纳米阻燃尼龙纤维的制备方法与流程

文档序号:14891969发布日期:2018-07-07 19:04阅读:376来源:国知局

本发明涉及尼龙纤维制备领域,尤其是涉及纳米阻燃尼龙纤维的制备方法。

技术背景

尼龙是美国杰出的科学家卡罗瑟斯(carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个非常重要里程碑。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,尼龙6在3类致癌物清单中。

尼龙-66即聚己二酰己二胺,是一种热塑性树脂,白色固体,密度1.14,熔点253℃,不溶于一般溶剂,仅溶于间苯甲酚、加酸等。机械强度和硬度很高,刚性很大。聚酰胺纤维(脂肪族)的主要品种有尼龙66和尼龙6,后者又称锦纶。它们强度高,回弹性好,耐磨性在纺织纤维中最高,耐多次变形性和耐疲劳性接近于涤纶,高于其他纤维。它们有良好的吸温性。聚酰胺纤维长丝可制做袜子、内衣、衬衣、运动衫、滑雪衫、雨衣等;短纤维可与棉、毛和粘胶纤维混纺,使织物具有良好的耐磨性和强度。还可用作尼龙搭扣、地毯、装饰布等。工业上主要用于制造帘子布、传送带、渔网、缆绳等。



技术实现要素:

本发明的目的在于提供纳米阻燃尼龙纤维的制备方法,本制备方法简单易行,成本低廉,纳米尼龙纤维的拉伸模量较高,同时具有优良的阻燃效果,纤维的手感、柔顺度较好。

本发明针对

背景技术:
中提到的问题,采取的技术方案为:纳米阻燃尼龙纤维的制备方法,包括:配置纺丝液、纺丝、酶洗、制胶、涂胶,具体包括以下步骤:

配置纺丝液:在63-67℃温度下,将聚己二酰己二胺溶解于甲酸中,以120-200r/min搅拌速度匀速搅拌,溶质完全溶解后制得浓度为1.4×10-3-2.2×10-3mol/l的尼龙66纺丝溶液;纺丝溶液浓度太大,静电纺丝时电场力拉伸液滴所要克服的表面张力就越大,很难分裂出更多更细的细流,最终导致纤维的直径增加,同时纺丝溶液浓度越大,其黏度也就越大,不仅增大了分散难度,还易在喷针处形成凝结,造成不可纺丝;而纺丝溶液浓度较低,溶液黏度相对就低,喷针处的射流不稳定,得不到连续性的射流,会形成直径不均匀的珠状纤维;

纺丝:将注射器针头与高压静电发生器输出端相连,用注射器抽取纺丝溶液置于静电纺丝装置上,控制纺丝电压为20-48kv,接收距离为10-15cm,可以制得直径为30-200nm的纳米尼龙纤维,尼龙纤维的拉伸模量可达3.3-3.8gpa;静电纺丝设备简单、操作时间短、用量少,在尼龙纤维的拉伸过程中,大分子或聚集态结构单元发生变化,并沿着纤维轴取向排列,原来分子杂乱排列的松散结构转变为分子排列整齐的规整结构,分子间的作用力增加,这就提高了纤维抵抗外力作用下的变形能力,使纤维的拉伸模量增加;

酶洗:配制酶溶液组分与浓度为:纤维素酶2-3g/l、淀粉酶1-2g/l、漆酶0.5-0.6g/l、渗透剂0.2-0.3g/l,酶溶液的ph值为6.2-6.6,按固液比1:6-8将尼龙纤维放入酶溶液中,升温至63-65℃,酶洗60-90分钟,取出纤维以清水冲洗4-5遍,烘干,备用;渗透剂为重量比为18.6-18.8:1的(r)-(+)-对甲苯亚磺酰乙酸与(s)-(+)-对甲苯亚磺酰乙酸的混合物;渗透剂中特定配比的(r)-(+)-对甲苯亚磺酰乙酸与(s)-(+)-对甲苯亚磺酰乙酸具有协同增益作用,该增益作用能够改变尼龙纤维表面的渗透压,打开纤维内部通道,使酶制剂能够在纤维上的分布和结合更均匀,使杂质能够更多、更快的被酶制剂水解,缩减酶洗时间,提高生物酶洗的效率,且不影响纤维的性能,该步骤采用复合酶制剂,其中各种酶组分之间相互协同作用,使杂质能够被更多、更快的水解,改善纤维的手感、柔顺度,且酶洗残液中含有水生动、植物所需的营养物质,从而可保护自然环境;

制胶:称取12-15份油性聚氨酯分散液、3-6份阻燃剂、2-5份硬脂酸盐、0.6-0.8份脂肪族聚氨酯分散剂、0.02-0.04份起泡剂、0.01-0.02份增稠剂混合均匀得胶料,将配制好的胶料在容器中混合搅拌,并在泡沫发生器中进行发泡处理;胶料中各物质的电性对抗较小,协调性较好,能够提高涂层的稳定性,延长涂层的阻燃能力与阻燃时效,增加纳米尼龙纤维的阻燃效果,提升价值,降低成本;

涂胶:选用泡沫施加装置在尼龙纤维表面进行发泡阻燃涂层,涂胶量为58-60g/m2,涂覆完成后将纤维在103-105℃温度下进行定型烘干即得具有优良阻燃性能的尼龙纤维;发泡涂层的方式可以明显减少涂层过程中胶液渗入纤维内部的量,有利于提高涂层的均匀性,与传统的刮刀涂层相比,这种方式既可以减少阻燃胶的涂层量,又可以改善纤维织成面料后的手感、舒适性和柔顺度,同时面料又具备优良的阻燃性能。

作为优选,阻燃剂为磷酸甲苯-二苯酯或磷酸三甲苯酯或磷酸三苯酯或磷酸三丁酯或三(2-丁氧乙基)磷酸酯或磷酸(2-乙基己基)-二苯酯或双酚a-双(二苯基磷酸酯)或间苯二酚(二苯基磷酸酯)或氯丹酸酐;阻燃剂阻燃效果优良,对机体危害性较低,在不影响纤维性能的前提下大大增加纤维的阻燃能力。

作为优选,硬脂酸盐为硬质酸钠或硬脂酸镁或硬脂酸钾或硬脂酸锂或硬脂酸钙或三盐基硫酸铅或或二盐基亚磷酸铅或硬脂酸钡;硬脂酸盐可以起到稳定涂胶组分的作用。

作为优选,起泡剂为乙二醇乙醚醋酸酯或桉树油或樟脑油或松油或1,3-二甲基丁醇或聚丙烯乙二醇醚;起泡剂可以起到表面活性剂的作用,呈现出特有的界面活性,能显著改变涂层性质。

作为优选,增稠剂为双硬脂酸铝或羟乙基纤维素或海藻酸钠或聚乙烯吡咯烷酮或聚氧化乙烯或羟丙基甲基纤维素或丙烯酸-甲基丙烯酸均聚物;增稠剂可以有效增大涂层的粘性,增强涂层与纤维的附着力。

与现有技术相比,本发明的优点在于:

1)渗透剂具有协同增益作用,该增益作用能够改变尼龙纤维表面的渗透压,打开纤维内部通道,使酶制剂能够在纤维上的分布和结合更均匀,使杂质能够更多、更快的被酶制剂水解,缩减酶洗时间,提高生物酶洗的效率,且不影响纤维的性能;

2)发泡涂层的方式可以明显减少涂层过程中胶液渗入纤维内部的量,有利于提高涂层的均匀性,与传统的刮刀涂层相比,这种方式既可以减少阻燃胶的涂层量,又可以改善纤维织成面料后的手感、舒适性和柔顺度,同时面料又具备优良的阻燃性能。

具体实施方式

下面通过实施例对本发明方案作进一步说明:

实施例1:

纳米阻燃尼龙纤维的制备方法,包括以下步骤:

1)配置纺丝液:在63℃温度下,将聚己二酰己二胺溶解于甲酸中,以120r/min搅拌速度匀速搅拌,溶质完全溶解后制得浓度为1.4×10-3mol/l的尼龙66纺丝溶液;纺丝溶液浓度太大,静电纺丝时电场力拉伸液滴所要克服的表面张力就越大,很难分裂出更多更细的细流,最终导致纤维的直径增加,同时纺丝溶液浓度越大,其黏度也就越大,不仅增大了分散难度,还易在喷针处形成凝结,造成不可纺丝;而纺丝溶液浓度较低,溶液黏度相对就低,喷针处的射流不稳定,得不到连续性的射流,会形成直径不均匀的珠状纤维;

2)纺丝:将注射器针头与高压静电发生器输出端相连,用注射器抽取纺丝溶液置于静电纺丝装置上,控制纺丝电压为20kv,接收距离为10cm,可以制得直径为30nm的纳米尼龙纤维,尼龙纤维的拉伸模量可达3.3gpa;静电纺丝设备简单、操作时间短、用量少,在尼龙纤维的拉伸过程中,大分子或聚集态结构单元发生变化,并沿着纤维轴取向排列,原来分子杂乱排列的松散结构转变为分子排列整齐的规整结构,分子间的作用力增加,这就提高了纤维抵抗外力作用下的变形能力,使纤维的拉伸模量增加;

3)酶洗:配制酶溶液组分与浓度为:纤维素酶2g/l、淀粉酶1g/l、漆酶0.5g/l、渗透剂0.2g/l,酶溶液的ph值为6.2,按固液比1:6将尼龙纤维放入酶溶液中,升温至63℃,酶洗60分钟,取出纤维以清水冲洗4遍,烘干,备用;渗透剂为重量比为18.6:1的(r)-(+)-对甲苯亚磺酰乙酸与(s)-(+)-对甲苯亚磺酰乙酸的混合物;渗透剂中特定配比的(r)-(+)-对甲苯亚磺酰乙酸与(s)-(+)-对甲苯亚磺酰乙酸具有协同增益作用,该增益作用能够改变尼龙纤维表面的渗透压,打开纤维内部通道,使酶制剂能够在纤维上的分布和结合更均匀,使杂质能够更多、更快的被酶制剂水解,缩减酶洗时间,提高生物酶洗的效率,且不影响纤维的性能,该步骤采用复合酶制剂,其中各种酶组分之间相互协同作用,使杂质能够被更多、更快的水解,改善纤维的手感、柔顺度,且酶洗残液中含有水生动、植物所需的营养物质,从而可保护自然环境;

4)制胶:称取12份油性聚氨酯分散液、3份磷酸甲苯-二苯酯、2份硬质酸钠、0.6份脂肪族聚氨酯分散剂、0.02份乙二醇乙醚醋酸酯、0.01份双硬脂酸铝混合均匀得胶料,将配制好的胶料在容器中混合搅拌,并在泡沫发生器中进行发泡处理;胶料中各物质的电性对抗较小,协调性较好,能够提高涂层的稳定性,延长涂层的阻燃能力与阻燃时效,增加纳米尼龙纤维的阻燃效果,提升价值,降低成本;

5)涂胶:选用泡沫施加装置在尼龙纤维表面进行发泡阻燃涂层,涂胶量为58g/m2,涂覆完成后将纤维在103℃温度下进行定型烘干即得具有优良阻燃性能的尼龙纤维;发泡涂层的方式可以明显减少涂层过程中胶液渗入纤维内部的量,有利于提高涂层的均匀性,与传统的刮刀涂层相比,这种方式既可以减少阻燃胶的涂层量,又可以改善纤维织成面料后的手感、舒适性和柔顺度,同时面料又具备优良的阻燃性能。

实施例2:

纳米阻燃尼龙纤维的制备方法,包括以下步骤:

1)在67℃温度下,将聚己二酰己二胺溶解于甲酸中,以200r/min搅拌速度匀速搅拌,溶质完全溶解后制得浓度为2.2×10-3mol/l的尼龙66纺丝溶液;2)将注射器针头与高压静电发生器输出端相连,用注射器抽取纺丝溶液置于静电纺丝装置上,控制纺丝电压为48kv,接收距离为15cm,可以制得直径为200nm的纳米尼龙纤维,尼龙纤维的拉伸模量可达3.8gpa;3)配制酶溶液组分与浓度为:纤维素酶3g/l、淀粉酶2g/l、漆酶0.6g/l、渗透剂0.3g/l,酶溶液的ph值为6.6,按固液比1:8将尼龙纤维放入酶溶液中,升温至65℃,酶洗90分钟,取出纤维以清水冲洗5遍,烘干,备用;渗透剂为重量比为18.8:1的(r)-(+)-对甲苯亚磺酰乙酸与(s)-(+)-对甲苯亚磺酰乙酸的混合物;4)称取15份油性聚氨酯分散液、6份氯丹酸酐、5份硬脂酸钾、0.8份脂肪族聚氨酯分散剂、0.04份松油、0.02份羟乙基纤维素混合均匀得胶料,将配制好的胶料在容器中混合搅拌,并在泡沫发生器中进行发泡处理;5)选用泡沫施加装置在尼龙纤维表面进行发泡阻燃涂层,涂胶量为60g/m2,涂覆完成后将纤维在105℃温度下进行定型烘干即得具有优良阻燃性能的尼龙纤维;发泡涂层的方式可以明显减少涂层过程中胶液渗入纤维内部的量,有利于提高涂层的均匀性,与传统的刮刀涂层相比,这种方式既可以减少阻燃胶的涂层量,又可以改善纤维织成面料后的手感、舒适性和柔顺度,同时面料又具备优良的阻燃性能。

实施例3:

纳米阻燃尼龙纤维的制备方法,包括:配置纺丝液、纺丝、酶洗、制胶、涂胶,具体包括以下步骤:

配置纺丝液:在65℃温度下,将聚己二酰己二胺溶解于甲酸中,以140r/min搅拌速度匀速搅拌,溶质完全溶解后制得浓度为2.0×10-3mol/l的尼龙66纺丝溶液;纺丝溶液浓度太大,静电纺丝时电场力拉伸液滴所要克服的表面张力就越大,很难分裂出更多更细的细流,最终导致纤维的直径增加,同时纺丝溶液浓度越大,其黏度也就越大,不仅增大了分散难度,还易在喷针处形成凝结,造成不可纺丝;而纺丝溶液浓度较低,溶液黏度相对就低,喷针处的射流不稳定,得不到连续性的射流,会形成直径不均匀的珠状纤维;

纺丝:将注射器针头与高压静电发生器输出端相连,用注射器抽取纺丝溶液置于静电纺丝装置上,控制纺丝电压为35kv,接收距离为12cm,可以制得直径为50nm的纳米尼龙纤维,尼龙纤维的拉伸模量可达3.5gpa;静电纺丝设备简单、操作时间短、用量少,在尼龙纤维的拉伸过程中,大分子或聚集态结构单元发生变化,并沿着纤维轴取向排列,原来分子杂乱排列的松散结构转变为分子排列整齐的规整结构,分子间的作用力增加,这就提高了纤维抵抗外力作用下的变形能力,使纤维的拉伸模量增加;

酶洗:配制酶溶液组分与浓度为:纤维素酶2.5g/l、淀粉酶1.5g/l、漆酶0.5g/l、渗透剂0.2g/l,酶溶液的ph值为6.3,按固液比1:7将尼龙纤维放入酶溶液中,升温至64℃,酶洗65分钟,取出纤维以清水冲洗4遍,烘干,备用;渗透剂为重量比为18.6:1的(r)-(+)-对甲苯亚磺酰乙酸与(s)-(+)-对甲苯亚磺酰乙酸的混合物;渗透剂中特定配比的(r)-(+)-对甲苯亚磺酰乙酸与(s)-(+)-对甲苯亚磺酰乙酸具有协同增益作用,该增益作用能够改变尼龙纤维表面的渗透压,打开纤维内部通道,使酶制剂能够在纤维上的分布和结合更均匀,使杂质能够更多、更快的被酶制剂水解,缩减酶洗时间,提高生物酶洗的效率,且不影响纤维的性能,该步骤采用复合酶制剂,其中各种酶组分之间相互协同作用,使杂质能够被更多、更快的水解,改善纤维的手感、柔顺度,且酶洗残液中含有水生动、植物所需的营养物质,从而可保护自然环境;

制胶:称取14份油性聚氨酯分散液、5份磷酸三丁酯、3份硬脂酸锂、0.7份脂肪族聚氨酯分散剂、0.03份聚丙烯乙二醇醚、0.015份海藻酸钠混合均匀得胶料,将配制好的胶料在容器中混合搅拌,并在泡沫发生器中进行发泡处理;胶料中各物质的电性对抗较小,协调性较好,能够提高涂层的稳定性,延长涂层的阻燃能力与阻燃时效,增加纳米尼龙纤维的阻燃效果,提升价值,降低成本;

涂胶:选用泡沫施加装置在尼龙纤维表面进行发泡阻燃涂层,涂胶量为58g/m2,涂覆完成后将纤维在104℃温度下进行定型烘干即得具有优良阻燃性能的尼龙纤维;发泡涂层的方式可以明显减少涂层过程中胶液渗入纤维内部的量,有利于提高涂层的均匀性,与传统的刮刀涂层相比,这种方式既可以减少阻燃胶的涂层量,又可以改善纤维织成面料后的手感、舒适性和柔顺度,同时面料又具备优良的阻燃性能。

本发明操作步骤中的常规操作为本领域技术人员所熟知,在此不进行赘述。

以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1