人参二醇皂苷Rb组分防治糖尿病并发症及代谢紊乱相关疾病的医药用途的制作方法

文档序号:13116014阅读:574来源:国知局
人参二醇皂苷Rb组分防治糖尿病并发症及代谢紊乱相关疾病的医药用途的制作方法

本发明属医药领域,涉及人参二醇皂苷rb组分(后简称rb组分)在制备防治糖尿病并发症和代谢紊乱相关疾病药物中的应用。更具体地说,利用rb组分改善糖尿病患者多饮、多食和多尿的代谢症状,防治糖尿病的中枢和外周并发症以及其他与代谢紊乱相关的疾病和症状(包括中枢神经退化性疾病和癌症治疗引起的神经毒性)。



背景技术:

糖尿病前期和糖尿病是公认的全球性流行病,糖尿病及其并发症已经成为继心脑血管疾病、癌症之后威胁人类生命健康的第三大杀手。伴随着全球肥胖症的流行和世界人口的老龄化,一场代谢风暴正在酝酿之中(climacteric.2017feb;20(1):11-21)。目前,全球范围内分别有3亿1600万糖尿病前期人群和3亿8700万糖尿病患者,其中至少有2亿人患有神经病变(neuron.2017mar22;93(6):1296-1313)。据国际糖尿病联盟(idf)调查估计,到2025年全世界大概有5亿糖尿病患者(internationaldiabetesfederation,2014)。中国目前有超过9240万的糖尿病患者,已成为全球糖尿病第一大国。更令人担忧的是,我国糖尿病患病率不断增加的同时,普通人群的血糖达标率却不足30%。糖尿病是一组代谢性疾病,其特征是胰岛素分泌缺陷或胰岛素抵抗引起的胰岛素作用缺陷或两者同时存在共同导致了高血糖和碳水化合物代谢紊乱综合征,伴随着不同器官(特别是眼睛、肾脏、神经、心脏、血管)的长期损伤和功能障碍或丢失以及相关联的糖尿病并发症(currpharmdes.2015;21(34):4980-8.32;diabetescare.2017jan;40(1):136-154.;worldjdiabetes.2015oct10;6(13):1246-58.)。糖尿病并发症的临床表现复杂多样,而且涉及到多种疾病,常见的有:外周神经病变,微血管并发症包括糖尿病肾病(dn)和视网膜病变(dr),大血管并发症如冠心病、脑血管疾病、周围血管疾病等。糖尿病是新失明患者的主要原因,并大大增加了神经痛、心脏病和肾衰的风险。老年糖尿病还增加了骨质疏松和癌症的风险。在糖尿病发生发展过程中,糖尿病并发症发生率高达96%,是目前已知并发症最多的一种疾病;糖尿病发病后10年左右,将有30%~40%的患者至少会发生一种并发症,且并发症一旦产生,药物治疗很难逆转。可见,糖尿病并发症严重降低患者生存质量,也是导致糖尿病患者致死和致残的主要原因,大大增加患者致残、致死的危险。

糖尿病性周围神经病是糖尿病最常见的慢性并发症之一,是一组以感觉和自主神经病变为主要临床表现的周围神经病,与糖尿病肾病和糖尿病视网膜病变等一样,都会严重影响患者的生活质量(diabetescare.2017jan;40(1):136-154.)。感觉神经病变的特点是疼痛、感觉异常(烧灼不适感)和感觉丧失(neuroendocrinology.2013;98(4):267-80;diabetescare.2017jan;40(1):136-154.),是由小纤维受累所致。患者因疼痛而失去正常日常活动,常出现睡眠障碍、焦虑和抑郁,从而严重降低患者的生活质量(natrevdisprimers.2017feb16;3:17002.)。随着糖尿病外周神经病发展,会出现痛觉敏感性降低甚至丢失以及运动平衡能力减弱和体位不稳,这些都会造成患者患糖尿病足、跌倒和骨折(diabetescare.2017jan;40(1):136-154.)。神经病变患者的神经性疼痛症状的总体患病率为21%(natrevdisprimers.2017feb16;3:17002.)。其中我国糖尿病周围神经病变的患病率高达56.5%。糖尿病自主神经病变与心肌梗死、恶性心律失常、猝死密切相关(neuroendocrinology.2013;98(4):267-80.;diabetescare,2010,33(2):434-441;diabetescare.2010feb;33(2):434-41;worldjdiabetes.2015oct10;6(13):1246-58.)。研究显示,2型糖尿病患者发生心血管疾病和卒中的危险比普通人群高出2-4倍,同时寿命减少5-10年。此外,糖尿病自主神经病变的主要临床表现还有低血糖、静息性心动过速、体位性低血压、胃轻瘫、便秘、腹泻、大便失禁、勃起功能障碍、神经源性膀胱功能障碍,并与增加或减少出汗,胃肠道、泌尿生殖道和排汗功能障碍等,都严重降低了患者生活质量(diabetescare.2017jan;40(1):136-154.)。在2型糖尿病患者中,糖尿病自主神经病变的流行也会随着糖尿病病程的延长而增加,15年后60%患者可能发生。在美国和欧洲,糖尿病前期和2型糖尿病(t2dm)是外周神经病变的最常见原因,至少有50%糖尿病患者包括1型糖尿病患者在一生中会患上某种形式的神经病(neuron.2017mar22;93(6):1296-1313)。在20年以上发病史的1型糖尿病患者中,至少有20%发生远端多发性神经病。新诊断的2型糖尿病患者可能至少10%–15%存在远端多发性神经病,超过10年病程发病率将提高到50%(diabetescare.2017jan;40(1):136-154.)。

最近研究证明,中枢神经系统也不能幸免于糖尿病的有害影响。以特异性认知障碍和神经行为障碍为特征的糖尿病脑病被逐渐认知,表现为记忆力和决断力的减退、睡眠障碍、抑郁情绪等(currpharmdes.2015;21(34):4980-8.32)。此外,ii型糖尿病患者的多种神经退化性疾病(包括阿兹海默症,血管性痴呆,帕金森氏综合征和亨廷顿病)的发病率明显高于非糖尿病同龄人群(lancetneurol.2004mar;3(3):169-78.),其中ad的发病率提高到2倍(jclininvest.2013feb1;123(2):531–539.)。特别要指出的是,越来越多的研究证明代谢紊乱尤其是线粒体功能障碍及其引发的氧化应激损伤和炎症反应是糖尿病外周神经病引起的疼痛和化疗药引起的外周神经疼痛的共同病理特征,也是中枢神经退化性疾病(包括老年性痴呆、血管性痴呆、帕金森氏病和多发性硬化等)的共同病理机制(jclininvest.2013feb1;123(2):531–539.)。其中,老年性痴呆脑内的代谢紊乱表型与2型糖尿病的代谢特征相似,因此老年性痴呆被称为发生脑内的糖尿病,也称为3型糖尿病(biochempharmacol.2014apr15;88(4):548-59.;eurneuropsychopharmacol.2014dec;24(12):1954-60.;neurolsci.2015oct;36(10):1763-9.)。值得注意的是,神经功能紊乱性疾病(癫痫、精神分裂症、抑郁症等)也与代谢紊乱密切相关(mitochondrion.2012jan;12(1):35-40.lancetneurol.2015sep;14(9):956-66.neuromolecularmed.2015dec;17(4):404-22.)。

长期以来,防治糖尿病并发症和神经退化性疾病是国际难题。尽管进行了几十年的研究,但除了改善生活方式和控制患者血糖之外,目前全球没有其他可有效治疗糖尿病外周神经病变的方法和药物(diabetescare.2017jan;40(1):136-154.)。cochrane审查临床研究显示,严格的血糖控制可以减少i型糖尿病神经病变发生率,但对ii型糖尿病神经病变没有效果,类似研究在结果出现在对糖尿病自主神经病变的预防中(diabetescare.2017jan;40(1):136-154;neuron.2017mar22;93(6):1296-1313)。在美国,所有旨在改变糖尿病性神经病变的临床试验均以失败告终,大型制药公司现已脱离糖尿病神经病变的领域(diabetescare.2017jan;40(1):136-154.)。可见,对防治糖尿病并发症,寻找通过非依赖血糖为作用机制的药物刻不容缓。

病理机制是指导有效药物研发的灯塔。神经病变和血管病变不仅是糖尿病的重要并发症,也与神经退化性疾病密切相关,因此保护神经和血管对防治糖尿病并发症至关重要。糖尿病患者的神经功能障碍和细胞坏死(包括内皮细胞死亡)是由与糖尿病代谢失衡相关的复杂事件引起的(neuron.2017mar22;93(6):1296-1313)。具体地说,高血糖、血脂异常和/或胰岛素抵抗加强了对多元醇、糖基化终产物(advancedglycationendproducts,age)等通路的激活以及胰岛素信号丢失,最终构成了对线粒体功能损伤、炎症反应和氧化应激。大量研究证明,包括肾病、心肌病和神经病变在内的一系列糖尿病并发症中,线粒体生理功能受到损害、呼吸链功能降低(atp水平下降)以及ros产生增多是糖尿病并发症的重要触发因素(diabetes.2008jun;57(6):1446-54;handbclinneurol.2014;126:353-77;neurobioldis.2013mar;51:56-65.circres.2016may27;118(11):1808-29.)。当前,控制血糖水平以及针对上游通路如pkc、多元醇、parp和己糖胺通路治疗至今未获得满意效果,抗氧化和抗炎被分别用于对抗糖尿病神经病变也均未见成效(neuron.2017mar22;93(6):1296-1313)。可见,靶向引起糖尿病并发症的复杂事件中个别事件或靶向导致某一复杂事件的上游信号网络中的某条通路不足以产生治疗糖尿病并发症的显著药效。特别是,获得性线粒体功能障碍还与许多常见疾病有关,如心血管疾病;神经退化性疾病(包括老年痴呆症、帕金森病和多样硬化);代谢紊乱疾病(包括糖尿病和肥胖症)。尽管线粒体在人类健康和疾病中起着核心作用,但对线粒体功能缺陷的治疗却没有成功(natrevdrugdiscov.2013jun;12(6):465–483.scitranslmed.2016feb17;8(326):326rv3.)。

综上所述,防治糖尿病并发症需要新思路——或纠正代谢失衡,或保护线粒体功能并阻断炎症反应和氧化应激。寻找可有效预防和逆转线粒体功能障碍和代谢紊乱的新方法和新药物对防治糖尿病并发症和神经退化性疾病具有重要意义。



技术实现要素:

本发明的目的在于提供一种人参二醇皂苷rb组分(后简称rb组分)在制备防治糖尿病并发症和代谢紊乱相关疾病药物中的应用。是一种通过非依赖血糖水平为作用机制的可纠正糖尿病代谢紊乱并能增强糖尿病患者线粒体功能和氧化还原平衡能力的药物,这种药物还可对抗糖尿病之外的病理因素引起的线粒体损伤及代谢紊乱相关病理症状。也就是说,本发明提供了一种可防治以代谢紊乱特别是线粒体功能障碍为共同病理机制的疾病和病理症状的药物。

所述药物以人参二醇皂苷rb组分(后简称rb组分)为单独活性成分或与其它活性化合物一起与药学上可接受的载体制成的各种药物制剂。所述的rb组分主要包括五种人参二醇皂苷(rb1、rb2、rb3、rc和rd),可选用这五种人参二醇皂苷成分中的一种或两种及以上成分为活性成分;所述其它活性化合物包括各种可降低血糖水平的物质、中药活性物质、天然产物、人工合成化合物和体内活性物质。也可以是rb组分的独立制剂在临床使用时与降糖药物联合使用。

所述五种人参二醇皂苷的总含量占rb组分的50~98%之间,优先≥90%,而rb1、rb2、rb3、rc和rd这五种单体化合物各自的含量分别占rb组分的3~50%之间,优先在≥10~30%之间,但不包括这五种单体化合物的含量同时大于20%的情况。本发明使用的rb组分采用zl201210242928.1中提供的方法制备获得。本领域专业人员应该理解,以这五种成分中的一种及两种以上成分为活性成分制备的药物在治疗糖尿病并发症中的应用也在本专利保护范围之内。

所述代谢紊乱相关疾病包括神经退化性疾病(阿兹海默病,血管性痴呆,帕金森氏综合征,多发性硬化和亨廷顿病)和神经功能紊乱性疾病(包括癫痫、精神分裂症、抑郁症)以及癌症治疗引起的外周和中枢神经病变性症状。所述糖尿病并发症包括各种糖尿病的外周和中枢并发症。

人参二醇皂苷结构式为:

人参皂苷rb1(ginsenosiderb1):r=–d–glucopyranosyl

人参皂苷rb2(ginsenosiderb2):r=–l–arabinopyranosyl

人参皂苷rb3(ginsenosiderb3):r=–d–xylopyranosyl

人参皂苷rc(ginsenosiderc):r=–l–arabinofuranosyl

人参皂苷rd(ginsenosiderd):r=h。

本发明的一些实列研究发现支持了所述rb组分药物制剂防治所述疾病的临床应用。

一、rb组分可显著改善糖尿病并发症

rb组分与低剂量胰岛素联合可显著改善糖尿病“三多,一少”的典型症状,此作用不依赖于血糖水平的降低。“三多,一少”即多尿、多饮、多食和体力、体重下降。这不仅是糖尿病的典型症状,也是糖尿病代谢紊乱的宏观反应。特别是,多食反映了身体不能有效地利用葡萄糖,机体试图通过摄取更多的食物获得能量,而体力和体重下降进一步反映能量不足,机体通过增加对脂肪及蛋白质消耗来产生能量。rb组分和胰岛素单用能显著减少i型糖尿病小鼠饮水量和排尿量,并一定程度恢复体重,而rb组分与胰岛素联合能显著改善糖尿病小鼠“三多一少”。值得提出的是,rb组分对“三多,一少”的改善作用不依赖于血糖水平。长期以来,包括最发达国家在内的全球糖尿病治疗和糖尿病并发症的预防均试图通过严格控制血糖水平来实现,但实践证明仅对1型糖尿病患者获得一定的效果。可见,rb组分这种不依赖于血糖水平降低的改善糖尿病“三多,一少”的药效对防治糖尿病并发症具有特殊的意义,所述研究结果支持了rb组分与各种降糖药联合防治糖尿病并发症的特殊医药应用。

rb组分还可显著促进糖尿病动物的伤口愈合,改善糖尿病动物的运动平衡能力和认知能力,这进一步支持了rb组分防治糖尿病的各种并发症的医药用途。糖尿病足是疾病后期的严重并发症,其主要原因包括1)糖尿病外周感觉神经病变引起的痛觉减弱或消失,使患者失去了自我保护能力从而导致脚部反复受到损伤;2)代谢功能紊乱和/或其他病理状态导致了糖尿病患者对损伤组织的修复功能减弱甚至消失,包括抗感染和慢性炎症的能力减弱。因此,rb组分促进糖尿病动物伤口愈合的药效不仅支持了其防治糖尿病足的医药用途,而且进一步指出rb组分对糖尿病代谢紊乱和其他病理状态的系统改善作用。糖尿病患者运动平衡能力的降低既反映了糖尿病外周感觉神经病变,又是糖尿病患者容易跌倒而骨折的重要原因。而糖尿病患者对新生事物失去兴趣以及探索能力和认知能力的降低反映了糖尿病中枢神经功能紊乱或减退。因此,rb组分改善糖尿病动物运动平衡能力、探索和认知能力的药效支持了rb组分防治糖尿病外周神经病变包括运动感觉神经和自主神经及其相关的并发症(包括神经痛、心血管并发症、消化系统和泌尿系统以及生殖内分泌系统的并发症)和中枢神经病变以及相关的糖尿病脑病(包括记忆减退、睡眠障碍和精神行为障碍)。

二、rb组分可针对糖尿病并发症的核心病理机制,可从根本上治疗糖尿病及其并发症。

首先,rb可以通过非依赖性降血糖机制来抑制糖尿病患者细胞内的多元醇和糖基化代谢通路的激活,而且与低剂量的胰岛素联合可进一步加强此作用。多元醇和糖基化代谢通路的激活不仅是糖尿病患者胞内葡萄糖水平长期升高的结果,也是糖尿病代谢紊乱的重要标志,并直接参与了糖尿病并发症的发生和发展。众所周知,糖基化血红蛋白水平升高不仅是过往高水平血糖的结果也反映了机体长期血糖水平的升高,特别是糖尿病患者体内过量糖基化终产物(age)不仅可以与蛋白质交联,影响蛋白质性能,还可以通过与特异受体结合来改变细胞功能,还可引发氧化应激和炎症反应,从而导致机体的病理变化。而实际上,age与糖尿病肾病、视网膜病变、神经病变、动脉粥样硬化、失眠、阳痿、坏疽、胃轻瘫(胃排空缓慢)等糖尿病并发症的发生发展密切相关。而多元醇代谢通路的激活可大量消耗nadph,从而导致no合成减少或者谷胱苷肽减少,其结果是血管的血流量下降和大量自由基产生,造成神经损伤。另外,神经组织内不含果糖激酶,不能利用葡萄糖通过多元醇通路的中间产物果糖,其结果是造成神经细胞内大量山梨醇和果糖堆积,细胞内高渗,神经细胞肿胀、变性、坏死。综上所述,rb可显著改善糖尿病的代谢紊乱状态,抑制糖基化和多元醇代谢通路相关氧化应激损伤,从而可保护糖尿病患者的各种功能蛋白和组织器官的功能,因此有利于rb组分发挥防治糖尿病各种并发症的作用。

第二,rb组分可逆转糖尿病线粒体功能障碍和能量(atp)不足。2型糖尿病以线粒体功能障碍、高活性氧生成和低水平atp为特征,rb组分不仅可完全逆转这种代谢特征,而且与低剂量的胰岛素联合可将糖尿病线粒体的产能功能提高到强于正常动物的水平。这种强大的线粒体产能功能将有利于各种量能消耗性的生理功能的发挥,包括耗能的日常行走活动、心脏活动和耗能极高的中枢神经活性,从而提高糖尿病患者的机体功能和生活质量。

第三,rb组分可治疗糖尿病的氧化还原系统的疾病,极大地提高糖尿病动物的抗氧化能力,这就进一步增强了rb组分促进糖尿病动物线粒体氧化磷酸化的药理意义。还原性谷胱甘肽(gsh)和将氧化型谷胱甘肽(gssg)还原为gsh的还原型辅酶ⅱ(nadph)是体内最重要的抗氧化损伤的内源性物质。在糖尿病患者中,多元醇通路激活大量消耗nadph将葡萄糖转化为山梨醇,从而减弱还原gssg的能力,同时出现半胱氨酸和甘氨酸(gsh合成的两个重要底物)水平降低,可见gsh再生和从头合成的减少共同导致了2型糖尿病的gsh低水平。与降低糖尿病动物的山梨醇水平一致,rb组分可显著升高糖尿病动物的gsh和nadph水平,而且其作用强度不仅是逆转糖尿病的gsh减少,而是提高它们到显著超过正常动物的水平,但不升高gssg的水平。这些研究结果说明,rb组分显著增强糖尿病动物的内源性抗氧化的能力,胰岛素无此作用。

rb组分不仅可通过抑制多元醇通路,减少nadph的消耗来提高了还原gssg的能力;更重要的是,rb组分可加强糖尿病动物的丝氨酸代谢介导的谷胱甘肽(gsh)的从头生物合成,突出表现在合成通路各环节关键中间产物(包括丝氨酸、半胱氨酸、谷氨酰胺和谷氨酸)水平的升高;rb组分提高nadph水平,说明rb组分也可提高核苷酸的生物合成。特别是,rb通过调控糖代谢网络的作用提高糖尿病的nadph再生能力。糖代谢活动与nadph的再生密切相关,其中丝氨酸介导的一碳单位代谢不仅关联着核苷酸的合成也关联着nadph的再生,磷酸戊糖旁路中的葡萄糖-6-磷酸脱氢酶(g6pd)、苹果酸酶和三羧酸循环中依赖nad的异柠檬酸脱氢酶(idh)在再生nadph中也均扮演着重要的角色。然而,这些酶活力的降低导致了2型糖尿病nadph再生能力的降低和nadph水平降低,并关联着ros生成、dna断裂、脂质过氧化、线粒体损伤和atp水平显著降低。特别是,idh对糖基化极为敏感,糖基化导致2型糖尿病的idh活力受损特别,是nadph降低的重要原因。rb组分可抑制多元醇通路,这一作用既可减少nadph的消耗也可保护idh介导nadph再生活动,还可加强丝氨酸代谢通路介导nadph再生。

综上所述,rb组分可从多个关节环节和通路系统调控糖尿病动物的代谢网络,并能抑制糖尿病的糖基化对代谢网络的损伤,从而提高线粒体氧化磷化能力和抗氧化能力。这种作用机制可逆转糖尿病的代谢紊乱,为rb组分改善“三多,一少”的糖尿病症状和各种并发症提供了作用机制,也强烈提示rb组分可防治其它代谢紊乱相关疾病,包括常见神经退化性疾病。

三、rb组分保护血管内皮细胞免受高血糖水平的损害

糖尿病的血管病变是常见的糖尿病并发症之一,这也是导致糖尿病病人死亡的主要原因之一。血管病变导致的供养和营养的不足几乎参与所有的糖尿病并发症的发生与发展,特别是心血管并发症、脑中风、肾病、失明、神经病变、糖尿病足。而血管内皮细胞的损伤是血管病变的基础。rb组分可显著对抗高糖水平引起的内皮细胞氧化应激损伤。

四、rb组分对非糖尿病引起的线粒体功能障碍及其相关病理症状也有显著的对抗作用,这就支持了rb组分的药物制剂防治以线粒体功能障碍为共同病理机制的疾病

在线粒体呼吸链抑制剂鱼藤酮诱导的非糖尿病神经退化模型中,rb组分可保护神经-胶质-血管单元,抑制小胶质细胞激活和外周炎性细胞侵入介导的神经炎症。已知线粒体功能障碍是化疗药引起神经毒副作用的核心病理机制,在化疗药紫杉醇诱导的外周神经疼痛模型中,rb组分可完全阻断外周神经痛的发生和发展。所述结果说明rb组分对不同治病因素引起的线粒损伤均有保护作用,这就强烈的支持了rb组分的药物制剂防治以线粒体功能障碍为共同病理机制的疾病。

线粒体功能障碍、氧化应激损伤、炎症反应和血管损伤是糖尿病神经病、癌症治疗引起的神经病变和非糖尿病神经退化性疾病(包括老年性痴呆、帕金森氏病和多发性硬化等)的共同病理机制,其中代谢紊乱是核心,因为代谢紊乱既可以诱发也可加重氧化应激损伤、炎症反应和血管损害。此外,线粒体氧化磷酸化能力的降低加上ros生成增加是衰老过程中肌内脂肪累积、胰岛素抵抗和肌肉功能障碍的基础。因此,这些共性病理机制强烈地支持了rb组分的药物制剂防治糖尿病并发症、化疗药引起的神经毒性和神经退化性疾病(如老年性痴呆、帕金森氏病和多发性硬化等)的医药用途,也支持了rb组分的药物制剂防治其它与代谢紊乱相关的疾病包括精神行为障碍性疾病的医药用途。

用rb组分制成的药物制剂包括:口服固体或液体制剂、注射制剂、缓释剂、控释剂、靶向制剂、泡腾剂或以软膏或者乳膏用于局部给药,也可以是例如以栓剂直肠给药,还可以是经鼻腔喷雾制剂。口服制剂包括口服片、含片、咀嚼片、丸剂、滴丸、胶囊、软胶囊、颗粒、口服液、糖浆、乳剂、合剂;针剂包括小针剂、大针剂、粉针剂、乳剂、混悬液。

通常本发明所述的药物组合物可以以常规方法使用本技术领域已知的常规赋形剂或者载体制备。

药学上可以接受的固体赋形剂或者载体包括:淀粉、玉米淀粉、乳糖、蔗糖、碳酸钠、磷酸钙、磷酸二醇、碳酸钙、藻酸、微晶纤维素、明胶;药学上可以接受的液体载体包括例如无菌水、聚乙二醇、非离子表面活性剂(如羟丙基纤维素、吐温)、羟丙基-β-环糊精和油例如玉米油、花生油、芝麻油、橄榄油或者液体石蜡;只要适合活性成分的特性和所需要的特定给药方式。在制备所述药物组合物中通常使用的佐剂也可以包括,例如调味剂、色素、防腐剂(如乙基或丙基-羟基苯甲酸酯)和抗氧化剂例如维生素e、维生素c、bht和bha;以上各种情况还包括药学上可接受的高分子材料。

片剂可以不包衣或者包衣以改变它们的崩解和随后活性成分在胃肠道内的吸收或者增强它们的稳定性和/或外观,在所述后两种情况下可以使用本技术领域已知的常规包衣剂和方法。

用于口服的药物组合物还可以是硬胶囊的形式,其中活性成分与惰性固体赋形剂例如碳酸钙、磷酸钙、微晶纤维、高岭土或者包裹介质,或是软胶囊的形式,其中活性成分与水或者油例如玉米油、花生油、芝麻油、橄榄油、液体石蜡混合或者药学上可接受的高分子材料。

适于注射的药物组合物形式包括无菌水溶液、分散液或者无菌粉(用于临时制备无菌注射液或者分散液)。载体可以是溶剂或者分散介质或者包裹介质,例如水、醇、它们的适当混合物和植物油以及药学上可接受的高分子材料。

本发明中要点及产生的有益效果在于:

本发明提供了一种可针对糖尿病并发症的核心病理机制的药物即rb组分的药物制剂,这类药物可从根本上治疗糖尿病各种并发症。由于rb组分的药物制剂从作用机制上完全不同于现有降糖药物,rb组分药物制剂与现有降糖药物联合使用可产生协同作用。本发明也提供了一种能基于共性病理机,可防治多种重大疾病的药物。线粒体功能障碍诱发了氧化应激和炎症反应,从而进一步加剧代谢紊乱和线粒体损伤。这种恶性连锁反应和瀑布式放大不仅是糖尿病并发症的核心病理机制,也是神经退化性疾病和癌症化疗引起的神经毒副作用的共同病理机制。因此,rb组分的药物制剂可对抗不同致病因素对线粒体的损伤,增强线粒体功能,增强内源性抗氧化应激系统的功能,这就从源头上防治线粒体功能障碍、氧化应激损伤和炎症反应之间的恶性连锁反应和瀑布式放大,从而可防治相关疾病的发生和发展。

糖尿病并发症是导致糖尿病患者致死和致残的主要原因,但至今在全球范围内缺乏安全有效的防治糖尿病并发症的药物。以老年性痴呆为代表的各种神经退化性疾病和癌症治疗引起的神经毒副作用也均是全球的难治性疾病。可见,本发明提供的rb组分药物制剂可为这些疾病的患者提供更加安全有效的药物。

附图说明

图1.半剂量胰岛素及其与rb组分合用组能引起i型糖尿病小鼠短时间内血糖降低。

图2.长期治疗,胰岛素、rb组分单用及其二者联用皆不能降低i型糖尿病小鼠血糖水平。

图3.rb组分及其与胰岛素联用能恢复i型糖尿病小鼠体重。

图4.rb组分及其与胰岛素联用能降低i型糖尿病小鼠饮水量。

图5.rb组分及其与胰岛素合用能降低i型糖尿病小鼠排尿量。

图6.rb组分及其与胰岛素联用可加速糖尿病小鼠创面伤口愈合。

图7.rb组分及其与胰岛素联用可促进糖尿病小鼠创面伤口恢复。

图8.rb组分及其与胰岛素联用可改善糖尿病小鼠平衡功能。

图9.rb组分及其与胰岛素联用可改善糖尿病小鼠认知能力和自主探索能力。

图10.rb组分及其与胰岛素联用可改善糖尿病小鼠好奇心探索能力。

图11.rb组分及其与胰岛素联用可降低糖尿病小鼠红细胞多元醇通路中间物山梨醇蓄积和糖基化代谢通路标志物糖化血红蛋白水平。

图12.rb组分及其与胰岛素联用可升高糖尿病小鼠产能物质atp水平。

图13.rb组分及其与胰岛素联用可升高糖尿病小鼠氧化还原系统关键物质谷胱甘肽(gsh)及其原料物质半胱氨酸(cys)。

图14.rb组分及其与胰岛素联用可改善糖尿病小鼠多元醇代谢关键辅酶nadph水平。

图15.rb组分减少高糖引起的氧化应激,降低内皮细胞及神经细胞损伤。

图16.rb组分对抗线粒体损伤引起的星型胶质细胞、小胶质细胞激活和神经细胞损伤。

图17.rb组分对抗鱼藤酮诱导的帕金森大鼠外周免疫细胞浸润脑内。

图18.rb组分防治化疗药引起的神经疼痛(小鼠热敏仪实验)。

图19.rb组分防治化疗药引起的神经疼痛(大鼠热敏仪实验)。

具体实施方式

通过以下具体实施范例进一步阐述本发明,但不应理解为本发明的范围仅限于以下实施例,应理解上述所实现的内容均属于本发明的范围,依照本发明内容进行的在任何本领域内的替换,均应属于本发明保护范围之内。

实施例1rb组分对i型糖尿病小鼠血糖水平及其代谢特征(多饮、多尿、身体消瘦症状)的影响

方法:用链尿佐菌素(150mg/kg)一次性腹腔注射(i.p.)造成昆明小鼠i型糖尿病模型,此模型动物血糖水平的升高是由于胰岛β细胞破坏导致胰岛素水平的缺乏,此模型引起的糖尿病并发症与持续高血糖和胰岛素信号丢失有关。这就提供了从多个角度考察受试药物对糖尿病代谢状态和并发症的作用及其作用机制的机会。首先,用此模型观测rb组分单独或与胰岛素合用对i型糖尿病动物多饮、多尿和身体消瘦等病理特征的改善作用。将合格的35只小鼠分为正常动物对照组、i型糖尿病模型对照组、胰岛素组(2.5iu/kg)、rb组分(40mg/kg)治疗组,胰岛素和rb组分合用组(2.5iu/kg+40mg/kg),每组7只。胰岛素每天腹部皮下注射给药一次,rb组分每天灌胃给药一次,合用组在皮下注射胰岛素后半小时灌胃rb组分,直至实验结束对照组灌胃等量生理盐水。每天记录各组动物体重、饮水情况,并拍摄动物饲养垫料的潮湿程度以反映动物的排尿量。此外,每周用血糖试纸测定一次血糖,监控随治疗时间延长可能出现的血糖水平的动态变化:测定给药后2小时的血糖水平,以了解药物治疗对血糖水平的直接作用;测定长期给药过程中空腹24小时的血糖水平,以了解药物可能产生的对血糖水平的稳定变化。

结果:

1.rb组分不影响i型糖尿病动物的血糖水平

如图1-2所示,stz大剂量注射造模后,模型组动物血糖水平均大于16.7mmol/l,证明造模成功。首次给药和多次给药后2小时,临床半剂量胰岛素(2.5iu/kg)及其与40mg/kgrb组分合用能快速降低i型糖尿病小鼠血糖水平(***p<0.001vs给药前),但rb组分单独给药不能降低血糖水平。为了测定治疗2周后,各给药组动物血糖水平是否具有改善情况。于前次给药后的24小时测定空腹血糖水平。结果发现,各给药组动物血糖水平与治疗前相比未见显著差别,与模型动物的血糖水平也未见显著差异(p>0.05vs给药前),说明rb组分、胰岛素及其二者合用不能恢复i型糖尿病动物失去的胰岛功能(图1,图2)。

在此要特别指出的是,由于rb组分对血糖水平既没有急性作用也不存在慢性作用,这就设定了rb组分不改变糖尿病动物血糖水平的前提。也就是说,rb组分对糖尿病动物产生的任何药效均不依赖血糖水平的改变,rb潜在的这种作用特点对防治糖尿病并发症具有特殊意义(详见见后续讨论)。

2.rb组分能改善i型糖尿病的代谢特征,而且与胰岛素联合疗效更好

如图3-5所示,糖尿病模型动物出现了临床i型糖尿病患者代谢紊乱的“三多,一少”的典型症状,糖尿病模型组小鼠体重明显低于正常组,而饮水量和排尿量显著高于正常动物。

rb组分和胰岛素单独治疗均降低糖尿病动物的饮水量(++p<0.01vs模型)和排尿量,但对糖尿病的体重丢失未见改善作用,而二者联合治疗则可显著改善各种指标(图3-5)。24小时内,正常动物的垫料基本干燥,而模型组动物垫料80%潮湿。各给药组的动物垫料潮湿度相较于模型组有明显改善,其中胰岛素与rb组分合用组动物的饲料最为干燥(图5)。值得强调的是,各种指标的改善作用随着治疗时间的延长而不断加强,这就说明了这些指标的改善是rb组分和胰岛素联合治疗产生的稳定药效,是一种代谢状态质变的药效反应。可见,研究结果支持了rb组分与胰岛素以及其它降糖药联合防治糖尿病的医药用途。

为了进一步观测rb组分及其与降糖药联合防治糖尿病并发症的可能药效,在实施例1的试验体系里增加了实施例2至实施例8的研究内容。

实施例2rb组分可促进糖尿病动物的损伤修复功能

方法:为了揭示rb组分以及其与降糖药联合治疗对防治糖尿病足的潜在药用价值,利用糖尿病慢性全面创伤模型观测了各组动物的伤口修复情况。在给药治疗5周后,用戊巴比妥钠麻醉动物,而后用电推剪减去较长鼠毛,脱毛膏脱去背部毛发。然后用碘伏消毒背部皮肤,在无菌条件下于背部正中用剪刀造成1.5cm×l.5cm全层皮肤损伤创面,剪至皮下筋膜,创周皮肤酒精消毒后用纱布覆盖。术毕小鼠单笼喂养,自由饮食、饮水,各组动物继续相应药物治疗或处理。分别于造模后(也是伤口治疗后)的第1、3、6、9、12、15天观察伤口愈合情况,统计创伤面积。

结果:如图所示,随着给药时间延长,给药组动物伤口都在快速愈合中。rb组分、胰岛素单用及其两者联合始终保持一个较高的愈合速率,其中rb组分单用优于胰岛素单用,二者合用组愈合速率最快。到给药第10天,rb组分与胰岛素合用组创口愈合率(78±7.3%)与模型组(53±7.2%)已有显著差异(++p<0.01vs模型)(图6)。

在创口愈合后期(给药第14天),观察小鼠伤口皮肤状态发现正常组与合用组皮肤基本愈合,动物表面毛发已经长出,覆盖伤口,但模型组和胰岛素组仍未完全愈合,呈创口暴露及结痂状态(图7)。说明rb组分可改善糖尿病动物的创口愈合速度和伤口愈合状态。

实施例3rb组分可改善糖尿病动物的运动平衡功能—转棒实验

方法:为了揭示rb组分以及其与降糖药联治疗对防治糖尿病外周神经病变的潜在药用价值,考察了各组动物的运动平衡能力。在给药治疗8周后,用转棒仪测定各组动物的运动平衡能力。动物为了不从转动的转棒上掉落下来,必需保持合适的运动速度,因此在转棒上动物维持时间越长,就说明动物的运动平衡能力和运动肌肉能力越强。给药后12小时,将动物放置在疲劳仪上,转速设定为15转/分,实验时间设定为2分钟,启动仪器后仪器将匀加速至设定转速。先给予15s的适应时间,并确保小鼠的头部朝向与转棒旋转的方向相反,且四肢均附着在转棒上。从启动仪器时开始计时,当小鼠从转棒上跌落时,仪器自动停止计时并显示小鼠在转棒上运动的时间,实验者记录该时间。

结果:如图8所示,糖尿病模型组动物在转棒上运动时间(27.6±7.3)显著少于正常组小鼠在转棒上运动的时间(99.2±37.1)(**p<0.01vs模型),说明糖尿病动物的运动平衡能力显著降低。胰岛素单独治疗(19.7±14.1)不能改善i型糖尿病小鼠的运动能力(p>0.05vs模型),rb组分单独治疗(35.8±25.4)呈现出改善小鼠运动平衡能力的趋势,而二者联合用(44.8±11.7)则能显著改善糖尿病动物的运动平衡能力。(+p<0.05vs模型)。

实施例4rb组分可改善糖尿病动物的认知功能—新奇物体识别

方法:为了进一步揭示rb组分及其与降糖药联合防治糖尿病中枢神经病变的潜在药用价值,用新奇事物识别试验观测各组动物对新奇事物的识别能力并考察动物在探索活动中的运动时间来反应小鼠的自主运动能力。在新奇事物识别试验中,动物接触新鲜物体的次数越多或时间越长就说明动物的短期记忆越好,对新鲜事物也越感兴趣,因此新奇事物识别试验可测定动物的认知和记忆水平。在给药治疗8周后,对各组实验动物进行新奇事物识别测试。实验第一部分为适应阶段,两个完全相同的事物(物体1和物体2)放在盒子的相对位置,放入小鼠后让小鼠适应10min。间隔1h后进行第二部分测试阶段,物体1不变(旧事物),物体2更换为物体3(新事物),随后再次放入小鼠探索3min。每只小鼠探索完用酒精擦拭物体与盒子,以消除小鼠停留在物体与盒子上的气味。记录小鼠在每个物体上探索的次数,以及小鼠在盒子旷场中的探索运动时间。用新事物优先指数(新事物优先指数=探索新事物次数/(探索旧事物次数+探索新事物次数)反应小鼠对新事物的探索和短时记忆能力;而小鼠探索过程的运动时间反应小鼠自主运动能力。

结果:如图9所示,与正常动物(0.82±0.07)比较,模型组动物的新事物优先指数显著降低(0.37±0.29)(*p<0.05vs模型),且小鼠自主活动时间(70.8±25.4)也相对于正常动物(143.0±24.9)显著降少(**p<0.01vs模型)。试验结果说明糖尿病动物的记忆能力、探索能力和活动能力的降低,这与糖尿患者的好奇心减弱、认知功能和运动能力降低一致。

胰岛素治疗不能改善i型糖尿病小鼠记忆认知能力(p>0.05vs模型),rb组分单独治疗对新事物优先指数(0.61±0.35)有增加趋势,而且能显著增加糖尿病动物在旷场试验中的探索时间(121±36)(+p<0.05vs模型),rb组分与胰岛素联合治疗则能同时显著提高糖尿病动物的对新事物优先指数(0.74±0.16)(+p<0.05vs模型)及在旷场试验中的探索时间(136.2±18.2)(++p<0.01vs模型),并与正常动物接近。研究结果说明,rb组分特别是与胰岛素联合用药时,可显著改善糖尿病动物的认知记忆功能、探索能力和运动能力。(图9)

实施例5rb组分可改善糖尿病动物的自由探索能力-孔板实验也称洞板实验

方法:为了进一步测定rb作用分及其与胰岛素联合治疗改善糖尿病动物的探索能力的作用,用孔板实验进一步测定了各组动物的探索能力。在孔板实验中,动物钻洞的次数越多,就说明动物的探索能力越强。给药8周后,对小鼠进行洞板实验。实验要求光线较昏暗。洞板实验装置为76cm×76cm的正方形木板,木板内设有16个直径为5cm间距相等的的圆形小孔,孔下方为高约5cm的空心黑箱,木板四周围有高50cm的不透明透明玻璃板以隔离外界环境的影响,实验开始时将老鼠置于正中心,同时开始计时,观察者记录3min内小鼠对黑洞进行探索的次数。记录的标准为以小鼠将头探入洞内的次数。

结果:如图10所示,糖尿病模型动物(15.8±4.08)对黑洞的探索次数显著少于正常动物(34.86±3.34),说明糖尿病动物的探索能力的降低。rb组分(21.2±4.76)和胰岛素(22.61±0.14)单独治疗均能一定程度上增加糖尿病动物的探索次数,但未达到统计学意义,而二者联合治疗rb组分与胰岛素合用治疗(29.2±2.86)可显著升高糖尿病动物的探索次数(+++p<0.001vs模型),并接近正常动物的水平。综合实施例3至实施例5的研究结果,说明rb组分可改善糖尿病动物的神经认知功能和运动功能,与胰岛素联合药效更佳。

讨论与小结(实施例1-5)——rb组分产生的非血糖水平依赖的改善糖尿病“三多,一少”症状、运动平衡能力和认知能力以及促进糖尿病状态下的伤口愈合的作用不仅支持了其防治糖尿病相关并发症的医药用途,而且说明rb组分可全面改善糖尿病代谢紊乱。

糖尿病足是疾病后期的严重并发症,其主要原因包括1)糖尿病外周感觉神经病变引起的痛觉减弱或消失,从而使患者失去了自我保护能力从而导致脚部反复受到损伤;2)代谢功能紊乱和/或其他病理状态导致了糖尿病患者对损伤组织的修复功能的减弱甚至消失,包括抗感染和对抗慢性炎症的能力减弱。因此,rb组分促进糖尿病动物伤口愈合的药效不仅支持了其防治糖尿病足的医药用途,而且进一步指出rb组分对糖尿病代谢紊乱和其他病理状态的系统改善作用。

糖尿病患者运动平衡能力的降低既反映了糖尿病外周感觉神经病变,又是糖尿病患者容易跌倒而骨折的重要原因。而糖尿病患者对新生事物失去兴趣以及探索能力和认知能力的降低反映了糖尿病中枢神经功能紊乱或减退。因此,rb组分改善糖尿病动物运动平衡力能、探索和认知能力的药效强烈地支持了rb组分防治糖尿病外周神经病变包括运动感觉神经和自主神经及其相关的并发症(包括神经痛、心血管并发症、消化系统和泌尿系统以及生殖内分泌系统的并发症)和中枢神经病变以及相关的糖尿病脑病(包括记忆减退、睡眠障碍和精神行为障碍)。

为了进一步确实rb组分全面改善糖尿病代谢紊乱的作用,在上述相同的实验体系中进一步进行了实施例6至实施例8的研究。氧化应激和慢性低度炎症不仅是糖尿病的特征,而且在该病的发病机制和伴随的血管并发症及其它并发症中起重要作用。ros的产生与高血糖和代谢紊乱有关,如多元醇通路和蛋白糖基化的激活和其它机制引起的抗氧化功能受损和抗氧化活性受损。长期暴露于氧化应激状态会引起一系列组织的慢性炎症和纤维化,从而导致相关组织疾病状态的形成和发展。可见,观测糖尿病动物的ros水平、抗氧化系统包括谷胱甘肽(gsh)和nadph水平以及它们的生物合成状态既可反映疾病的代谢紊乱状态,也可反映疾病的程度。同理,观测药物对这些指标的影响,既可反映药物可能存在的纠正糖尿病代谢状态紊乱的作用也可从一个重要的角度反映药物防治糖尿病并发症的作用机制。

实施例6rb组分通过非血糖依赖性的调控糖尿病相关的多元醇和糖基化代谢通路治疗糖尿病并发症

方法:在药物治疗8周后,最后一次给药后24小时,对小鼠眼眶取血后离心,取下层压积红细胞测定山梨醇含量以及糖化血红蛋白含量,以考察糖尿病动物多元醇和糖基化代谢通路的激活情况以及rb组分的作用。以吸光度值(od)表示蛋白糖基化水平。

结果:如图11所示,模型组小鼠红细胞内山梨醇蓄积(15.98±0.66mmol/l),显著高于正常组红细胞山梨醇含量(10.12±2.21mmol/l)(**p<0.01vs正常组),糖基化血红蛋白水平(35.64±5.73)也显著高于正常动物(16.59±6.56)(**p<0.01vs正常组)。研究数据与糖尿病患者山梨醇通路和糖基化激活现象一致,说明本模型动物很好地模拟了糖尿病的代谢紊乱状态。胰岛素治疗可显著降低山梨醇蓄积以及一定程度改善糖基化血红蛋白水平,rb组分治疗也有同样的药理作用,而且二者联合药效进一步加强,特别是二者联合可将山梨醇水平(9.02±2.77)降到正常动物的水平(++p<0.01vs模型组)。基于多元醇通路和蛋白糖基化激活为糖尿病代谢紊乱状态的典型指标,以上研究结果证明rb组分特别是与胰岛素联合治疗可改善糖尿病代谢紊乱状态,并由此推断rb组分对糖尿病代谢紊乱的全面调控作用。这就支持了rb组分防治糖尿病并发症,特别是与降糖药联合防治糖尿病并发症的医药用途。

实施例7rb组分可改善糖尿病小鼠的线粒体能量代谢状态

方法:线粒体功能紊乱和atp水平降低是糖尿病的共同病理特征,也是进一步引发和加重糖尿病并发症的重要原因。因此,在糖尿病模型中,atp水平既可反映药物对代谢状态的作用结果也可反映防治糖尿病并发症的作用机制。给药8周后,取肌肉组织匀浆,匀浆液采用高效液相-质谱联用方法测定小鼠肌肉能量代谢物质水平。测定结果以正常组为单位“1”进行换算。

结果:如图12所示,糖尿病小鼠能量代谢物质atp水平(0.52±0.32)、adp水平(0.61±0.35)相较正常组动物atp(1.00±0.41)、adp(1.00±0.38)呈一定程度下降。胰岛素治疗能显著提高糖尿病动物的atp水平(1.22±0.30)(+p<0.05vs模型组),不显著影响adp水平,说明胰岛素可提高线粒体氧化磷酸化水平,即促进adp转化为atp。研究结果符合胰岛素的生理功能。有趣的是,rb组分能同时显著上调atp(0.88±0.59)和adp(1.48±0.66)(++p<0.01vs模型组),而且上调的幅度有超过正常动物的趋势。而胰岛素和rb组分联合治疗进一步升高糖尿病的atp(2.92±0.37)和adp(2.72±0.30)水平至超于正常动物的水平(+++p<0.01vs模型组,***p<0.01vs正常对照组),说明二者的协同作用。有理由认为,adp水平的升高为线粒体氧化磷酸化提供了更充足的反应底物,也就是说adp和atp水平的同时升高指示着线粒体氧化磷酸化活动和线粒体产能容量的升高。综上所述,rb组分不仅可完全逆转胰岛素缺乏导致的线粒体氧化磷酸化活动受损,而且可增加糖尿病动物线粒体产能的容量。因此,rb组分可完全逆转糖尿病患者的atp缺乏,使之足以为糖尿病患者的工作、日常活动和各器官的功能维持和执行提供能量支持,而且可避免能量缺乏诱导的各种病理事件和恶性循环。胰岛素对rb组分的协同作用不仅符合两种不同作用机制的药理活性物质联合可产生协同作用的理论,而且支持了rb组分与降糖药联合防治糖尿病并发症的医药用途。

实施例8rb组分可增强糖尿病内源性氧化还原的能力,从而可增强对抗外环境来源的氧化损伤

方法:谷胱甘肽(gsh)和nadph在维持体内氧化还原的动态平衡中扮演着至关重要的角色。给药8周后,取肌肉组织匀浆,匀浆液采用高效液相-质谱联用方法测定小鼠肌肉氧化还原系统关键物质谷胱甘肽(gsh)和氧化型谷胱甘肽(gssg)水平,以及谷胱甘肽前体物质甘氨酸(gly)和半胱氨酸(cys)。同时还测定了nadph和nadp+水平,以了解山梨醇通路激活可能代谢的nadph的大量消耗和机体氧化还原状态以及rb组分的作用。测定结果以正常组为单位“1”进行换算。

结果:如图13所示,与正常动物比较,糖尿病小鼠的gsh水平(0.65±0.43)和合成原料半胱氨酸水平(0.66±0.20)显著降低,而gssg未见明显变化。由此可见,糖尿病小鼠合成gsh的功能被减弱。对于nadph水平(图14),模型组较正常组有降低趋势(0.83±0.56vs1.00±0.52),但nadp+水平显著低于正常动物(0.69±0.27vs1.00±0.63),说明糖尿病代谢紊乱状态下可能出现了还原nadp+能力的降低。综上所述研究结果,说明糖尿病动物合成和使用抗氧化物质的能力均受到破坏。而多元醇通路的激活引起的nadph降低进一步挑战了糖尿病动物的抗氧化能力。rb组分治疗可全面逆转糖尿病动物的这种氧化还原系统功能的障碍,而胰岛素无此作用。对于gsh水平,rb组分治疗动物及其与胰岛素合治疗动物均显著高于糖尿病动物(+++p<0.01vs模型组)甚至超过正常动物(rb组分组为1.78±0.41,联合治疗组为1.40±0.32),rb组分治疗及其与胰岛素合治疗还显著升高cys的水平(+++p<0.01vs模型组),但各治疗组不影响糖尿病动物的gssg水平。对于nadph及nadp+水平,rb组分治疗动物显著高于糖尿病小鼠的nadph(1.58±0.36)和nadp+(1.09±0.64)的水平,但rb组分与胰岛素联合治疗可进一步显著升高糖尿病动物的nadp+水平((1.88±0.68)到超过正常动物。胰岛素治疗不能升高gsh、nadph和nadp+的水平,但能一定程度增加cys含量。综上所述,rb组分能通过调控gsh从头合成以及nadph引起的gssg还原全面逆转糖尿病引起的抗氧化物质gsh的降低,恢复糖尿病患者的氧化还原系统功能。

实施例9rb组分减少高糖引起的氧化应激和内皮细胞损伤

方法:为考察rb组分减少高糖引起的内皮细胞损伤的作用,将培养24小时人脐带血管内皮细胞endo分别切换到含高葡萄糖(150mm)的培养基中,以建立内皮细胞高糖损伤模型。实验设置组别包括在正常条件培养不加任何药物处理的正常对照组(con),高糖培养对照组和rb组分处理的高糖条件培养组。在开始高糖条件培养的同时加入不同浓度的rb组分,并继续培养72小时,而后用srb法测定细胞活力;对ros和线粒体膜电位的测定则培养24小时。用dcfh-da探针法测定细胞内活性氧产生量(ros);用jc-1荧光探针法测定细胞线粒体膜电位(mmp),用红色荧光强度与绿色应光强度的比值表示mmp的值,研究数据可说明rb组分对抗高糖引起的氧化应激的作用。

结果:如图15所示,rb组分不明显影响正常条件下培养的细胞活力高浓度葡萄糖导致endo细胞活力下降约12%,而rb组分可完全对抗这种降低。在胞内活性氧检测中,血管内皮细胞endo高糖模型组的ros较正常对照组升高83.6%(***p<0.001),rb组分干预高糖模型后能够逆转ros的升高,即ros产生量显著低于模型组(###p<0.001)并与空白组相当。在线粒体膜电位检测中,血管内皮细胞endo高糖模型组的mmp对比于空白组降低28.9%(***p<0.001),rb组分干预高糖模型后能够逆转mmp的降低,即mmp水平接近空白组。研究结果说明,高糖培养条件可引起血管内皮细胞应激性损伤,rb组分能够降低高糖引起的氧化应激及内皮细胞损伤。

讨论与小结(实施例6-9)—rb组分可防治糖尿病并发症核心病理机制的形成,可从根本上防治糖尿病并发症

研究结果证明,rb具有胰岛素所没有的药理作用,rb不仅可纠正一型糖尿病的代谢紊乱特征,而且可加强糖尿病状态下的线粒体功能和内源性氧化还原平衡系统的功能并达到超过正强动物的水平,这就可为糖尿病患者提供强大的能量支持,从而可完全逆转糖尿病因为能量不足出现的各种临床症状;更加重要的是,可防治线粒体功能障碍引发的氧化应激和炎症反应及后续出现的三者恶性循环和瀑布式放大,从而可从根本上防治糖尿病各种并发症。

实施例10rb组分可对抗线粒体损伤引起的星型胶质细胞、小胶质细胞激活、神经细胞损伤和血脑屏障损伤引起的外周免疫浸润

方法:采用皮下注射线粒体呼吸链抑制剂鱼藤酮诱导大鼠线粒体功能失常的动物模型。由于多巴胺能神经元对线粒体损伤特别敏感,模型动物表出现帕金森氏病的症状,因此模型也被用于帕金森疾病模型。注射时采用低剂量开始,而后每5天递增25%的剂量,而且将一天剂量的一次性给药方式改为平均分配到早晚给一次。具体方法如下:第一个5天造模剂量为0.5mg/kg,第二个5天将剂量增至0.625mg/kg,第3个5天造模剂量为0.75mg/kg,每次给药体积均为0.05ml/100g,早(8:00,am)晚(20:00,pm)各一次。正常对照组每次给予等体积的葵花油。实验中规定,模型动物出现4级及以上行为症状时则停止注射鱼藤酮,若第三个5天后大鼠还有未达到4级行为表现的动物,则按第三个5天的给药剂量继续造模。正常对照组模型组(rotenone),rb组分40(rb40,40mg/kg/day)组。按设定剂量,每天早(7:00,am)晚(19:00,pm)各灌胃给药一次,分别在给鱼藤前60分钟进行,每次剂量为全天量的一半,每次给药体积为0.2ml/100g。正常对照组和鱼藤酮模型对照组给予等体积的生理盐水。给药3周后观测脑内神经炎症、和敏感神经元(黑质纹状体通路)的健康状态。通过心脏灌流4%多聚甲醛以固定脑组织。对脑组织进行冠状切片并进行相关免疫组化实验,考察多巴胺神经元标志物酪氨酸羟化酶(th)、pv中间神经元标志物小清蛋白(pv)、星型胶质细胞标志物胶质纤维酸性蛋白(gfap)、小胶质细胞标志物(iba-1)和成熟巨噬细胞标志物f4/80。

结果:模型组大鼠脑内出现星型胶质细胞和小胶质细胞胞体增大,轴突变粗变短,说明这两种细胞处于应激激活状态(图16),从而产生神经炎症。特别是,模型动物的脑内出现大面积的血管破坏,大量外周巨噬细胞通过损伤血管浸润到脑内(图17)。与此一致的是,模型动物出现黑质纹状体多巴胺通路的损伤,表现为th染色阳性强度减弱,以及纹状体的pv中间神经元丢失。rb组分能显著对抗模型动物出现的各种病理变化,甚至维持在正常状态。研究结果说明,线粒体抑制剂可激活脑内小胶质细胞和星形胶质细胞参与的神经炎症,线粒体抑制剂也可破坏血管导致外周免疫细胞侵袭中枢,从而进一步加重神经炎症并引起神经退化和损伤;rb组分可显著对抗线粒体抑制剂诱导的神经炎症、脑血管损伤和神经损伤。这就支持了rb组分保护线粒体和防治线粒体损伤或功能紊乱引起的相关疾病。

实施例11rb组分对紫杉醇诱导的小鼠神经痛模型的预防作用

方法:本研究采用紫杉醇(2.8mg/kg)隔日(第1,3,5,7天)腹腔注射4次的方法诱导体重20-24g的icr雌性小鼠外周神经痛模型,并用此模型观测rb组分对化疗药物引起的外周神经痛的预防作用。在众多抗肿瘤药中,天然植物类抗肿瘤药所占的比重最大,在2007年上半年植物类抗肿瘤药中紫杉醇以44.1%的份额占据了市场的第一位,紫杉醇类抗肿瘤药已成为人类抗击恶性肿瘤的一线药品。紫杉醇的剂量限制性毒性主要为神经毒性和骨髓抑制,后者已成功通过应用粒细胞集落刺激因子予以克服,但表现为神经病理性疼痛的神经毒性至今仍然困扰着全世界的临床医生,因为这种化疗所致的疼痛对目前任何临床上所使用的镇痛药物都不敏感,常导致一部分患者被迫减量直至停药,从而严重影响化疗效果甚至使化疗归于失败,部分紫杉醇化疗痛并不会因为停药而迅速终止,常常迁延数月甚至数年,严重影响肿瘤患者的生存质量。可见,紫杉醇引起的外周神经疼痛对癌症治疗后的疼痛具有代表性,用紫杉醇紫引起的疼痛动物模型也具有代表性。

用热板法筛选热敏感反应相对均匀的小鼠进行实验。将合格的21只小鼠分为空白对照组(生理盐水组,ip)、紫杉醇模型组和rb组分(40mg/kg,ig)预防治疗组,每组7只。rb组分每天灌胃给药一次,每逢给紫杉醇那天rb组分预先给药2小时。在紫杉醇停药后继续给rb组分,直到实验结束。

每次于下午2-4点用热板实验(52℃±0.3)测定小鼠后爪的热敏反应。将小鼠双侧后爪置于热板仪上,当动物感觉热刺激引起的疼痛时,动物则会出现舔后爪或缩回后抓,记录舔后爪或缩回后抓潜伏期,潜伏期越短,说明痛阈值越低,延长给紫杉醇动物的疼阈值说明对其化疗药诱导的神经疼痛有对抗作用。在结束紫杉醇注射后继续给rb组分并继续测定各组动物的热敏反应。

结果:rb组分对紫杉醇引起的小鼠外周神经疼痛具有显著的抑制作用。如图18所示,在给紫杉醇前,三组动物的后爪回缩潜伏期相当,在给紫杉醇后的第7天、第9天、第11天和第13天,模型组的后爪回缩潜伏期明显短于空白对照组,说明紫杉醇诱导了显著的外周神经疼痛(**p<0.01,***p<0.001);rb组分组的第7天和以后各时间点的潜伏期均明显长于模型组(**p<0.01,***p<0.001)。以上实验结果支持了rb组分防治癌症治疗后疼痛特别是化疗药引起的外周神经疼痛的临床使用价值。

实施例12rb组分对紫杉醇诱导的大鼠神经痛模型的预防作用

方法:本研究采用紫杉醇(2mg/kg,ip)隔日(第1,3,5,7天)腹腔注射4次的方法诱导体重300-330g的sd雄性大鼠神经痛模型,并用此模型观测rb组分对此神经痛的预防作用。用热板法对14只大鼠进行热敏感筛选,将合格的12只大鼠分为紫杉醇组和rb组分(30mg/kg,ig)预防治疗组,每组6只。rb组分每天灌胃给药一次,每逢给紫杉醇那天rb组分预先给药2小时。

每次于下午2-4点用热板实验(52℃±0.3)测定大鼠后爪的热敏反应。将大鼠双侧后爪置于热板仪上,当动物感觉热刺激引起的疼痛时,动物则会缩回后抓,记录从大鼠后爪接触热板到缩回前抓的时间(秒)即热反应潜伏期,潜伏期越短说明痛阈值越低,延长给紫杉醇动物的疼阈值说明对其化疗药诱导的神经疼痛有对抗作拥。在结束紫杉醇注射后继续给rb组分并继续测定各组动物的热敏反应。

结果:rb组分对紫杉醇引起的大鼠外周神经疼痛具有显著的抑制作用。如图19所示,在给紫杉醇前,两组动物的后爪回缩潜伏期相当,在给紫杉醇后的第六天、第8天、第11天和第15天,模型组的后爪回缩潜伏期明显短于给紫杉醇前,说明紫杉醇诱导了显著的外周神经疼痛(##p<0.01,###p<0.001);rb组分组的第6天和以后各时间点的潜伏期均明显长于模型组(**p<0.01,***p<0.001)。以上实验结果进一步支持了rb组分防治癌症治疗后疼痛特别是化疗药引起的外周神经疼痛的临床使用价值。

讨论与小结(实施例11,12)—rb组分对不同病理机制的线粒体损伤均有保护作用并发挥相应的药理作用

鱼藤酮是线粒体氧化磷酸化的抑制剂,通过减少atp的产生继而引起中枢神经系统氧化应激损伤、兴奋性毒性和炎症反应的病理事件,最终导致神经损伤和脑血管损伤,从而出现各种病理症状,包括运动系统功能和认知功能受损。线粒体损伤是紫杉醇和其它化疗药引起神经毒性的共同病理机制,而外周神经痛是其毒副作用的症状表现。rb组分对抗鱼藤酮引起的神经炎症、脑血管损伤和神经损伤的作用以及对抗紫杉醇引起的外周神经痛的作用,充分证明rb组分对不同病因引起的线粒体损伤均有保护作用,这就进一步支持了rb组分防治以线粒体功能受损为共性病理机制的外周和中枢疾病。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1