细管盒样品通过离心力分入4.5μL ddH2O中。用小体积移液器人工转移相等体积的全体积反应等分液。每5μL样品中加入1μL 6X上样染料,并将样品定量转到琼脂糖凝胶的孔中。使用0.7%琼脂糖凝胶和pH8.0的1X Tris-乙酸-EDTA-缓冲液进行琼脂糖凝胶。样品以15V/cm分离40分钟,用Sybr Green II(Molecular Probes,Eugene,OR)染色,使用二维荧光扫描仪(Fluor Imager,Amersham Biosciences,Sunnyvale,CA)成像。所扫描的凝胶图像如图12A和12B所示。可以看得出来全体积制备的样品(图12A)和500nL体积制备的样品(图12B)具有相同的分子量分布。该实施例表明纳米级样品制备可用于PCR反应,并且产物可用诸如琼脂糖凝胶电泳之类的传统大规模分析方法分析。
实施例6PCR扩增和循环测序使用本发明制备循环测序样品的优选模式之一是在毛细管盒及相关设备中制备纳米级PCR样品,完成大规模ExoI/SAP反应,并在毛细管盒及相关设备中完成循环测序。用甘油原种亚克隆进行PCR扩增来论证用于DNA测序的纳米级PCR模板制备。如实施例5所示,甘油原种亚克隆在毛细管盒及相关设备中进行PCR扩增。PCR扩增后,毛细管的内含物通过离心力分入含4.5μL 7.5mU北极虾碱性磷酸酶及37.5mU外切核酸酶I(ExoI)的96孔板孔中。PCR产物及ExoI/SAP溶液可在37℃培育5分钟以消化不引入的引物并使未引入的核苷酸去磷酸。经过初始的培育后,将溶液于72℃加热15分钟使酶灭活。
ExoI/SAP处理过的PCR产物用传输毛细管盒及离心分样方法等分入新鲜的384孔混合板中。使用另一个毛细管盒、反应盒和离心分样方法将等量的等分染料终止子测序试剂加入500nL纯化PCR产物中。然后将反应盒浸入1μL反应混合物中,使反应盒的毛细管得以灌注。按照实施例3扩增模板,按所述方法分入40μL 80%乙醇中并纯化。图13显示了来自用甘油原种溶液进行纳米级PCR扩增和纳米级循环测序所得模板、称为测序电泳图谱6个碱基部分。通过毛细管盒中进行PCR并随后将反应混合物转到微量反应板中,本发明可以实现从纳米级(少于1μL体积)向大于纳米级反应体积的过渡。
实施例7在亚微升毛细管盒中进行恒温反应用β-半乳糖苷酶将β-D-β-半乳糖苷酶水解成携带荧光之试卤灵的荧光酶测定来说明所述系统在进行酶反应中的使用。β-半乳糖苷酶催化的试卤灵-β-D-β-半乳糖苷酶(RBG)水解在96毛细管盒的毛细管内中进行,对照组为在全体积反应中用β-Gal水解RBG。
将5mL缓冲液(100mM Tris-HCl、20mM KCl和2mM MgCl2)加到5mg RBG,用力涡旋,将溶液经0.4微米滤器过滤,然后加入等体积缓冲液,制备成35μM的RBG原种液。然后从原种液制备RBG等稀释曲线。在每个0.20mL试管中制备10μL RBG溶液中加入200μg β-半乳糖苷酶,简单混合后通过毛细管作用灌注进毛细管盒中。将毛细管盒在气体循环仪中于37℃放置2分钟,然后移开,将其内含物离心出毛细管进入含5μL碳酸钠的384孔扫描板中。然后扫描板的孔用50μL ddH2O灌注。0.2mL试管于37℃培育平行2分钟,加入1M碳酸钠终止全体积反应。在0.2mL试管中完成的酶反应等分物作为对照加入扫描板中。
也可简单地用20μg/mL的β-半乳糖苷酶溶液灌注毛细管盒使之与毛细管表面结合,然后用所述盒清洗管除去过量的液体并干燥毛细管盒,从而论证β-半乳糖苷酶的固相捕获。β-半乳糖苷酶结合后,毛细管用RBG溶液通过毛细管作用灌注。于37℃反应2分钟,然后分入1M碳酸钠,用水在扫描板中稀释,进行分析。
一旦所有三组反应(全体积、毛细管盒及带固相捕获的毛细管盒)加入到扫描板中,该板就用荧光板阅读仪(Typhoon,AmershamBiosiences,Sunnyvale,CA)。图13概括了在0.2mL试管中完成的标准曲线结果(试管rxn),在不带固相捕获毛细管盒中完成的反应(毛细管反应)及在带固相捕获毛细管盒中完成的反应(结合毛细管反应)。图14显示了预测信号对试管反应所用底物浓度,和用于在毛细管盒中及毛细管结合β-半乳糖苷酶测定所进行预混合酶反应的信号数据点。
该实施例用于说明所述系统用于实施一定范围内通用酶活性及抑制测定的相容性。另外,它说明固相捕获可用于蛋白、酶以及DNA。最后,它表明所述系统可应用于恒温反应。
实施例8模板纯化该实施例说明本发明的方法可用纯化含干扰测序反应污染物的模板DNA并获得高质量测序数据的效率。
使用与熔融石英玻璃毛细管内表面直接可逆结合所产生的PCR产物模板捕获纯化物作为DNA测序的模板。用ET染料-终止子循环测序方法在内径150μm的毛细管中进行500nl体积的测序反应,使用2kV、30秒注射的条件在MegaBACETM上分析。图17A显示了测序PCR产物与反应混合物在测序前的结果。图17B显示了先将PCR模板与硫氰酸钠混合,将DNA与毛细管内表面结合,用80%乙醇洗涤DNA,然后进行测序。
实施例9M13、质粒及PCR产物DNA的模板规格化作用此实施例和下面几个实施例一样,说明本发明方法在规格化直接、可逆固定于毛细管内的核酸量时的用处及效率。
图18表示经过模板捕获方案后保留的DNA量。对于M13(II)、质粒(II)及PCR产物(II)来说,结合DNA的量稳定地保持在40ng起始模板以上。
M13mp18和PUC19 DNA进很限制性消化以分别产生线形单链及线形双链DNA,制备模板DNA。这些模板DNA,与800bp的PCR产物(标准扩增条件)一起用[γ-32p]ATP和T4聚核苷酸激酶进行32P标记。标记好的DNA种入相同类型的未标记模板中,生成种入DNA的校正曲线。将原种DNA与10M硫氰酸钠混合完成模板结合,上样到500nl熔融石英玻璃毛细管中。培育10分钟后用80%乙醇洗涤,将毛细管置入闪烁液中定量。图18显示了三种来源模板DNA的明确规格化。
实施例10对阅读长度的模板捕获规格化作用图19显示阅读长度对DNA预先与测序试剂所制备样品(II)与模板捕获所制备样品(II)比较所用起始DNA量的曲线。模板捕获样品所获得几近相同的阅读长度使其规格化作明非常醒目,而对于预混合的样品来说,模板过量及阅读长度缩短在超过20ng起始DNA时发生。
将原种DNA与10M硫氰酸钠混合完成模板结合,上样到500nl熔融石英玻璃毛细管中。培育10分钟后用80%乙醇洗涤,毛细管用预先与M13-40正向测序引物混合的ET终止子灌注。制备10μl体积的预混合反应试剂,上样到干净的样品制备毛细管中。如前所述进行基于气体的循环测序,然后进行乙醇沉淀,在2kV、30秒注射及8kV、120分钟运转时间条件下进行MegaBACETM分析。
实施例11具有规格化的模板捕获聚合酶链反应模板结合了指定量的起始M13mp18后进行PCR反应。使用M12-100正向引物及M13-400反向引物于500nl毛细管盒中,在95℃10秒、55℃10秒、72℃120秒条件下进行标准PCR扩增反应。反应产物通过离心力分入上样缓冲液中,并转到1.5%琼脂糖凝胶上。产物用SYBR绿色染料沟色,并用荧光成像装置照像,如图20所示。
实施例12模板捕获对峰高及迁移时间的影响与预混合样品峰高和迁移时间的规格化作用模板捕获对峰高和迁移时间的规格化作用。图21表示随模板浓度升高所获得的相对信号强度,浓度升高由峰79、峰308及峰604的信号强度(ddT终止峰在电泳色谱中的早、中、晚)表示。峰强度升到40ng/μl后停止上升,确认峰高规格化作用及模板捕获技术的包和水平。各浓度第一个峰的迁移时间相对一致。
预混合样品的峰高和迁移时间。图22表示随模板浓度升高所获得的相对信号强度,因为测序样品过量而达到最大值。DNA样品过量使电动注射受到抑制,在样品运转是流量减少,从而使样品经过毛细管的迁移时间变长。
实施例13来自甘油原种克隆的纳米级直接循环测序如果许多涉及从细菌中所克隆DNA制备测序样品的步骤中有些可以省略,则可以简化DNA测序的样品制备。一般地,对于毛细管电泳分析来说,细菌培养并裂解,然后进行PCR扩增,进行ExoI/SAP净化后进行循环测序。本发明通过从甘油原种克隆直接测序提供了简化流程的方法。将甘油原种克隆与等量的10M NaSCN汇入96通道的500nl毛细管盒中,在基于气体的热循环仪中于60℃结合5分钟,该循环仪由第09/577,199号共同未决的美国申请所公开,在此将其整体引入作为参考。用80%乙醇漂洗毛细管盒,然后在毛细管盒清洗机中用流动的氮气干燥,该清洗机由第09/577,199号共同未决的美国申请所公开。循环方案与前述实施例1中ET终止子所用相同。样品用乙醇沉淀,通过离心(3320G于4℃离心30分钟)分入含80%乙醇的微量反应板中。倒出后,于50G反向旋转30秒,除去乙醇,然后将样品重悬于5μl水中。将样品在2kV、30秒条件下注射入MegaBACETM中,于8kV分离120分钟。数据用序列分析家(Sequence Analyzer)软件(AmershamBiosciences)分析并加以处理以测定称为Phred20碱基的评分。图23A和B显示了用此方法所获得的、Phred评分为561碱基的轨迹。此实施例说明本发明在从冷冻细菌甘油原种直接测序的应用。对于熟练技术人员来说显而易见的是此方法可应用于琼脂板或类似固定培养介质上所培养细菌的测序,而不用考虑该板是新鲜的还是干燥的。
实施例14核酸纳米级单碱基延伸反应的基型分析本发明可应用于纳米级基因型分析反应。
单碱基延伸(SBE)反应在96通道毛细管盒中进行。单碱基延伸分析包括将所推断碱基在接到DNA引物之前即终止的单碱基延伸。制备含5ng/μl基因组DNA、1μM正向及反向引物、缓冲液、MgCl2及AmpliTaq GOLD的25μl PCR反应。PCR循环于96℃保持12分钟,94℃20秒、60℃20秒及72℃30秒进行35个循环,然后72℃2分钟。在25μl PCR产物中加入9单位SAP及45单位Exo I实施Exo I/SAP净化反应。
反应于37℃培育45分钟,然后于95℃加热15分钟使Exo I/SAP酶灭活。
对于全体积对照反应来说,将含荧光标记双脱氧终止子、DNA聚合酶、缓冲溶液及1μl 2μM的引物;加入ExoI/SAP处理后的PCR产物中。对500nl毛细管盒中的反应来说,通过毛细管作用将样品上样。
96℃10秒、50℃5秒及60℃30秒进行25个循环完成单碱基延伸反应。全体积对照在MJ Resarch tetrads(一种热循环仪器)中完成热循环,而毛细管盒样品的热循环在第09/577,199号共同未结美国申请所公开的气体热循环仪中完成,在此将其整体引入作为参考。样品分入水中并注射入MegaBACETM进行分析。
图24说明基于毛细管的反应可以正确地鉴定单核苷酸多态性。轨迹1、3及4由推断碱基处纯合的样品获得。轨迹2由推断碱基处杂合的样品获得,并说明等位基因多态性可以用纳米级反应检测。信号与从全体积反应所获得信号基本相同。
从PCR到SBE的整个过程均用毛细管完成。
在该纳米级单碱基延伸反应的改进形式中使用了本申请中所述的毛细管模板捕获,并得到了更好的结果。
对于熟练技术从员来说也显而易见的是,利用逆转录酶及荧光标记核糖核苷酸的信使RNA单碱基延伸可以使基因型分析时作用mRNA作为基因组DNA的替代选择。
实施例15扩增片段长度多态性的纳米级基因型分析本发明的方法可用于纳升体积内完成AFLPs(扩增片段长度多态性)。为了进行AFLP反应,用成对的限制酶消化基因组DNA。将片段与连接子相连并在一定方向上扩增到一定长度,长度由所用两种限制酶决定,或者使用简并引物直接用PCR扩增。用毛细管电泳分析所扩增片段。AFLP分析用于使用可变片段及不变片段产生基因组的一个表征,也称为扩增子。扩增子用于可用序列或标记记物信息很少时评估生物群的多样性或制作生物的基因组图谱。
实施例16直接显示分析的纳米级基因型分析本发明的方法可用于在纳升体积内进行直接显示分析。为了进行直接显示分析反应,用成对限制酶消化互补DNA。将片段与连接子相连并在一定方向上扩增到一定长度,长度由所用两种限制酶决定,或者使用简并引物直接用PCR扩增。用毛细管电泳分析所扩增片段。直接显示分析用于使用可变片段及不变片段产生transcriptosome的一个表征。直接显示分析用于评估生物间表达水平的定量变化或由于环境或生理影响所致的差异。
实施例17微卫星分析的纳米级基因型分析本发明的方法可用于在纳米级体积内进行微卫星分析从而完成基因型分析。为了进行微卫星分析的基因型分析,用诸如PE AppliedBiosystems Linkage Mapping Sets之类的标记平板进行基因组DNA的PCR扩增。例如,96份人类样品用四色分析在约30分钟内对12种基因型平板进行分析。其中三各颜色用于四组引物中,第四种颜色作为内标。
PCR的制备及热循环按引物平板制造商所推荐的进行。
聚合酶链反应混合物的实例之一如下
引物混合物同时含有正向及反向引物,每一引物的终浓度为5μM。热循环仪程序的实例之一如下
汇集。
PCR样品塔板封闭后于-20℃保存。
开始时,将各1μL PCR产物汇集,加水使最终体积为15至20μL。然后,样品进行透析。透析于0.1X TE中进行15分钟,然后将汇集的PCR样吕上样到MegaBACETM中。
上样。
上样到MegaBACETM中的样品按下表制备
实施例18含核酸的纳米级醇反应本发明可方便地应用于在纳升体积内进行纳米级酶反应。核酸固定于诸如玻璃毛细管之类的反应室内,按照本发明的方法制备。毛细管用反应混合物灌注,混合物包含一种或多种不同酶,例如限制酶。
在20μL的总体积中进行典型的限制酶消化,其中包括0.2到1.5μg底物DNA及超过DNA量2~10倍的限制酶。在反应管中将反应缓冲液、酶、水和DNA混合,于37℃培育1到4小时。依据本发明将模板DNA结合到毛细管的内表面。然后,将1X KGB缓冲液(100mM谷氨酸钾、25mM pH7.5的Tris-乙酸、10mM硫酸镁、50μg/ml牛血清白蛋白及1mM β-巯基乙醇)中预混合的限制酶通过毛细管作用吸入毛细管。反应于37℃培育指定时间,然后将内含物分入凝胶上样缓冲液中进行琼脂糖凝胶筛分,或分入含10mM EDTA的溶液中。
其它含不同酶的反应也是有可能的。这些酶包括但不限于甲基化酶、DNA依赖性DNA聚合酶、末端转移酶、RNA依赖性DNA聚合酶、DNA依赖性RNA聚合酶、磷酸酶、激酶、诸如S1或大豆核酸酶之类的外切核酸酶或其它核酸酶、核糖核酸酶、或DNA或RNA连接酶。对于多个这些反应来说,控制核酸对酶的比例是反应方法成功的关键。
使用本申请可有效地减少含核酸的浓度依赖酶反应误差,并减少贵重酶的消耗量。另外,经过清洗后,使用本发明的方法可有效除去残留的乙酸铵等离子、EDTA、氯化锂及其它污染物,如多聚糖,这些物质会干扰酶活性。
实施例19微阵列点样板的直接测序为了确保使用微阵列所产生数据的完整性,所点样DNA的序列其特性是必须已知的,并且应高度可信。PCR常用于生成需点样的DNA,而且正如本领域内众所周知的那样,Taq及相关耐热聚合酶在扩增模板时会在每千个碱基中带入一定数量的错配碱基对。如果错配发生了,就必须检测出来,并将所扩增的产物丢弃。通常这需要大量与点样PCR产物相关步骤分开的处理步骤。但是,使用本发明的实施方案可以极大地提高序列测定及确认的效率。
使用本发明方法如下所述实现一系列微阵列点样样品的序列确认。
从来自于人类基因组DNA模板、平均长度为500bp的PCR产物制备微阵列点样样品。产物用标准盐酸胍玻璃过滤板方法纯化,与等量10M硫氰酸钠混合。样品于微量反应板(“点样板”)中测定,该板用于随后点样至微矩载玻片上。
为确认PCR产物序列和在微阵列杂交载玻片上的排列位置,将96毛细管盒浸入点样板中使DNA与毛细管的内表面结合,然后进行测序反应。用80%乙醇洗涤后,毛细管用测序混合物灌注,混合物含缓冲液、聚合酶、染料标记的双脱氧核苷酸及1X浓度的测序引物。热循环(95℃5秒、55℃5秒及60℃60秒,30次循环)后,测序反应用乙醇沉淀法纯化并用MegaBACETM纯化。
在此实施例中,60份样品获得了确定序列,平均阅读长度为335个碱基(最大值为450bp)。通过对与点样到阵列上的制品和来源相同的物质直接测序,我们解决了PCR产物位置或特性不明的问题。
实施例20对PCR产物直接测序而不预先除去PCR核苷酸及引物本发明的方法已用于在测序前简化PCR产物的纯化过程。典型地说,在循环测序前需要利用外切核酸酶(ExoI)及北极虾碱性磷酸酶(SAP)进行酶纯化以除去引物和过量的dNTPs。然而,因为模板结合是大小依赖性的,未引入的引物和残留的核苷酸可不从模板中除去,而是与毛细管产生差异性结合,通过洗涤除去核苷酸和引物。此方法可免除PCR产物的酶纯化,极大地简化了总体流程。
正如所示范的那样,96份含有小鼠亚克隆插入片段的M13 DNA PCR产物在PCR扩增后不进行酶纯化就直接测序。
利用含小鼠基因组DNA亚克隆插入片段(约2000bp)的M13模板进行PCR扩增反应。M13模板预先这样制备聚乙烯沉淀及去污剂溶解,稀释200倍并重新分入96孔微量反应板中排成阵列。
将该溶液的2μL等分液转到PCR扩增混合物中,PCR扩增混合物用2.5μL 10X GeneAmp缓冲液、0.2μL 25mM各种dNTPs、0.5μL 10μM的M13-40正向引物(GTT TTC CCA GTC ACG AD)、0.5μL 10μM的M13-40反向引物(GGA TAA CAA TTT CAC ACA GG)、1.5μL 25mM的氯化镁、0.5μL 5U/μL的AmpliTaq聚合酶及17.3μL水等制备。混合并将板封闭后,反应于95℃10秒、55℃10秒及72℃2分钟进行30次循环完成热循环。PCR扩增后,取走5μL等分液与5μL 10M硫氰酸钠在另外分开的96孔板中混合。
将96-毛细管盒的毛细管浸入离液剂-PCR产物混合物中,从而使盒得以灌注。于60℃培育5分钟后,用80%乙醇在真空下吸过毛细管进行洗涤,除去残留的离液剂、未结合的缓冲液组分及DNA。内表面通气1分钟后,将毛细管浸入测序混合物中,混合物含1X ET终止反应混合物与正向测序引物M13-21正向引物(TGT AAA ACG ACG GCC AGT)的混合物。
将毛细管的末端在热循环仪中封闭,完成循环测序。反应于95℃5秒、55℃5秒及60℃60秒进行30次循环。用离心力将循环测序产物分入含40μL 80%乙醇的微量反应板中。于3000G离心30分钟后,将醇倒出,粒状DNA重悬于5μL ddH2O中,样品用MegaBACETM分析。
对于这96份样品来说,获得的平均阅读长度为550碱基,具有83%通过率,总数为44000碱基。该方法已在5000份样品上重复,证明可以改进全体积及酶纯化的反应。
实施例21微量与全体积PCR的比较将模板特异性引物对与10X GeneAmp缓冲液、MgCl2、AmpliTaq、牛血清白蛋白(BSA)、dNTPs和双蒸馏水混合在一起,制备PCR预混合物。在含PCR预混合物的各孔中,加入10μL基因组DNA(5ng/μL)作为反应的模板。23个孔中每孔接受从不同个体分离的基因组DNA,留一个孔不接受模板作为阴性对照。对于微量PCR,将反应盒的毛细管末端浸入微量反应板的孔中通过毛细管作用用500nl反应混合物灌注毛细管。然后将毛细管盒放入气体热循环仪中,将毛细管末端封闭,循环仪由第09/577,199号共同未决的美国申请所公开,在此将其整体引入作为参考。按下列程序完成气体驱动的热循环,从而完成扩增93℃10秒、60℃10秒及72℃60秒,30次循环。对于全体积PCR,将剩下的PCR反应混合物转到0.2mL PCR试管中按下列程序完成热循环从而完成扩增94℃20秒、60℃20秒及72℃30秒,35次循环,然后72℃2分钟,一次循环。
PCR完成后,用离心力将毛细管的内含物排到7.5μL 1X上样染料中。用小体积移液器从各全体积PCR反应取相等体积的反应加到相同量的上样染料中。然后将PCR产物上样到1.5%琼脂糖凝胶的上样孔中,在1X pH8.0的Tris-乙酸-EDTA缓冲液中于15V/cm电泳40分钟,凝胶用Sybr Green II(Molecular Probes,Eugene,OR)染色,并用二维荧光扫描仪(FluorImager,Amersham Biosciences,Sunnyvale,CA)成像。
将PCR产物各条带获得的荧光信号强度转化成DNA的量并以图像表示。此实验的结果如图25所示,该图表明毛细管盒微量反应中完成的基因组DNA PCR所得产物(图25A)与全体积PCR反应的产物量相当(图25B)。
实施例22微量与全体积SBE的比较用基因组DNA所产生的PCR产物作为SBE的模板,进行全体积及微量SBE反应。如实施例21所述完成全体积反应的PGR。PCR完成后,过量PCR引物用ExoI消化,未引入的dNTPs用SAP处理灭活。在25μLPCR体积中加入14μL ExoI/SAP溶液(由9μL 1.0U/μL的SAP和5μL10U/μL的ExoI构成)并混合,于37℃培育45分钟完成反应后于95℃保持15分钟使酶受热灭活。
对于全体积SBE,在微量反应板孔内的10μL ExoI/SAP处理后PCR产物中加入9μL SBE预混合物和1μL 2μM的SBE引物溶液(引物NCBI422或引物NCBI 425)。SBE预混合物与PCR预混合物类似,只是不含引物对,并用荧光标记的双脱氧终止子替代了dNTPs。将成分混合后,将反应混合物转到0.2μL管中,通过热循环完成SBE;PCR使用下列程序96℃10秒、50℃5秒及60℃30秒,25次循环。
全体积SBE完成后,用CIAP进行处理使未引入的ddNTPs去磷酸化。各SBE反应产物各取10μL转到微量反应板中,与25μL含0.1U/μLCIAP和1X CIAP缓冲液的CIAP溶液混合。然后混合物于37℃培育60分钟完成反应,72℃加热15分钟灭活CIAP酶。
CIAP处理后全体积SBE反应各取5μL与5μL MegaBACETM上样溶液混合,于95℃变性1分钟,用MegaBACETM分析(注射6kV,15秒;运行6kV,60分钟)。
全体积SBE所分析4份样品的结果如图26所示。图26A和26C显示在推断碱基处有杂合核苷酸多态性,而图26B显示纯合多态性。图26D显示的是阴性对照,不含DNA,不产生单核苷酸信号。
对于微量SBE来说,将毛细管浸入与全体积SBE所制备相同的SBE引物-预混合溶液反应混合物中,通过毛细管作用灌注约500nl混合物。之后,将毛细管盒转到气体热循环仪装置完成SBE,PCR使用下列程序95℃5秒、55℃5秒及60℃30秒,30次循环。
微量SBE完成后,用离心力将反应产物从毛细管排入含上述20μLCIAP的微量盘的孔中。反应产物用CIAP处理,于37℃培育60分钟完成反应,72℃加热15分钟灭活CIAP酶。
CIAP处理后全体积SBE反应各取5μL与5μL水混合,用MegaBACETM分析(注射2kV,45秒;运行6kV,60分钟)。
图27显示了相同杂合样品的全体积(图27A)与微量SBE(图27B)的实验比较。结果表明微量SBE产物的质量数据与全体积SBE类似。
同时使用全体积及微量SBE,利用两个截然不同的引物(NCBI422和NCBI 425)分析了23个不同的样品,并100%精确地检测到了多态性核苷酸。
实施例23与模板捕获偶联的微量SBE与实施例21所述类似完成微量PCR,只是将5μL基因组DNA模板与7.5μL PCR预混合物在微量反应板的孔中混合,然后通过毛细管作用吸入毛细管中。反应完成后,用离心力将PCR产物从毛细管中排到微量反应板孔中,孔内含有500nl 9.7M的硫氰酸钠(NaCN)。混合物,将约500nl溶液通过毛细管作用吸入新的毛细管中,于60℃培育5分钟使SBE产物结合到毛细管的内表面。之后,离心将溶液排出,用80%乙醇/20%双蒸馏水洗涤,通氮气干燥。不进行微量PCR产物的ExoI/SAP处理。
如实施例22所述进行微量SBE和及SBE产物的CIAP处理,然后仍如实施例22所述用MegaBACETM分析产物。
图28显示了相同杂合样品的全体积PCR用ExoI/SAP处理后进行全体积SBE(图28A)与微量PCR进行模板捕获后进行微量SBE(图28B)的比较结果。结果表明与模板捕获偶联的微量SBE其产生的质量数据与PCR产物经ExoI/SAP处理后进行全体积SBE所得数据类似。
实施例24SBE产物净化方法的比较如实施例23所述完成微量SBE,并比较各种处理SBE产物以便在使用MegaBACETM分析前除去或灭活未引入ddNTPs的方法的效率。进入MegaBACETM的注射于2kV、45秒完成,样品的分析于6kV、60分钟完成。如图29A所示,如果注射前不除去ddNTPs或不灭活,它们将会产生强烈的信号。图29B和图29C表明CIAP处理可有效防止ddNTPs进入MegaBACETM的凝胶床。注射前使SBE产物在去离子水中于95℃变性1分钟,产生的信号强度(图29C)比在MegaBACETM上样溶液中变性所产生的信号(图29B)强4倍。
然而,除去ddNTPs并增强信号强度最有效的是用交联葡聚糖纯化SBE产物(图29D),它可进一步使信号强度提高2倍。等分入微量反应板中的交联葡聚糖预先用150μl去离子水洗涤4次。用离心力将微量SBE反应排入20μL水中,将稀释的反应转到含交联葡聚糖的微量反应板孔中。培育足够长的时间使ddNTPs进入交联葡聚糖的孔中,离心使交联葡聚糖成片状沉淀。各孔的样品直接注射入MegaBACETM。
实施例25微量SBE的验证使用23个不相关的人基因组DNA样品及12个无DNA的阴性对照如实施例23所述进行微量SBE。使用12个引物推断不同的碱基位置。SBE产物用实施例24所述交联葡聚糖纯化。全体积SBE使用相同的样品和引物并如实施例22所述进行。
图30比较了微量和全体积SBE的结果,并显示了其中9个引物的结果。微量SBE的精确度(98%)与全体积SBE的精确度(99%)相当。
下面的实施例说明本发明的方法在进行一定范围内通用酶活性及抑制测定的用途和效率。另外,它说明固相捕获可用于蛋白、酶以及DNA。最后,它表明所述系统可应用于恒温反应。下列实施例中所用的多元毛细管系统含有16、96或384个毛细管。
实施例26在溶液蛋白消化申使用胰蛋白酶用于处理亚微升含蛋白溶液的所述多元系统其用法用胰蛋白酶消化细胞色素来说明。消化使用毛细管盒内的毛细管在同质溶液中进行。
用Tris-HCl缓冲液(10mM,pH8)以胰蛋白酶-蛋白比值为1∶10、1∶20、1∶50、1∶100制备胰蛋白酶(Sigma,St.Louis,MO)和细胞色素C(Sigma,St.Louis,MO)的混合物,蛋白质浓度保持1mg/mL不变。将500nL混合物的等分物通过毛细管作用上样入毛细管盒中,于37℃培育过夜。然后(于2700G离心1分钟)使消化混合物进入96孔Robbins板中,板的每孔均含1mg/ml溶于二甲亚砜中的5-异硫氰酸荧光素(FITC)(Molecular Probes,Eugene,OR)。板于室温避光放置4小时。所得混合物用tris-HCl缓冲液稀释20~2000倍,用LPA缓冲液和长阅读基质在进行MegaBACETM1000(AmershamBiosciences,Piscataway,NJ)上进行毛细管电泳(CE)分离。样品于1kV注射5秒,于9kV分离50分钟。
上述实验条件至少运行16次。图31A演示了蛋白消化的代表性电泳图谱。所得细胞色素C的肽特征在各运转之间表现一致并可再现,并与全体积反应所得数据相当。
实施例27使用内切蛋白酶Asp-N进行蛋白酶测定用内切蛋白酶Asp-N消化多肽在此处作为额外的实施例说明。它进一步说明使用所述多元系统处理亚微升酶反应。建立了内切蛋白酶Asp-N消化的酶-产物关系,以及最佳酶浓度。
肽CyTM5Q-YVADAPVKCy3(Amersham biosciences,Piscataway,NJ)用作反应底物。当肽完整时,Cy5Q可有效地猝灭Cy3,导致Cy3波长处的激发仅有残余的背景信号。肽发生切割后(Asp-N在天冬氨酸残基的N-末端进行切割),染料不再是紧密相连,Cy3波长的激发导致Cy3的发射。Cy3发射的信号强度与所切割肽的量成线性比例。
内切蛋白酶Asp-N反应在同质溶液中完成。5g肽用20μL二甲基亚砜重构,然后与980μL测定缓冲液(50mM Tris,pH8.0,+0.005%吐温20TM)混合。内切蛋白酶Asp-N(Amersham Biosciences,Piscataway,NJ)用500μL玻璃双蒸馏水重构,终浓度为4μg/mL。对酶作一系列稀释,使500nl的反应中Asp-N含量在5~180pg之间。6个浓度的Asp-N与1∶20的肽底物稀释液在384孔板中涡旋混合,室温培育10分钟使反应完成。然后将消化混合物旋入一个干净的384孔板(Nalge Nunc Internatinal,Rochester,NY)中,该板每孔含10μL测定缓冲液。用荧光板阅读仪(TyphoonTM,Amershambiosciences,Piscataway,NJ)于532nm及650V于使用Cy3 555BP发射滤镜阅读。
各浓度的反应平行重复24次。图36概括了这些反应的结果。Cy3发射的信号强度在Asp-N浓度高至每500nL反应含~50pg Asp-N时,随着Asp-N浓度上升呈线性的增强。如超过该浓度,Cy3信号强度在Asp-N浓度高至每500nL反应含~180pg Asp-N时仍增强,但增强速度变慢。500nl反应体积中的最佳Asp-N量为~50pg。这些结果说明在高通量纳米级反应及测定反应曲线中使用纳摩尔级制品测定潜在药物靶点的用途。将纳摩尔级制品应用于高通量药物筛选将可使靶点、化合物库及天然产物库的消耗降到最低。
实施例28用固定有胰蛋白酶的珠子进行蛋白质消化用细胞色素C的胰蛋白酶消化物来说明所述多元分系统处理亚微升含蛋白溶液的用途。用固定于珠子上的酶来完成消化,其中珠子位于毛细管盒的毛细管内。引入少量磁珠提供了高效的分离工具,并为靶分子的最佳接触供了每单位体积的高结合表面面积。正如将为领域内熟练技术人员所易于理解的那样,珠子可以是非磁性的或闪烁亲近测定(Amersham Biosciences,Inc.,Piscataway,NJ),或具有其它表面性质。
将链霉抗生素蛋白包被的磁珠M280(Dynal,Oslo,Norway)与生物素共轭的胰蛋白酶(Sigma,St.Louis,MO)在tris-HCl中以珠-胰蛋白酶比例为10∶1(体重/体重)一起培育,制备固定有胰蛋白酶的磁珠。室温恒速滚翻振摇、培育24小时后,在Dynal MPC-96磁性装置上用tris缓冲液洗掉未结合的酶,使珠子得以洗净。然后这些珠子以珠-蛋白比例为10∶1(体重/体重)的比例与细胞色素C(Sigma,St.Louis,MO)混合。然后将毛细管盒浸入珠溶液中通过毛细管作用灌注,使混合物的500nL等分液通过毛细管作用转到毛细管盒中。于37℃培育过夜,然后(于2700G离心1分钟)使消化混合物进入96孔Robbins板中,板的每孔均含1mg/ml 5-异硫氰酸荧光素(FITC)标记溶液。通过磁力将混合物与珠子分开,所得不含珠子的上清转到另一块板中。板于室温避光反应4小时后,如实施例26中所述用MegaBACETM1000(Amersham Biosciences,Piscataway,NJ)分析标记的蛋白质片段(多肽)。
上述实验条件至少运转16次。毛细管电泳的特征表明从此方法所获得消化后细胞色素C的肽特征与实施例26中所述方法所获得的一致,并可以再现。图31B显示了蛋白消化物的一个代表性电泳图谱。
固定有酶的磁珠也可应用于毛细管盒形式的底物涉及DNA或RNA分子、蛋白质、糖蛋白、脂类、肽或其它生物分子的生化反应。
实施例29用表面经过修饰的毛细管盒进行蛋白质消化使用固定酶反应器的异源反应异质反应可以不需将酶和反应混合物分开,而且可以使消化物受到蛋白水解酶的污染最小化。此实施例说明共价结合于毛细管盒内表面的酶仍保持其活性并且此类系统在酶测定中应用。正如对领域内熟练技术人员显而易见的那样,固定的酶在其它许多反应中使用,或括夹心测定、底物转化成产物、生物测定或其它反应。
用氨基烷基硅烷进行硅烷化使表面具有带功能的氨基,随后可为大量不同的亲和配体所粘附。在此方法中,毛细管盒(或其它类型的反应室)先用3-氨基丙基三乙氧基甲硅烷处理,再用N-琥珀酰亚胺基-3-(2-吡啶基二硫基)丙酸酯处理。吡啶基二硫基官能团通过特异的-S-S-及-SH交换反应提供了结合诸如酶之类的蛋白的便捷途径,而且,如果需要可通过加入过量硫代吡啶酮硫代吡啶酮将固定的酶释放出来(Carlsson,J.;Drevin H.;Axen,R.Biochem.J.1978,173,723)这样,相同的毛细管表面可再生用于固定胰蛋白酶以确保高度酶反应性。
另一表面固定方法基于特异性链霉抗生素蛋白-生物素反应。链霉抗生素蛋白修饰可以使该表面结合生物素化的酶。在此方法中,毛细管盒可以用3-氨基丙基三乙氧基甲硅烷等衍生化,然后与双官能连接子如双琥珀亚胺酰辛二酸酯反应,该连接子可固定链霉抗生素蛋白,从而链霉抗生素蛋白使生物素化的胰蛋白酶连接到毛细管表面。可利用链霉抗生素蛋白和生物素之间相互作用的高特特异性在毛细管内表面上产生方向统一的酶(Wilchek,M.;Bayer,E.A.Methods inEnaymology,1980,184)。
这两种酶固定技术的目的是提供高表面反应性并使非特异性结合降到最低。正如将为熟练技术人员所理解的那样,也可作用其它的表面固定方法。例如,与γ-缩水甘油基丙基甲硅烷反应将环氧乙烷引入固相,使该固相表面可在赖氨酸位点偶联酶。这一修饰预期可提供更多的疏水表面以减少非特异性蛋白质摄取。用表面活化水凝胶共轭酶也是另一种生成固定酶表面的便捷方法(Caldwell,Carlsson和Li,NO.5,516,703号美国专利,1996)。此方法的优势是它提供了兼容蛋白质的环境和可再利用的表面。
通过毛细管作用将细胞色素C(1mg/mL)引入链霉抗生素蛋白-生物素固定的胰酶毛细管微反应器中,于37℃培育过夜完成蛋白质消化反应。然后将蛋白质片段取出,用5-异硫氰酸荧光素(FITC)标记,按实施例26所述将标记后的蛋白消化液进行MegaBACETM分析。两个用胰蛋白酶包被、未处理(通过简单吸附)的毛细管盒用作对照。
对于特定的固定胰蛋白酶盒来说,使用新鲜的细胞色素C溶液在2周的周期内进行三次蛋白质消化反应。第一次实施于第0天进行,第二次于第7天进行,而第三次在第14天进行。运转间隙固定胰蛋白毛细管盒于4℃储存于0.15M的磷酸盐缓冲液中。从MegaBACETM获得的毛细管电泳分离结果说明所有这些处理过毛细管盒中的毛细管经过三次运转后其肽图谱相同,分别如实验1(第0天)、实验2(第7天)和实验3(第14天)的代表性电泳图谱(图32、33和34)所示。相反,对照毛细管盒仅在第一次吸附表现出一些蛋白质消化,在第二次或第三次吸附时没有蛋白质消化发生。这与预期的一样,因为物理吸附产生的非特异结合可能减少酶活性,而且这样的结合不如共价结合稳定。结果是这样吸附的酶不具备进行重复消化反应的有效能力。此实施例说明酶可偶联到高通量纳米级反应器的表面,并用于进行重复的酶反应,如上述的蛋白分解消化。
除了上述的CE技术之外,可用高效液相色谱(HPLC)进一步鉴定蛋白消化物。实验使用组分收集器Frac-950和自动取样器A900(Amersham Biosciences,Sunnyvale,NJ)在AKTAexplorer色谱系统10上完成。在链霉抗生素蛋白-生物素固定的胰酶毛细管盒上所制备的细胞色素C胰酶消化样品注射入反相柱Source 5RPC ST4.6/150(Amersham Biosciences,Sunnyvale,NJ)用梯度洗脱液(洗脱液A溶于2%乙腈的0.05%三氟乙酸;洗脱液B溶于80%乙腈的0.05%三氟乙酸)洗脱。图35显示了其中的一个代表性HPLC图谱。在共价包被的毛细管盒上所得到的蛋白质消化物其肽特征与文献结果一致(Neue等,HPLC柱理论、技术及应用,VCH出版社,1997)。
正如本文已个别及特定所引入的那样,所有提及的出版物、专利及专利申请均在此将其整体引入作为参考。尽管已描述了与本发明相关的某些优选实施方案,但是本领域内的熟练技术人员将会清楚本发明除了以阐述而不是限制方式说明的所述实施方案外还有其它应用。本发明仅由权利要求书限定。
权利要求
1.使用规格量的核酸在毛细管中进行酶反应的方法,该方法包括将酶反应混合物引入含有规格量的核酸的毛细管中,其中所述反应混合物包括寡核苷酸引物、DNA聚合酶和至少一种三磷酸双脱氧核苷酸(ddNTP),所述核酸已通过将包含核酸和离液剂的溶液与毛细管内表面接触足够长的时间使核酸饱和性地与所述内表面结合,而从过量核酸直接、饱和性地结合到毛细管的内表面上;和所述过量核酸已从其中除去;和用所述规格量的核酸在所述毛细管内进行所述酶反应。
2.权利要求1的方法,还包括使所述酶反应混合物经受至少一次热循环。
3.权利要求1的方法,还包括所述除去过量核酸步骤后清洗所述毛细管内表面的步骤。
4.权利要求3的方法,还包括所述清洗所述毛细管内表面步骤后使所述毛细管内表面干燥的步骤。
5.权利要求1的方法,其中所述酶反应混合物通过毛细管作用引入所述毛细管中。
6.权利要求1的方法,还包括所述进行酶反应步骤后将所述反应产物排出来的步骤。
7.权利要求1的方法,还包括所述进行酶反应步骤后除去未掺入的三磷酸双脱氧核苷酸(ddNTPs)的步骤。
8.权利要求7的方法,其中所述未掺入的ddNTPs通过将所述产物与凝胶过滤介质接触而除去。
9.权利要求1的方法,还包括所述进行酶反应步骤后灭活未掺入的三磷酸双脱氧核苷酸(ddNTPs)的步骤。
10.权利要求9的方法,其中所述未掺入的ddNTPs通过用小牛小肠碱性磷酸酶(CIAP)处理所述反应产物而得以灭活。
11.权利要求1的方法,其中所述酶反应混合物中的三磷酸双脱氧核苷酸(ddNTPs)选自仅有A;仅有C;仅有G;仅有T;A、C;A、G;A、T;C、G;C、T;G、T;A、C、G;A、C、T;A、G、T;C、G、T;和A、C、G、T。
12.权利要求1的方法,其中所述三磷酸双脱氧核苷酸(ddNTPs)与荧光团缀合。
13.权利要求1的方法,其中所述荧光团是碱基特异性的。
14.权利要求12的方法,其中所述荧光团选自荧光素、5-羧基-荧光素、6-羧基-罗丹明、N,N,N’,N’-四甲基-5-羧基罗丹明和5-羧基-X-罗丹明、罗丹明110、罗丹明-6-G、四甲基罗丹明和罗丹明X。
15.权利要求12的方法,其中所述荧光团为能量转移荧光团。
16.权利要求1的方法,其中所述引物与所述核酸中的多个毗连核苷酸互补;并且其中所述引物在紧接着所述核酸中存在的需鉴定其特性的核苷酸之前终止。
17.权利要求16的方法,其中所述引物与荧光团缀合。
18.权利要求17的方法,其中所述荧光团选自荧光素、5-羧基-荧光素、6-羧基-罗丹明、N,N,N’,N’-四甲基-5-羧基罗丹明和5-羧基-X-罗丹明、罗丹明110、罗丹明-6-G、四甲基罗丹明和罗丹明X。
19.权利要求17的方法,其中所述荧光团为能量转移荧光团。
20.权利要求1的方法,还包括对所述酶反应产物进行分析以测定并鉴定在引物3’末端掺入的dNNTP。
21.权利要求1的方法,其中对所述酶反应产物进行分析以测定存在于所述核酸中的碱基特性的步骤利用选自凝胶电泳、毛细管电泳、质谱、MALDI质谱、SELDI质谱、荧光发射检测、扫描共聚焦激光诱导荧光检测、荧光偏振(FP)和分析微芯片分析的技术来实现。
22.权利要求20的方法,还包括从与ddNTP缀合的荧光团的发射光谱推断在所述引物3’-末端掺入的该ddNTP的特性。
23.权利要求22的方法,还包括从在所述引物3’-末端掺入的所述ddNTP特性推断存在于所述核酸中的核苷酸的特性。
24.权利要求23的方法,还包括从所述核酸中所述核苷酸的特性推断存在于第二种核酸中的核苷酸的特性。
25.权利要求23的方法,其中所述核苷酸的特性界定了所述核酸中的单核苷酸多态性(SNP)。
26.权利要求25的方法,其中所述SNP为杂合SNP。
27.权利要求25的方法,其中所述SNP为纯合SNP。
28.权利要求25的方法,其中所述核苷酸的特性作为数据存在计算机数据结构中。
29.权利要求28的方法,其中所述计算机数据结构收录于计算机可读的介质中。
30.权利要求1的方法,其中所述DNA聚合酶是耐热的。
31.权利要求1的方法,其中所述DNA聚合酶为DNA依赖性DNA聚合酶。
32.权利要求1的方法,其中所述DNA聚合酶为RNA依赖性DNA聚合酶。
33.权利要求1的方法,其中所述核酸选自DNA、双链DNA、单链DNA、由聚合酶链反应生成的DNA、由逆转录反应生成的DNA、从真核细胞分离出来的DNA、从原核细胞分离出来的DNA、从原始细胞分离出来的DNA、从真菌细胞分离出来的DNA、从植物细胞分离出来的DNA、从病毒分离出来的DNA、从噬菌体分离出来的DNA、基因组DNA、质粒DNA、附加型DNA、RNA、信使RNA、双链RNA、单链RNA、从真核细胞分离出来的RNA、从原核细胞分离出来的RNA、从原始细胞分离出来的RNA、从真菌细胞分离出来的RNA、从植物细胞分离出来的RNA、从病毒细胞分离出来的RNA、基因组RNA、DNA-RNA杂交体、从细菌冷冻甘油原种获得的核酸和从生长于固体生长培养基上的细菌菌落所获得的核酸。
34.权利要求1的方法,其中所述核酸为DNA;并且还包括用聚合酶链反应(PCR)制备该DNA的步骤。
35.权利要求34的方法,其中所述聚合酶链反应中所用的模板为基因组DNA。
36.权利要求34的方法,还包括在用PCR制备所述DNA的步骤后用单链DNA酶除去未掺入的PCR引物的步骤。
37.权利要求34的方法,还包括在用PCR制备所述DNA的步骤后用磷酸酶除去未掺入的dNTP的步骤。
38.权利要求34的方法,还包括在用PCR制备所述DNA的步骤后用外切核酸酶I(ExoI)和虾碱性磷酸酶(SAP)处理所述DNA的步骤。
39.权利要求1的方法,还包括将DNA从过量所述DNA直接与所述毛细管内表面饱和性地结合并除去所述过量DNA的步骤后,通过清洗所述毛细管内表面而除去未掺入的PCR引物和dNTP的步骤。
40.权利要求1的方法,其中所述酶反应以约10~5000纳升的反应体积进行。
41.权利要求1的方法,其中所述毛细管存在于可空间定位的毛细管阵列中。
42.权利要求41的方法,其中所述可空间定位的毛细管阵列为具有选自2、4、8、12、16、24、32、48、64、96、128、192、288、384、480、576、672、768、864、960和1536个毛细管数目的毛细管阵列。
43.用规格量的核酸由权利要求1所述方法生成的酶反应产物。
44.从第一和第二样品获得基本等量核酸用于在酶反应中有效检测单核苷酸多态性(SNP)的方法,该方法包括将第一毛细管的内表面与包含核酸和离液剂的溶液接触足够长的时间,使得核酸与该内表面饱和性地结合,从而使来自第一样品的核酸直接与第一毛细管的内表面饱和性地结合;和将第二毛细管的内表面与包含核酸和离液剂的溶液接触足够长的时间,使得核酸与该内表面饱和性地结合,从而使来自所述第二样品的核酸直接与第二毛细管的内表面饱和性地结合,其中所述第一和第二毛细管的内表面能够与基本等量的分别来自于所述第一和第二样品中的核酸饱和性地结合;和在酶反应中使用第一或第二毛细管或第一与第二毛细管的核酸以便有效检测所述核酸中存在的单核苷酸多态性(SNP)。
45.权利要求44的方法,其中所述酶反应选自寡核苷酸连接测定基因型分析(OLA)反应、微型测序反应、TaqManTM基因型分析反应、InvaderTM测定反应、染料标记的寡核苷酸连接反应、高温测序反应、滚动循环扩增(RCA)反应和单碱基延伸(SBE)反应。
46.权利要求45的方法,其中所述酶反应为单碱基延伸反应。
47.权利要求44的方法,还包括对所述酶反应产物进行分析。
48.用规格量的核酸通过权利要求44所述方法进行酶反应的产物。
49.用规格量的核酸在毛细管中进行酶反应以有效检测单核苷酸多态性(SNP)的方法,该方法包括用规格量的所述核酸在毛细管中进行所述酶反应,所述核酸已通过将包含核酸和离液剂的溶液与毛细管内表面接触足够长的时间使核酸饱和性地与所述内表面结合,而从过量核酸中直接、饱和性地结合到毛细管的内表面上;和所述过量核酸已从其中除去,其中所述酶反应选自寡核苷酸连接测定基因型分析(OLA)反应、微型测序反应、TaqManTM基因型分析反应、InvaderTM测定反应、染料标记的寡核苷酸连接反应、高温测序反应、滚动循环扩增(RCA)反应和单碱基延伸(SBE)反应。
50.权利要求49的方法,其中所述酶反应为单碱基延伸反应。
51.权利要求49的方法,还包括对所述酶反应产物进行分析。
52.用规格量的核酸通过权利要求49所述方法进行酶反应的产物。
53.用规格量的酶在毛细管中进行酶反应的方法,该方法包括用规格量的所述酶在毛细管中进行所述酶反应,所述酶已通过将包含酶的溶液与毛细管内表面接触足够长的时间使酶饱和性地与所述内表面结合,而从过量酶中直接、饱和性地结合到毛细管的内表面上;和所述过量的酶已被除去。
54.用规格量的酶在毛细管中进行酶反应的方法,该方法包括用规格量的所述酶在毛细管中进行所述酶反应,所述酶已通过将包含酶的溶液与毛细管的修饰内表面接触足够长的时间使酶特异性且饱和性地与所述修饰内表面结合,而从过量酶中特异性且饱和性地结合到毛细管的修饰内表面上;和所述过量的酶已被除去。
55.权利要求54的方法,其中所述毛细管的内表面修饰通过硅烷化实现。
56.权利要求54的方法,其中所述毛细管的修饰内表面是用官能团修饰的。
57.权利要求56的方法,其中所述官能团选自氨基、吡啶基二硫基、双琥珀亚胺酰辛二酸酯基、环氧乙烷基、链霉抗生素蛋白分子及表面活性水凝胶。
58.权利要求54的方法,其中所述结合的酶与所述官能团共价偶联。
59.权利要求54的方法,其中所述结合的酶与所述官能团非共价偶联。
60.权利要求54的方法,其中多个所述酶分子在所述毛细管的修饰内表面上朝向统一的方向。
61.权利要求54的方法,还包括加入过量硫代吡啶酮使所述饱和性地结合的酶释放出来的步骤。
62.权利要求54的方法,其中所述酶选自蛋白水解酶、序列特异性酶、胰蛋白酶、糜蛋白酶、蛋白酶K、木瓜蛋白酶、胃蛋白酶、内切蛋白酶,内切蛋白酶Glu-C、内切蛋白酶Arg-C、内切蛋白酶Lys-C、内切蛋白酶Pro-C、内切蛋白酶Asp-N、V8蛋白酶、糖苷酶、β-半乳糖苷酶、脂肪酶、氧化酶、加氧酶、葡萄糖氧化酶、胆固醇氧化酶、乳酸单加氧酶、连接酶、DNA连接酶、RNA连接酶、甲基化酶、聚合酶、DNA依赖性DNA聚合酶、末端转移酶、RNA依赖性DNA聚合酶、DNA依赖性RNA聚合酶、磷酸酶、激酶、DNA回旋酶、拓扑异构酶、核酸酶、外切核酸酶、S1外切核酸酶、绿豆核酸酶、内切核酸酶、限制性内切酶、核糖核酸酶及脲酶。
63.权利要求54的方法,还包括在进行所述酶反应的步骤前用包含底物的溶液灌注所述毛细管的步骤。
64.权利要求63的方法,其中用包含底物的溶液灌注所述毛细管的步骤通过毛细管作用实现。
65.权利要求63的方法,其中所用溶液包含约100~2,000纳升的体积。
66.权利要求54的方法,其中所述酶反应在恒温下进行。
67.权利要求54的方法,其中所述毛细管放在可空间定位的阵列中。
68.权利要求54的方法,其中所述酶反应与至少一个附加的酶反应平行进行。
69.权利要求54的方法,还包括进行酶反应的步骤后对所述酶反应的产物进行分析的步骤。
70.权利要求69的方法,其中对所述酶反应的产物进行分析的步骤通过利用选自质谱、毛细管电泳、荧光扫描及高效液相色谱(HPLC)的技术来实现。
71.权利要求69的方法,还包括在对所述酶反应产物分析的步骤之前对所述产物进行荧光标记的步骤。
72.用规格量的蛋白质在毛细管中进行基于蛋白质的反应的方法,该方法包括用规格量的所述蛋白质在毛细管中进行所述基于蛋白质的反应,所述蛋白质已通过将包含蛋白质的溶液与毛细管内表面接触足够长的时间使蛋白质饱和性地与所述内表面结合,而从过量蛋白质中饱和性地结合到毛细管的内表面上;和所述过量的蛋白质已被除去。
73.用规格量的蛋白质在毛细管中进行基于蛋白质的反应,该方法包括用规格量的所述蛋白质在毛细管中进行所述基于蛋白质的反应,所述蛋白质已通过将包含蛋白质的溶液与毛细管的修饰内表面接触足够长的时间使蛋白质特异性且饱和性地与所述修饰内表面结合,而从过量蛋白质中特异性且饱和性地结合到毛细管的修饰内表面上;和所述过量的蛋白质已被除去。
74.权利要求73的方法,其中所述蛋白质为非催化性蛋白质。
75.权利要求74的方法,其中所述非催化性蛋白质选自抗体、抗体的抗原结合片段、IgG、IgE、IgM、G蛋白、A蛋白及链霉抗生素蛋白。
76.权利要求73的方法,其中所述基于蛋白质的反应为分子结合反应。
77.权利要求76的方法,其中所述分子结合反应的底物选自蛋白质、酶、核酸、DNA、RNA、碳水化合物、脂类及其它化学物质。
78.从第一及第二样品获得基本等量蛋白质的方法,该方法包括将第一毛细管的修饰内表面与含蛋白质的溶液接触足够长的时间,使得该蛋白质与该修饰内表面饱和且特异性地结合,从而使来自第一样品的蛋白质直接与第一毛细管的修饰内表面饱和且特异性地结合;和将第二毛细管的修饰内表面与含蛋白质的溶液接触足够长的时间,使得该蛋白质与该修饰内表面饱和且特异性地结合,从而使来自第二样品的蛋白质直接与第二毛细管的修饰内表面饱和且特异性地结合;其中所述第一和第二毛细管的修饰内表面能够与基本等量的分别来自于所述第一和第二样品中的蛋白质饱和且特异性地结合。
全文摘要
本发明提供了利用核酸或蛋白制备纳米级反应的方法。核酸饱和但可逆地捕获于反应室的内表面上,典型的是毛细胞管的内表面上。除去过量的核酸,反应直接在毛细管内进行。蛋白质特异性且饱和性地捕获于反应室的修饰内表面上,典型的是毛细胞管的修饰内表面上。除去过量的蛋白质,反应直接在毛细管内进行。还提供了实施本发明的装置,以及设计成方便地利用涉及核酸或蛋白质的高通量反应方法的系统。
文档编号C12P19/34GK1791680SQ03807801
公开日2006年6月21日 申请日期2003年2月7日 优先权日2003年2月7日
发明者S·B·约万诺维奇, O·萨拉斯-索拉诺, 李政勳 申请人:安玛西亚生物科学(Sv)公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1