含碳材料的制作方法

文档序号:2011579阅读:670来源:国知局

专利名称::含碳材料的制作方法含碳材料本发明涉及含碳材料。本发明特别涉及热各向异性的含碳材料。在很多应用中,含碳材料用于热管理(thermalmanagement)目的。这在电子学应用中尤其关键。更致密而复杂的电子设备和半导体技术的发展使晶体管密度增加,并提高了微处理器的速度。这还伴随着产生热量的剧烈增加。面对这种挑战,商业公司正在致力于开发高性能、低成本、致密而可靠的方案来处理这些非常大的热负荷。迄今为止,提出的技术依赖于散热材料、吸热设备以及散热材料与吸热设备的各种组合的概念。散热材料(heatspreader)是能快速散热的部件。散热材料需要高导热率和低热容。吸热设备(heatsink)是能快速吸收热量的部件。它储存热量,所以需要高导热率和高热容。通常在电子学中,热量由散热材料向外散发至吸热设备,然后通过自然对流或者冷却剂的强制流动(例如风扇冷却)从吸热设备将热量移除至环境中。对于要求更多的应用,可能需要其它解决方案,如热管或液体冷却系统。已提出可用作散热材料的碳基材料是钻石。钻石在所有材料中拥有已知最高的导热率。然而,现在生产钻石4艮昂贵。钻石也是天然的各向同性的,任一方向的导热率都与其它方向相同。这意味着除了散热之外,钻石散热材料使热量能够传递至距热源最远一端。在组件之间非常靠近的应用中,这可能是不利的。热各向异性的含碳材料是石墨。石墨的晶体结构包含层,层内的结合^艮强,而层间的结合4艮弱。此外,在每层之间有非定域电子。这种结构产生高度的各向异性,而且面内的导热率(和导电率)远高于面间的导热率(和导电率)。为了开发这种各向异性,提出了几项关于石墨基散热材料和吸热设备的申请,例如最近的申请中有*US6746768,公开了热界面材料,其包含含油的弹性石墨片,所述材料在附着于组件上时可降低热阻。*US6771502,公开了由树脂浸制的上述石墨片构成的翅管吸热设备。*US6758263,公开了各向异性的层压石墨吸热设备,由上述树脂浸制石墨片构成,具有孔穴,可向其中插入导热材料。来自热源的热量可以通过中心传导,并传入吸热设备的厚壁,然后穿过吸热设备的各层传出。*US6841250,公开了使用这种层压石墨片的吸热设备设计,用于从电子部件将热量导出,并通过吸热设备散发热量。*US6777086,公开了树脂浸制膨胀石墨片,其通过树脂浸制(5-35重量%)并延压至0.35-0.50mm。*US6503626,公开了这种树脂浸制石墨片可以磨碎、压制和固化,形成坯件,所述坯件之后能加工成期望的翅管形状的部件。*US6844054,公开了各种几何学设计(圆锥、棱锥、圓顶等)的树脂浸制碳纤维吸热设备。*US6119573,公开了碳纤维材料的用途,其在导弹尾翼和电子封装之间作为导热界面,提供重量轻、导热率高的吸热设备。*US5837081,公开了由一团石墨化的(至280(TC)气相生长纤维(即高度取向的热解石墨——HOPG)产生的组合物,所述HOPG通过对热解碳的化学气相沉积(CVD)而硬化得到。*US6514616,提出了由聚酰亚胺、环氧或其它聚合物封装的高度取向的热解石墨的用途。*US2006/0029805[在本申请的最早的优先权日之后出版]公开了思路,用中间相沥青或酚醛树脂作为粘结剂热压石墨,并进行热处理,将粘结剂石墨化。US2006/0029805公开了压制优选地可将石墨按照垂直模具的方向定向排列,这种复合材料具有高导热率(段表明,对于以中间相沥青作为粘结剂的材料,在面内和面间方向的导热率为204.4W/mK和76.8W/mK)。US2006/0029805还公开了中间相沥青作为粘结剂的材料比树脂作为粘结剂的材料具有更高的导热率。将石墨的各向异性导热性用作热管理的其它专利包括US4878152、US5542471、US6208513、US5523260、US5766765、US6027807和US6131651。尽管石墨具有广泛的用途,但是石墨基材料的性能和成本差别很大。这是因为各向异性的程度依赖于石墨取向的程度。要获得高度取向的石墨很困难。在申请人的专利申请WO02/090291中,申请人提出了形成石墨材料的方法,包含步骤a)在高剪切力下形成可模制组合物,所述组合物包含i)石墨粉末;和ii)粘结剂;和iii)流体栽体b)在高剪切力下加工所述可模制组合物,形成挤压的形状c)由所述形状形成基体(body);d)热处理所述基体以稳定结构;和e)将基体机械加工,形成表面特征。组合物的高剪切力加工可以通过辊压进行。WO02/0卯291主要致力于含水粘结剂,但没有提到使用沥青基粘结剂的可能性。WO02/0卯291的潜在目的是要在不需要高温石墨化步骤时提供高度石墨化的基体。沥青具有很多形式。一种形式是中间相沥青(有时称作液晶沥青)。中间相沥青是部分裂解的材料,包含高度连接的芳香族基团,是可以部分有效转化成石墨的沥青。继续裂解导致石墨化。中间相沥青有时在碳-碳组合物中用作基质材料来连接碳纤维。申请人通过下述过程实现了高度取向的石墨材料的获得*形成中间相沥青与石墨粉末的混合物*辊压混合物,使石墨粉末定向排列,并形成石墨和沥青的基体(body)*将基体碳化和5可选地,*将基体石墨化。申请人:进一步实现了导热率依赖于所用石墨的尺寸,而且大石墨颗粒提供的导热率远远高于小石墨颗粒*密度也是这种石墨组合物导热率的决定因素石墨的纯度会影响这种石墨组合物的导热率*要获得高的导热率,石墨化处理并不总是必需的。结果是,申请人提供了产生具有高导热率的石墨复合材料的方法。这种材料具有高的热各向异性,而且适于用作散热材料。本发明如权利要求所陈述。本发明以下面的说明描述部分和附图例示说明,其中图1是说明用第一类石墨获得的定向排列程度的显微照片图2是说明用第二类石墨获得的定向排列程度的显微照片。图3表示可选择的压制路线。原材料中间相沥青中间相沥青有4艮多种不同的来源,但是申请人已经发现AR中间相沥青[由MitsubishiGasChemical(三菱气体化学)有限公司通过使用超酸催化剂将萘或烷基萘聚合制造]可以得到好的结果。AR中间相沥青为球形(通常尺寸为3mm-7mm),软化点275。C。为了有效混合,沥青可以研磨至适当的粒度。然而申请人已经确定粒度也影响最终材料的导热率。申请人比较了粒度~500pm和180pm的沥青。结果发现,在辊压实验中,粒度较大的~500pm的颗粒阻碍了压制得到的预成形物中的定向排列,而这种错误的定向排列会一直带到辊压材料中。尽管预成形物会在后面加热和辊压,但是申请人相信石墨片附近的粘结剂可能呈现非均一性分布。在较小的粒度180jim的情况下,冷轧预成形物中的石墨片没有表现出这种错误定向排列。因此,优选沥青粒度小于500pm,优选小于200^im。如果需要,沥青可以经过处理去除不稳定成分。对于少量沥青,这可能不是必需的,但是对于较大量的沥青,在热处理过程中不稳定物质的变化可能是问题,并抑制沥青-石墨的粘合。沥青脱气,例如通过热处理,可以緩解这个问题。石墨可以使用天然石墨或合成石墨,但是天然石墨得到的结果更好,因为天然石墨的取向常常好于合成石墨,也在本质上具有更高的各向异性。优选更大的粒度(如下面所解释)。优选平均粒度〉200pm。有用的材料包括a)石墨RFL99.5:GraphitwerkeKropfmtihl销售的纯度为99.86%的天然石墨,其片状尺度分布为[重量%大于特定的筛分粒度]:50%〉200nm,25%>355pm。b)石墨V-RFL99.5+500:GraphitwerkeKropfmtihl销售的纯度为99.86%的天然石墨,其片状尺度分布为[重量%大于特定的筛分粒度]:30%〉800jLim,77%>630|im,95%>500pm。c)石墨GRAF-X20x35/93,美国明尼苏达州IndustrialMinerals有限公司销售的干燥处理的低纯度石墨,其片状尺度分布为按重量百分比计,<1%的石墨片<500nm,85%为500-850Hm,14%为850-2000pm,和灰分<7%。应该注意的是,如果需要的话可以纯化天然石墨。例如,可以使用热纯化。对于高导热率,材料中石墨的量优选超过50体积%,更优选超过70体积%,而实际上多于80体积°/。均在本发明的范畴之内。然而,极高的石墨负荷[例如99体积%]在提供适当的定向排列方面会带来失败的风险,所以石墨负荷占99体积%或更少,实际上占95体积%或更少的负荷也在本发明的范畴之内。增塑剂木素磺酸铵可以如下所述用作增塑剂。树脂可以使用任何可作粘结剂的树脂。辊压过程混合石墨可以混合入熔化的沥青中,但是为了加快混合和限制对石墨的损害,优选将沥青和石墨干燥混合,产生均一性混合物。然后可以加热混合物使沥青熔化,从而形成石墨在熔化沥青中的熔融混合物。可以搅拌熔融混合物,避免石墨分离出来。为了下面将会明了的原因,应该尽可能避免对石墨的损害,因此优选低剪切力过程。选择石墨和沥青的相对含量,满足下述要求混合物可以辊压*辊压过的材料在碳化前具有合适的强度在碳化后,碳化产物在石墨化前具有合适的强度*在石墨化后,石墨化产物具有合适的强度。通常,沥青含量可占体积的5°/。至30%,为了易于成型,优选在10%至25%的范围内。在辊压前,熔化混合物优选与空气隔绝,因为氧会加速沥青的交联。在惰性气氛(例如氮气)中保存熔化混合物可以满足这个要求。熔融混合物的温度优选至少高于沥青软化温度15°C。对于AR沥青,35(TC的温度较为合适。辊压使熔融混合物通过保持在一定温度[例如~350。C]的辊筒,使熔融混合物不会变粘。可以设定辊筒分离过程,在一个步骤中为辊压材料提供期望的厚度,或者材料可以通过几个辊筒,逐渐减小厚度。辊压必须达到充分的程度,以产生石墨片的定向排列。辊压还具有将在处理过程中变弯的石墨片展平的(达到某种程度)作用。然而辊压不应该太极端,而且为了降低向微结构中引入过量剪切力的风险,应该优选保持低的辊压速度。在某些情况下可能具有优势的是,提供不同的辊压速度,以面内导热率为代价使面间导热率略有提高。在某些情况下可能具有优势的是,在加热和辊压之前提供冷压步骤,形成预成形物(preform)。然而这需要谨慎。压制本身会向材料中引入织构(texture),而辊压能够随后剪切织构,在辊压材料中产生复杂的剪切微结构,从而降低面内导热率和提高面间导热率。为了降低这种风险,预成形物的厚度应该优选接近辊筒分离的厚度。例如,将4mm、3mm和2mm厚度的预成形物辊压成0.75mm厚度,对这些过程的比较表明在4mm厚度预成形物中产生了显著的错误定向排列,而2mm预成形物中的错误定向排列较少,3mm预成形物介于两者之间。[这些测试针对包含90重量%的石墨和大于10重量%的AR中间相沥青的材料(石墨与沥青的体积比近似为84.4:15.6)进行]。碳化然后通过下述方法将辊压材料碳化在保护性气氛下加热至足以使沥青碳化的温度——即,从沥青中去除氢并促使发生某些交联。典型的碳化温度是IOO(TC至1500°C,1250。C至1350。C为优选范围。石墨化然后将碳化材料通过与高温[〉2000。C,优选2200°C-2800。C,甚至高达3000。C]接触而石墨化。这种石墨化必须在保护性气氛下进行,如惰性气氛、还原性气氛或真空。在石墨化过程中,碳化的沥青转化成为石墨。碳化和石墨化步骤可以形成一个单独过程的一部分,逐渐提高辊压材料的温度至石墨化温度,升温过程中会经过碳化发生时的温度。石墨化可以是可选步骤,如压制过程所建立的[参见下文]。辊压产物辊压过程产生了平行于辊压平面的片状石墨机械排列,而且在某种程度上展平了片状石墨。申请人相信中间相沥青通常可以;f艮好地浸湿石墨,而石墨提供了中间相定向排列的模板。这种定向排列使石墨形成与片状一致的排列。这样的定向排列在材料面内提供了高导热率,但在面间提供低导热率。申请人也猜测存在其它的作用,即将中间相沥青的盘状向列液晶分子按照剪切方向排列。辊压实施例为了测试本方法的可行性,使用上文所述的石墨a)和b)组成混合物。石墨与磨碎的AR中间相沥青干燥混合,产生均一性的混合物,其中包含(体积百分比)石墨-75%AR中间相-23.5%木素磺酸铵-1.5%与WO02/090291类似,包括了木素磺酸铵作为粘结剂和增塑剂,在WO02/090291中也使用这种成分。申请人发现当将含有这种水平的沥青的组合物辊压至小于1mm时,或者如果使用更低含量的沥青[例如10%]时,在辊压过程中就会出现问题,或者如果没有使用这种组分,在处理辊压材料时也会出现问题。木素磺酸铵是可从木材获得的材料,从软木和硬木中都可以得到。可以改性木素磺酸盐,使其包括其它阳离子。就本发明而言,可以使用所有木素磺酸盐,改性或未改性的;而且可以包括任何合适的一种或多种阳离子,例如钙、镁、铵和钠。本发明不限于使用木素磺酸盐作为增塑剂,其它材料(例如热塑性聚合物)也可用作此功能。为了提供用于熔融的惰性气氛,将一定量的干燥混合物封装于铝箔中,然后在空气环形炉中于350。C加热大约15分钟。这样可以熔化中间相沥青[其测得的软化温度在290°C至320°C的范围中]。然后将封装于箔片中的熔化混合物从炉中取出,送入研磨辊筒。对这些样品,辊压距离设定为1.5mm。然后将辊压材料从箔片中取出[在这阶段接触空气是无害的,因为空气可以催化交联]。然后将辊压材料以每小时24。C的速度加热至1000°C,在1000。C碳化,之后在100(TC浸泡0.5小时。在碳化过程中,通过封装于粘土中并覆盖窑灰[作为牺牲材料,可以清除氧气]的方式保持辊压材料处于非氧化环境中。然后将碳化材料在连续石墨化炉中,在主要含有一氧化碳的自生气氛下,于250(TC石墨化4.5小时。辊压产物的导热率结果在Cork的TyndallInstitute测定热扩散率。使用管路热源激光闪光法进行面内测定,使用常规激光闪光法进行面间测定。结果示于表1中。表l<table>tableseeoriginaldocumentpage12</column></row><table>g导热率-热扩散率x密度x比热;其中密度取测量值,比热取0.71kJ/kgK因此,辊压这种方法得到的材料中,面内导热率>400WmK",面间导热率<30WmK人可以看出较大的石墨尺寸[石墨b)]具有比较小的石墨尺寸更高的导热率,但密度测量值较低。密度测量值反映出在图l和2所示材料中存在空洞。申请人发现在这些实验中将材料辊压成更薄的规格能够得到约1.8g'cm^的密度,而且得到更高的导热率。然而,需要仔细调整加工变量,因为过度的加工会导致石墨的错误排列或断裂,使过度加工的材料具有比加工强度较'J、的材料更低的导热率。或者,可以进一步加工包含这种空洞的材料,通过浸渍以去除空洞,例如,可能加入几个沥青浸渍步骤(每步浸渍之后都是碳化和石墨化处理),增加基质密度并将材料中的孑L/空洞"密封",这样能够增强热和机械性能。一种可选的处理是金属[例如铜]浸渍。这可以提高连接和机械性能,可能对热扩展的优点具有协同促进作用,使材料更易于涂覆,而且促进与其它材料的粘合。这些浸渍路线可以与辊压路线,或后面陈述的压制路线一起使用。压制路线向本发明的导热材料提供的可选路线是压制。初期的实验室测试表明,通过对上述将要进行辊压的组合物进行热压,可以获得高于~500W.m"K"的导热率。初期研究的热压路线需要下述步骤*将组分混合*在惰性气氛中,于35(TC将混合物脱气[这里使用加热/冷却程序斜坡1^室温至200。C,120。C/小时驻留1^20分钟斜i皮2^200。C至350°C,50。C/小时驻留2^90分钟斜坡3+350。C至200。C,120。C/小时驻留3~>0.0分钟斜坡4+200。C至室温,150。C/小时]将脱气混合物置于模具中*热压。在这种程序下,使用上述石墨b)和4交高的石墨负荷[卯%石墨,8.5%中间相沥青,1.5%ALS],得到的石墨化组合物的导热率为~750W.M"K人尽管得到了高导热率,但是这种路线似乎对大规模生产并没有吸引力,因为大规模生产要求在压力下长时间操作,而且需要长的加热和冷却程序。为了测试变量和提供生产路线,申请人研究了压制和加工参数,确定了优化导热率需要优化下述变量參石墨的体积分数參石墨的尺寸參定向排列的程度參组合物的密度申请人还发现,尽管石墨化能够提供最好的导热率,但对于产生高导热率的组合物不是必需的。申请人还发现短得多的加工时间比通过热压路线更可4亍。表2显示了一系列使用树脂粘结剂[酚醛清漆树脂,约90%<45|im,来自BordenResins的BakelitePF0222]的组合物[比例用重量百分比表示]和各种单独使用的石墨。没有使用增塑剂。组合物用各种方式生产。在所有情况下,材料都以干燥材料形式混合。表2表明了所用的压制路线。使用了三种可选的压制路线*冷压*在~120。C使用模头热压冷压预成形物,然后使用模头在~12(TC热压该预成形物。热压通常的时间为~2分钟。少于或多于2分钟可能是适当的,由所用材料和希望得到的性质而决定。在热压之前预热材料[粉末或压紧物]是有作用的。在压制后在焦炭床中通过接触>=900°C的温度烘干样品。在石墨化过程中,以与针对辊压样品采用的相似方式,将样品石墨化。图3以示意图形式说明这些可选的路线。表2还表示了冷压密度、热压密度、烘干密度和相关的石墨化密度。最后,表2表示了测量得到的面内导热率[垂直方向两次测量的平均值]。样品3和4的比较表明石墨化对于获得高导热率不是必需的。导热率的差别非常小。样品5和6证实了片状尺度是重要的——样品5的石墨粒度远小于样品6,尽管样品5具有较高的密度,但是导热率比样品6低~20%。样品4和5表明这种效应甚至更剧烈,因为它们是在同样的压制条件下压制产生的。样品7和8表明不是所有的石墨都一样。尽管在同等条件下压制,但样品8的石墨化密度要低得多,导热率也较低,因为在石墨化过程中去除了杂质。样品1和2具有最高的导热率,并证明压制条件会影响材料。尽管样品2在初始的混合物中具有较高的石墨含量,也因此具有较高的密度,但是导热率低于样品1。表2<table>tableseeoriginaldocumentpage16</column></row><table>上述辊压材料中石墨片的取向可以通过下述方法改进a)使用粒度更细的中间相沥青b)采用更慢的辊压速度c)在辊压之前,减小压制的预成形物的厚度。为了证实这种方法,在多个辊压样品上进行X-射线衍射样品A75g包含10。/。沥青和90%V-RFL石墨。沥青为研磨至~500|Lim的粒度的AR中间相沥青。样品制备方法为压制厚度为5.66mm的预成形物,并使用20rpm的辊筒速度将其辊压至1.05mm的厚度。*样品A175(压制)包含10%沥青和卯%V-RFL石墨。沥青是研磨至~500jim的粒度的AR中间相沥青。通过压制至2.13mm的厚度而制备样品。*样品A175g与A175g具有相同组成,取厚度为2.13mm的压制预成形物,并使用10rpm的辊筒速度将其辊压至1.37mm的厚度。*样品A308g包含10%AR中间相沥青和90%V-RFL石墨。沥青是研磨至粒度<180pm的AR中间相沥青。制备厚度为2.14mm的预成形物,并使用5rpm的辊筒速度将其辊压至1.41mm的厚度。还可以制备其它压制材料。*样品96-11包含95%V-RFL石墨和5%树脂,经过冷压。*样品96-7与样品96-11具有相同组成,但是经过热压。表3显示出X-射线衍射织构分析的结果。在分析中,使用PhilipsATC-3织构附件测量(002)极图,使用钴阳极、圆形准直器、不使用原来的光束掩膜、Ni过滤器、4x4mm的散射狭缝掩膜、0.75mm接收狭缝和密封的Xe正比检测器。散射可以是连续的0-85°Psi和0-360°Phi,每步2.5°,每个Phi步计时为0.5秒。因为石墨是非常好的X-射线衍射体,而且因为所用的X-射线检测器的响应在超过500,000次计数/秒时不是线性的,所以可以通过将提供给X-射线管的能量降至可能的最低值,20kV和10A,限制(002)反射的计数速率。使用Philips辊压铜标准样品标定,通过在全部极图上方加入强度值,并将所得值除以极图的面积,得到随机强度,从而将结果标准化,消除不同的样品尺度和X-射线发生器设定的影响。因此,倍增随机强度图给出了对样品取向的测量结果。<table>tableseeoriginaldocumentpage18</column></row><table>压制(不是辊压)的样品A175的倍增随机强度为74。压制得到的这种ARMP组合物的强度与压制的树脂组合物样品96-11的强度测量值接近,96-11的倍增随机强度为68。这说明两种样品的取向程度大致相同。在对压制得到的样品A175进行辊压后,即表1中的样品A175g,倍增随机强度增至101,再次证明了辊压后取向程度会增加。对A75g[20rpm辊压速度]、A175g[10rpm辊压速度]和A308g[5rpm辊压速度,并且沥青尺度更细]的比较说明,较低的辊压速度和较细的沥青尺度可以消除辊压材料中的剪切织构,所述织构会增加面内导热率。96-7和96-11在倍增随机强度数字上的不同,说明在压制的树脂组合材料中,热压比冷压能够获得更高程度的取向。对于树脂粘结的材料,可能适用于热固化路线,其中将冷压预成形物预热,通常加热至约12CTC,并置于经过预热的4莫具中,才莫具通常为约180°C(但是低于原来所用温度)。加压循环包括,将对预成形物施加的压力减至最小接触压力,之后停留在这个压力(通常约l分钟,但是取决于树脂中不稳定物质的含量)。将^^莫具顶部短时间(通常小于1分钟)抬起,使操作暂停。然后关闭模具并加压至最终压力,通常为约27.6MPa(4000psi)。加压可以持续适当的时间,之后取出预成形物,或者可选地,可以在短时间(例如约1分钟)加热后中断,暂停一次或更多,然后进行热压循环。最优的压制路线可以根据要压制的部件的尺寸和形状,以及所用树脂的性质而不同。本发明包括压制和/或辊压的复合石墨材料,其中(002)的倍增随机强度最大值大于60,优选大于80,更优选大于100。总结因此,与提供这种各向异性的其它可选的方法相比,本发明能够以相对低的成本提供具有高各向异性的材料。尽管上述详述和实例说明了平板的生产,但是本发明期望产生包含巻板的基体,其中在辊压/压制过程或碳化和石墨化之前的后成形过程产生弯曲。本方法产生的石墨材料和石墨基体能够形成更大的石墨基体的一部分,而本发明期望使根据本方法生产的石墨基体可以固定在一起,或者与通过其它方法产生的石墨基体固定在一起。本发明还期望根据上述方法产生的石墨基体[例如辊压片]能够与使用沥青或其它碳化粘结剂的另一种石墨前体固定在一起,而得到的集合体可以碳化,并可选地石墨化,形成均一的基体。权利要求1.包含由粘结剂连接的取向石墨片的石墨基体,其中石墨的平均粒度>200μm。2.如权利要求1所要求的石墨基体,其中石墨粉末的片状尺度分布为石墨基体>50重量%的石墨的片状尺度>200jim。3.如权利要求2所要求的石墨基体,其中石墨粉末的片状尺度分布为石墨基体>95重量%的石墨的片状尺度>500pm。4.如权利要求1至3中任一项所要求的石墨基体,其中粘结剂为有机前体的碳化残余物。5.如权利要求4所要求的石墨基体,其中粘结剂为有机前体的石墨化残余物。6.如权利要求5所要求的石墨基体,其中粘结剂包含中间相沥青的石墨化残余物。7.如权利要求1至6中任一项所要求的石墨基体,其中石墨基体的面内导热率〉400WmK人8.如权利要求7所要求的石墨基体,其中石墨基体的面间导热率<30WmK-1。9.如权利要求1至8中任一项所要求的石墨基体,其中使用钴来源测定的(002)最大X射线强度的倍增随机强度大于60。10.如权利要求9所要求的石墨基体,其中倍增随机强度大于80。11.如权利要求IO所要求的石墨基体,其中倍增随机强度大于100。12.如权利要求1至11中任一项所要求的石墨基体,其中石墨基体为弯曲的。13.如权利要求1至12中任一项所要求的石墨基体,其中石墨基体密度大于1.7g'cm-3。14.如权利要求13所要求的石墨基体,其中石墨基体密度大于1.75g.cm-3。15.形成石墨基体的方法,包含如下步骤a)形成石墨粉末与粘结剂的混合物;b)压制所述混合物,使石墨粉末定向排列并形成石墨与沥青的基体;c)将基体碳化;和可选地d)将基体石墨化上述步骤在能够产生如权利要求1至12中任一项所要求的石墨基体的条件下进行。16.如权利要求16所要求的方法,其中压制步骤包含热压。17.如权利要求16所要求的方法,其中压制步骤在热压之前包含冷压步骤。18.如权利要求16所要求的方法,其中压制步骤包含辊压。19.通过下述步骤形成高度取向石墨材料的方法a)形成中间相沥青与石墨粉末的混合物;b)辊压所述混合物,使石墨粉末定向排列,并形成石墨与沥青的基体;c)将基体碳化;d)将基体石墨化。20.如权利要求1所要求的方法,其中中间相沥青是合成汤青。21.如权利要求20所要求的方法,其中中间相沥青使用超酸催化剂,通过萘或烷基萘的聚合而产生。22.如权利要求15至21中任一项所要求的方法,其中石墨粉末的平均粒度〉200|im。23.如权利要求22所要求的方法,其中石墨粉末的片状尺度分布为〉50%重量的石墨的片状尺度>200pm。24.如权利要求23所要求的方法,其中石墨粉末的片状尺度分布为〉重量95%的石墨的片状尺度>500|im。25.如权利要求19至24中任一项所要求的方法,其中中间相沥青的粒度小于500pm。26.如权利要求25所要求的方法,其中中间相沥青的粒度小于200|iim。27.如权利要求15至26中任一项所要求的方法,其中石墨与沥青的基体在碳化之前是弯曲的。28.如权利要求15至27中任一项所要求的方法,其中,在碳化步骤之前使用沥青或其它碳化粘结剂将基体固定于石墨前体上,将得到的集合体碳化并可选地石墨化,形成均一的基体。29.如权利要求15至28中任一项所要求的方法,其中混合物还包含增塑剂。30.如权利要求29所要求的方法,其中增塑剂也作为粘结剂。31.如权利要求30所要求的方法,其中增塑剂是木素磺酸盐。32.如权利要求31所要求的方法,其中木素磺酸盐是木素磺酸铵。33.从制品散热的方法,包含将权利要求1至14中任一项所要求的,或由权利要求15至32中任一项的方法产生的石墨基体,与所述制品接全文摘要石墨基体包含通过粘结剂连接的取向石墨片,其中石墨的平均粒度>200μm。形成这样高度取向的石墨材料的方法包括a)形成中间相沥青与石墨粉末的混合物;b)辊压混合物,使石墨粉末定向排列,并形成石墨和沥青的基体;c)将基体碳化;和可选地d)将基体石墨化。使用压制优于使用辊压。这样的石墨基体具有高的导热性和各向异性,可以用于热管理。文档编号C04B35/532GK101321713SQ200680045283公开日2008年12月10日申请日期2006年11月30日优先权日2005年12月2日发明者C·A·斯蒂尔林,C·J·斯佩西,R·K·达维斯申请人:摩根奈特电碳有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1