复合纤维和隔膜的制备的制作方法

文档序号:1696433阅读:351来源:国知局
专利名称:复合纤维和隔膜的制备的制作方法
技术领域
本发明涉及用于例如氯碱电解的复合纤维和隔膜的制备方法。
自氯化钠制备苛性苏打和氯的氯碱电解槽基本有两种类型汞和隔膜。在隔膜方法中,多孔隔膜将阳极室和阴极室隔开。氯化钠水溶液从阳极室流过隔膜进入阴极室,其中在钢阴极上产生氢气。废电池液包括氢氧化钠以及氯化钠。以气体形式在阳极得到产生的氯。目前的隔膜电池特征是可调节的、活泼的钛阳极和更倾向于用合成聚合物纤维致密的隔膜代替传统的石棉隔膜。
形成隔膜的基本结构是拥有无机材料的有机聚合物纤维。制备这种隔膜或者制备用于制造该隔膜的复合材料的各种方法是公知的。
US4680101公开一种制备隔膜的方法将一种聚四氟乙烯(PTFE)原纤维分散体、聚丙烯纤维和一种全氟离子交换材料在水中混合,并将这种浆料涂覆到用纤维素滤纸覆盖的穿孔钢板阴极上。去除挥发物后在120-130℃干燥隔膜,冷却后用部分水解的烷氧化(alkoxide)硅和烷氧化锆溶液浸渍。再次干燥隔膜。
EP-B-0 196317公开一种制备纤维复合材料的方法,使用球磨将PTFE分散体与二氧化锆和氯化钠进行热混合,其中最初引起分散介质的逸出。混合后使所得产物与所用球磨介质分离。它包括不规则形状的、由所用PTFE和微细分散二氧化锆组合物构成的部分支化纤维。第二种无机材料氯化钠协助纤维形成,并可在随后的应用之前或应用其间被盐水溶出。然后将所得纤维用于制备隔膜。现有技术的隔膜总是不能展现所要求的高抗流性,而高抗流性能防止电解期间得到的氢氧化物回混。因此所得隔膜不是在所有应用中都具有足够的质量。
不是所有上述方法的变体都适合制造氯碱电解隔膜所用的纤维。不是任何只要支化的纤维都能用于制造氯碱电解隔膜。自这种纤维得到的隔膜并不总是具有所要求规定的抗流性。
隔膜的抗流性决定盐水通过隔膜的流速。流速还取决于使盐水通过隔膜的压力。在这方面,这种压力可通过供给盐水和流出阴极液之间的水压差来调节。合适的数值范围例如是20-70cm液柱。这种流速本身又直接影响所得腐蚀剂的浓度。另外,施加的电流密度不影响最佳流速。所得腐蚀剂的浓度范围应是100-150g/L。在这方面,例如要求流速为20-30L/m2h且电流密度为2-2.5kA/m2。
制备纤维时使用球磨会带来分散体中因不完全除去水的问题。所述不完全除去水会使所用的钢磨球生锈,亦即PTFE将会聚在钢磨球的生锈的粗糙表面上的情况,影响纤维的适当形成。为了克服这个问题,不得不在另个装置内混合及干燥原料。这就加大了工艺成本。另外,在球磨步骤后期,必须将所用磨球与纤维分开,这种分开步骤也是昂贵的,例如采取的过筛形式。
本发明的一个目的是提供一种制备这种复合纤维的方法,该复合纤维允许制造满足氯碱电解槽技术要求所规定抗流性的隔膜。
我们发观,通过本发明复合纤维的制备方法就可实现这个目的,该方法包括(a)将PTFE或PTFE共聚物分散体或粉末与微细无机材料和纤维形成材料进行混合,(b)如果使用PTFE或PTFE共聚物分散体,将所得混合物切变(shear)加热到一定温度,使切变的PTFE或PTFE共聚物变得可以流动但并不出现分解迹象,同时能够去除分散介质,(c)将混合物冷却到70℃以下,(d)将混合物在70℃以下混合切变形成复合纤维。
本发明提出,对PTFE或PTFE共聚物、微细无机材料和纤维形成材料的混合物尤其在低于70℃时进行切变,得到纤维允许制备具有规定抗流性的改进隔膜。
步骤(b)的加热优选高于70℃,更优选高于100℃,特别优选在130-180℃。从而形成粗群纤维纱。步骤(c)的冷却和步骤(d)的切变每个都优选在20-60℃进行。步骤(d)中较低的温度由于材料刚性增大而使混合和切变更加困难。在这个步骤中,进行材料的切断和分离成可自由流动的纤维。
本发明进一步提出,步骤(d)中混合物的切变优选在Froude数大于1的混合器中进行。这就要求该步骤中使用的混合器具有大于1的Froude数。在这种情况下,就没必要分别在步骤(c)和步骤(d)中进行冷却。
Froude数是混合强度的测量并定义为Fr=rw2/g,其中w=2π·f,f=频率,r=半径,g=万有引力常数。频率由混合器具的速度决定。半径是混合器具和轴之间的最大距离。
合适混合器的实例有如Eirich混合器,环管混合器,回路环带(ring layer)混合器和DRAIS混合器。同样可以使用另外安装断续器的Ldige混合器,从而得到大于1的Froude数。特别优选的高强度混合器是Eirich混合器,其特征在于它有一个旋转混合罐和一个可选择正转或反转的混合工具旋转器。混合工具能达到高于2000rpm的高转速。混合工具是旋转类或搅拌类的器具,可有相反的几何形状并且确保完全混合并输入高量级的混合能量。壁刮板可防止材料粘着在器具壁上。Eirich高强度混合器由Maschinenfabrik Gustav Eirich,Hardheim,Germany提供。
本方法优选在能够加热的真空混合器中进行。真空混合器由Eirich提供。这些混合器可进行所谓的(Eirich的)EVACTHERM工艺。
这些混合器的加热通过直接导入混合物的蒸汽或热气流,并通过混合器的加热套管来进行。同样,用蒸汽加热的套管的温度可通过加压或降压来进行调节。这些混合器的特殊优点是能够快速冷却内含物。通过注入水及随后排放可以将混合器内含物冷却到所要求的温度(低于70℃)。本发明还涉及制备复合纤维时使用Froude数大于1的这些类型的混合器。
常规混合器如Brabender混合器、Banbury混合器和Houbart混合器或球磨机不能得到Froude数大于1。特别是球磨机另外还有背景技术中所述缺点。
本发明方法可提供干燥并可自由流动的纤维。尤其是在步骤(d)中使用高强度混合器就能实现。前述高强度混合器还特别优选在本发明方法的步骤(b)中使用。本发明方法的所有步骤都特别优选在一个并且同样是高强度混合器中进行,这样在加工期间就无需任何输送器。所得干燥并可自由流动的纤维可简单地从混合器中去除。同球磨机相比,可以免除昂贵的磨球与纤维的分离。本方法多步骤的特性,特别是高温下的干燥和形成纤维以及低温粉碎纤维,允许以特定方式控制纤维的特性,使得调整所制备隔膜的抗流性成为可能。
步骤(a)所用的PTFE或PTFE共聚物分散体优选是水分散体。在与微细无机材料和纤维形成材料混合之后,步骤(b)包括通过加热去除优选是水的分散介质,并通过切变来开始形成纤维。在步骤(c)使混合物冷却之后,步骤(d)包括通过粉碎研磨纤维以得到本发明自由流动的纤维材料。
所用纤维形成材料优选一种碱金属盐或碱土金属盐。优选碱金属卤化物或碱土金属卤化物。特别指出优选氯化钠,氯化镁,氯化钙或碳酸钠,其中特别优选氯化钠。90wt%颗粒的粒度优选低于300μm,更优选低于200μm,特别优选低于100μm。粒度分布一般优选如下10%<5μm,50%<40μm,90%<80μm。
所用微细无机材料可以是一种在氯碱电解条件下化学稳定的无机材料。它必须对强碱、酸和诸如氯的氧化介质稳定。所用微细无机材料优选一种氧化物,碳化物,硼化物,硅化物,硫化物,氮化物或诸如ZrSiO4的硅酸盐或硅铝酸盐或铝酸盐,除石棉外,特别优选过度金属氧化物。该材料应该在酸和碱性水介质中是稳定的。特别优选使用氧化锆。微细无机材料的平均粒度优选低于100μm,更优选低于40μm,特别优选低于10μm。优选的粒度分布如下10%<0.5μm,50%<1.2μm,90%<5.7μm。另一个优选分布是10%<0.63μm,50%<1.74μm,90%<10.18μm。
PTFE或PTFE共聚物分散体的制备是将PTFE或PTFE共聚物在分散剂特别是非离子表面活性剂以1-10wt%的量(基于PTFE或PTFE共聚物)存在下优选在水中进行分散。
优选的分散体是通过乳液聚合制备的。固体含量范围优选30-80%,特别优选50-70%。分散体的粘度范围在4000/s切变速度时为7-13mPa·s。粒度范围优选在100-500nm之内,特别优选150-300nm。
优选的分散体有如下性能<
>用于本发明的PTFE或PTFE共聚物粉末的堆积密度范围优选是300-1000kg/m3,更优选400-600kg/m3。平均粒度范围优选20-1000μm,更优选250-700μm。该粉末优选是自由流动的,特别优选粉末的平均粒度是大约500μm且堆积密度是约500kg/cm3。PTFE或PTFE共聚物粉末可在使用前分散在分散介质内。
在某些情况下加入水来减少所用PTFE分散体的固体含量,以便得到所要求的浓度是有益的。不可能预料必须的水量。水的用量要与单独每种情况相适应(例如当使用60%分散体时水用量为2-30%,更优选5-10%)。
也可使用PTFE或PTFE共聚物粉末而不是首先分散在分散介质内。其优点是无需除去分散介质。然而虽然如此但还是优选向粉末加入基于PTFE重量其量为1-15%的表面活性剂。在步骤(a)混合各成分期间或之后但至少在加热[步骤(b)]之前添加表面活性剂。所用表面活性剂优选是非离子表面活性剂。它们优选是这样的化合物,基于含有10-18碳原子的羰基合成醇或脂肪醇,烷基酚,脂肪酸或脂肪酸酰胺,它们全都含有3-20个环氧乙烷单位的聚环氧乙烷基,或者它们是基于烷氧化油酸、烷氧化脂肪醇、烷氧化脂肪酸或烷氧化烷基酚这样的表面活性剂。特别优选的是使用基于带有6-20个环氧乙烷单位的聚环氧乙烷基的烷基酚表面活性剂(例如来自BASF的LutensolAP6)。
可使用改性的PTFE类型用作PTFE。改性的PTFE含有少量合适的共聚单体。合适的共聚单体例如是六氟丙烯,全氟(丙基乙烯基醚),乙烯,氯代三氟乙烯,1,1-二氟乙烯。优选采用全氟化的共聚单体。改性的PTFE粉末可从Dyneon得到,商标HostaflonTFM。它们含有低于1%的共聚单体。
PTFE共聚物可含有例如7-8mol.%的大量共聚单体。其中可采用US 5192473公开的优选共聚单体六氟丙烯(FEP)和全氟(丙基乙烯基醚)(PFA)。
PTFE或PTFE共聚物对无纤维形成材料的微细无机材料重量比范围优选为0.2-0.6特别优选0.25-0.5,尤其是0.28-0.43。
下面详述本发明优选实施方案将微细无机材料和纤维形成材料引入Eirich混合器并进行简单混合。然后使混合器的滚筒旋转,接通旋转器,之后加入PTFE或PTFE共聚物分散体。能以任何所需要的顺序加入各成分。无论添加的顺序如何总要接通旋转器,以便进行充分混合。
随后关断旋转器或调节到适当程度例如450Upm,令混合罐优选以不高于100rpm的低速旋转,同时将混合物加热到所要求的温度。形成纤维的温度范围取决于所用材料。该温度一般高于70℃,例如在80-200℃之内。在这个步骤去除分散体内存在的水所以应当在低于100℃温度和减压下进行。也可在较高温度使用减压以便去除水,需要时,可以加快分散剂的分散。
加热优选进行0.25-2小时。加热时间取决于混合器的设计和大小,还取决于加热的类型,并且在较低加热功率下也可进行2小时以上。在这方面,最高达6小时也无可厚非。例如可通过热壁或引入高温蒸汽(过热蒸汽)来进行加热。
一旦达到所要求的温度,一般就基本完成了纤维的形成。在这个温度可继续进一步混合5-240分钟。之后让混合器内含物再次冷却下来。最简单的是让内含物静置冷却,即并不进一步混合。但是冷却期间,也可继续混合或吹入诸如冷空气的冷却剂或引入水随后排放,以便快速冷却。
一旦温度低于70℃,优选在20-60℃范围时,接通旋转器以粉碎粗群纤维材料。旋转器速度优选设定的范围是300-2500rpm。混合时间的范围优选10秒-60分钟。混合速度和混合时间取决于所要求的粉碎程度。一般地,速度为2500rpm时混合时间是1-1.5分钟就够了,当速度为450rpm时混合时间为1-5分钟。
此后以简单方式就可排出自由落下的纤维材料。
所得复合纤维形成干燥的、自由流动的微细材料。这种纤维是原纤状、各向异性的并具有不规则形态。颜色取决于所用无机材料和PTFE聚合物或共聚物。每种单独的纤维可以是支化或非支化的。无机材料均匀分散在整个纤维中并与作为聚合物粘合剂的PTFE或PTFE共聚物完全混合,使得不毁坏纤维就不能将其去除。另外,在纤维表面上有微细无机材料。按照本发明可制造的或制备的复合纤维用来制备隔膜,特别是氯碱电解隔膜。
本发明还提供一种制备隔膜的方法,包括(A)用前述方法之一制备复合纤维,(B)将复合纤维引入包括水和增加粘度的增稠剂的溶液,(C)通过多孔基板(base)吸滤来自(B)的混合物以便在多孔基板上沉积复合纤维,(D)干燥来自(C)的涂覆的多孔基板,(E)在90-390℃热处理来自(D)的隔膜。
可按EP-B-0 196317所述方法制备隔膜。所用多孔基板可以是例如呈网格状并用聚酰胺网状物覆盖的阴极。
下面是说明本发明的实施例。
实施例10.9kg如下粒度的二氧化锆10%<0.5μm,50%<1.2μm,90%<5.7μm,
和1.58kg如下粒度的氯化钠10%<5μm,50%<40μm,90%<80μm,引入5L的Eirich混合器(Eirich R02)中,并以84rpm速度旋转混合罐并以450rpm速度共旋转旋转器使各成分混合2分钟。在该过程中Froude数达到大约20。然后3分钟内通过喷嘴继续混合加入0.66kg大约60%浓度的PTFE分散体(HostaflonTF 5050,Dyneon有售),再另外混合2分钟。之后将罐速度降至42rpm,旋转器继续以450rpm速度旋转,将内含物加热到160℃(维持大约60分钟)形成高缠结的粗群纤维纱团。然后关断混合器具,让内含物冷却到40℃。在这个温度下接通旋转器(450rpm)和混合罐(42rpm)使内含物混合2分钟以便使纤维缩小到所要求的尺寸。得到不规则形态的自由流动的ZrO2/PTFE复合纤维。
对比实施例C2O.9kg如下粒度的二氧化锆10%<0.5μm,50%<1.2μm,90%<5.7μm和1.58kg,如下粒度的氯化钠10%<5μm,50%<40μm,90%<80μm,引入5L的Eirich混合器(Eirich R02)中,并以84rpm速度旋转混合罐并以450rpm速度正转旋转器使各成分混合2分钟。然后3分钟内通过喷嘴继续混合加入0.66kg大约60%浓度的PTFE分散体(HostaflonTF5050,Dyneon有售),再另外混合2分钟。之后将罐速度降至42rpm,关断旋转器,内含物加热到160℃(大约90分钟时间)形成高度缠结的粗群纤维纱团。然后以2500rpm速度以使接通旋转器以便在160℃粉碎粗群纤维。得到纤维产物。在450rpm和160℃的粉碎不成功。该纤维制造的隔膜有过高的流动速度(见实施例4)。
实施例30.9kg如下粒度的二氧化锆
10%<0.5μm,50%<1.2μm,90%<5.7μm和1.58kg粒度<315且有如下粒度的氯化钠20%<63μm,70%<63-200μm,90%<200μm引入5L的Eirich混合器(Eirich R02)中,并以84rpm速度旋转混合罐并以450rpm速度反转旋转器使各成分混合2分钟。然后3分钟内通过喷嘴继续混合加入0.66kg大约60%浓度的PTFE分散体(HostaflonTF 5050,Dyneon有售),再另外混合2分钟。之后将罐速度降至42rpm,旋转器继续以450rpm旋转,内含物加热到130℃(大约45分钟时间)形成高缠结的粗群纤维纱团。然后关断混合器具,让内含物冷却到20℃。在这个温度下接通旋转器(450rpm)和混合罐(42rpm)使内含物混合2分钟,以便使纤维缩小到所要求的尺寸。得到不规则形态的自由流动的ZrO2/PTFE复合纤维。
实施例4制备试验隔膜并测量流动速度制备浆料液12.5kg的去离子(DM)水+50%浓度的氢氧化钠使PH大约是11,与26.25g从Oxytech得到的增稠剂Welan Gum进行均化。然后加入26.25g的ProxelGXL(基于1,2-苯并异噻唑啉-3-酮的生物杀伤剂)和3.1g的硅氧烷消泡剂DC10010A。
制备纤维浆料估算75cm2面积(d=9.8cm)的试验隔膜所要的纤维浆料。
434g的浆料液62.5g的纤维秤出的成分用磁力搅拌器以900-1000l/分速度搅拌15分钟。
沉积试验隔膜将细目尼龙网覆盖的原产U.S阴极屏栅放入一个小沉积装置内。然后于其上倒入均化的纤维浆料并在不降低压力下让其通过尼龙网30分钟。流过的浆料液量是170-210mL。然后用膜式泵降低沉积装置的压力。
55分钟后滗析出纤维浆料上清液,并进一步吸滤隔膜90分钟。140分钟后关断泵,取出隔膜。
热后处理-于95℃干燥沉积的隔膜6小时-在95-320℃加热超过大约一个半小时-在320℃温度保持一个半小时-从320℃温度升温超过一小时-在360℃温度保持一个半小时-在封闭的断电烘箱中冷却到室温。
亲水化玻璃烧杯内用4%浓度的Zonyl FSN(DuPort公司的含氟表面活性剂)溶液处理隔膜半小时,然后在70-80℃干燥12小时。
测量流动速度用食盐水(300g/L的氯化钠)于室温和22cm的恒定测头对试验隔膜测量流动速度。
流动速度测量结果目标值范围是5-40,优选10-30L/m2h。
实施例5a-e(时间对阻滤的影响)0.9kg如下粒度的二氧化锆10%<0.5μm,50%<1.2μm,
90%<5.7μm,和1.58kg如下粒度的氯化钠10%<5μm,50%<40μm,90%<80μm引入5L的Eirich混合器(Eirich R02)中,并以84rpm速度旋转混合罐并以450rpm速度旋转旋转器使各成分混合2分钟。然后3分钟内通过喷嘴继续混合加入0.66kg大约60%浓度的PTFE分散体(HostaflonTF 5050,Dyneon有售),再另外混合2分钟。之后关断旋转器,让罐以42rpm速度旋转,将内含物加热到130℃(大约45分钟时间)形成高度缠结的粗群纤维纱团,然后让系统冷却到约20℃。接通旋转器之后让它在450rpm旋转30-90秒以便形成自由流动的不规则形状的复合纤维。
这种方式制造的50g一堆纤维在500ml水中浆料化,并在100毫巴压力下通过玻璃料过滤形成14mm厚的滤饼。测定每次通过490mL水的时间。这是测量滤饼的阻滤性或阻流过性。结果表明由纤维制造的滤饼阻流过性取决于在混合器内的粉碎时间。粉碎时间越长,由纤维制造的所得滤饼越密。<
实施例6重复实施例1的工艺,不同的是在室温混合10分钟,随后在60分钟内加热到92℃,并不接通旋转器。之后接通旋转器并加热到109℃在450rpm旋转10分钟。在以后的步骤中不关断旋转器,而以150rpm的速度继续旋转。一旦达到109℃的温度,将这一批冷却到40℃,并再一次于15分钟内加热到160℃。然后冷却到62℃并粉碎。
所得纤维用来制造有效的隔膜。通过重新加热能够再加工,纤维通过过长的粉碎变得特别小。在热处理过程中重新开始形成纤维,从而得到有用的纤维。
实施例70.9kg实施例1给定粒度的二氧化锆和1.58kg中等粒度(D50)13μm的氯化钠加入Eirich混合器(R02)并在大约1500 Upm旋转速度下用旋转器混合。然后用50L水稀释660g大约60%浓度的PTFE分散体,并在继续混合下通过喷嘴加入到二氧化锆/氯化钠混合物中。继续混合5分钟,从而使混合物粒化。随后让旋转器速度降低到450 Upm。旋转具有相同意义。混合物再以42Upm旋转。之后将内含物加热到大约160℃,从而形成严重缠结和结块的纤维球。混合的内含物冷却到50-60℃以后以450 Upm的速度继续混合4-5分钟,以便进一步切剪和分离纤维。
再后用1736g实施例4的溶液和250g纤维制造纤维浆料。在这种纤维悬浮体中插入一种含有阴极格栅圆片的装置,其表面积是78.5cm2。通过在阴极屏栅背面使用抽真空将分散的纤维吸到屏栅上直至不再有纤维吸上。取出纤维浴的隔膜后,在50-150毫巴压力下继续抽真空。
按照实施例4干燥和热处理隔膜后,隔膜重35g。这相当于大约4.5kg/m2的面重。之后用4%的zonyl溶液将隔膜亲水化24小时。在随后的流过测量时发现流过速度是20-25l/hm2。
用于氯碱电解并带有7dm2电极表面的电解槽装有来自几个相同产品的纤维,以类似方式使用7dm2隔膜。如上述将带有阴极屏栅(7dm2)的盒型沉积装置插入各个纤维浴中(含有43.4kg实施例4的纤维浆料和6.5kg的纤给维)。采用抽真空吸附在隔膜阴极屏栅的背面。完成真空抽吸加工后,将隔膜涂覆的阴极结构按照实施例4进行干燥和热处理。隔膜烧结和亲水化之后,组装电解槽并按照如下参数运行5星期在食盐水流体中浓度大约300g/l的氯化钠流量2.2l/h温度80℃水压(head):250-350mm所得槽碱溶液浓度120g/l流过速度1.8-2.0l/h
氯酸根浓度30-50ppm制备的氯>97Vol.%氢<0.7%氧<2.2%氮<0.1%槽电压3.25-3.35V电流密度2.2-2.3kA/m权利要求
1.一种制备复合纤维的方法,包括(a)将PTFE或PTFE共聚物分散体或粉末与微细无机材料和纤维形成材料进行混合,(b)如果使用PTFE或PTFE共聚物分散体,将所得混合物切变加热到一定温度,使切变的PTFE或PTFE共聚物变得可以流动但并不出现分解迹象,同时能够去除分散介质,(c)将混合物冷却到70℃以下,(d)在70℃以下混合切变混合物来形成复合纤维。
2.根据权利要求1的方法,其中所用纤维形成材料是一种碱金属盐或碱土金属盐。
3.根据权利要求1或2的方法,其中所用微细无机材料是二氧化锆。
4.根据权利要求1-3的任何一种方法,其中PTFE或PTFE共聚物对微细无机材料的重量比范围是0.2-0.6。
5.根据权利要求1-3的任何一种方法,其中在Froude数大于1的混合器中进行步骤(d)。
6.根据权利要求1-3的任何一种方法,其中在一个单一的装置中进行步骤(a)-(b)。
7.根据权利要求1-3的任何一种方法,其中在减压下进行步骤(b)。
8.根据权利要求1-3的任何一种方法,其中在步骤(b)中,加热到70℃以上。
9.一种制备复合纤维的方法,包括(a)将PTFE分散体或粉末与微细无机材料和纤维形成材料进行混合,(b)如果使用PTFE分散体,将所得混合物切变加热到一定温度,使切变的PTFE变得可以流动但并不出现分解迹象,同时能够去除分散介质,(d)使用Froude数大于1的混合器混合切变混合物来形成复合纤维。
10.Froude数大于1的混合器用于制造PFFE或PTFE共聚物、微细无机材料和纤维形成材料的复合纤维的用途。
11.一种用权利要求1-8的任何一种方法制造的复合纤维。
12.一种制备隔膜的方法,包括(A)权利要求1-8任何一种方法制备复合纤维,(B)将复合纤维引入包括水和增加粘度的增稠剂的溶液,(C)通过多孔基板吸滤来自(B)的混合物以便在多孔基板上沉积复合纤维,(D)干燥来自(C)的涂覆的多孔基板,(E)在90-390℃热处理来自(D)的隔膜。
全文摘要
用于制造隔膜的复合纤维制备如下:(a)将PTFE或PTFE共聚物分散体或粉末与微细无机材料和纤维形成材料进行混合,(b)如果使用PTFE或PTFE共聚物分散体,将所得混合物切变加热到一定温度,使切变的PTFE或PTFE共聚物变得可以流动但并不出现分解迹象,同时能够去除分散介质,(c)将混合物冷却到70℃以下,(d)在70℃以下混合切变混合物来形成复合纤维。
文档编号D01F6/62GK1215768SQ98122618
公开日1999年5月5日 申请日期1998年10月21日 优先权日1997年10月21日
发明者H·弗雷德里奇, K·D霍佩, U·布勒克, K·赫基, D·施莱菲尔, P·帕尔姆 申请人:Basf公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1