离子轰击式石墨电子发射体的制作方法

文档序号:2964816阅读:223来源:国知局

专利名称::离子轰击式石墨电子发射体的制作方法发明的领域本发明一般来说提供带有图案的离子轰击式石墨场致发射电子发射体、生产它们的方法、以及它们在平板型显示器的场致发射体阴极组件中的应用。发明的背景场致发射电子源通常称之为场致发射材料或场致发射体,它们可以用在各种各样的电子应用场合,例如真空电子设备、平板型计算机和电视显示器、发射选通放大器、速调管和照明设备。显示屏用于各种各样应用中,例如家用电视和工业电视、膝上型计算机和台式计算机、户内和户外广告及信息显示。和在大多数电视以及台式计算机中使用的纵深的阴极射线管监视器相比,平板型显示器只有几个英寸厚。平板型显示器对于膝上型计算机来说是必不可少的,但平板型显示器对于许多其它应用还提供在重量和尺寸方面的优点。当前流行的膝上型计算机的平板型显示器使用的是液晶,可以通过施加一个小的电信号使液晶从透明状态转接到不透明状态。但可靠地生产尺寸大于适合于膝上型计算机的尺寸并且能在宽温度范围操作的这样一些显示器是很困难的。等离子体显示器已经用作液晶显示器的替代物。等离子体显示器利用充电气体的微小像素单元产生图像,并且要求相当高的电功率才能操作。已经建议采用具有阴极组件和磷光体的平板型显示器,这个阴极组件使用了场致发射电子源(即,场致发射材料或场致发射体),这个磷光体在由场致发射体发射的电子轰击时能够发光。这样一些显示器在提供常规阴极射线管的可见显示优点、其它平板型显示器的深度和重量优点、以及和其它平板型显示器相比的低功耗附加优点等方面都是有潜力的。美国专利第4857799和5015912号公开了矩阵寻址的平板型显示器,它使用了由钨、钼、或硅构成的微尖阴极。WO94-15352、WO94-15350、和WO94-28571公开的平板型显示器中的阴极具有相当平的发射表面。在两种类型的纳米管碳结构中已经观察到场致发射。L.A.Chernozatonskii等人[Chem.Phys.Letters(化学物理通讯)233,63(1995)和Mat.Res.Symp.Proc.Vol.359,99(1995)]已经通过在10-5-10-6乇下石墨的电子蒸发在各种基片上生产了纳米管碳结构薄膜。这种薄膜由定向的管状碳分子构成,这些分子一个接一个地直立排列。形成两种类型的管状分子;A型管状分子的结构包括形成直径为10-30纳米的丝束的单层石墨状管,B型管状分子包括绝大多数直径为10-30纳米的多层石墨状管,并且带有锥形或圆顶形的上盖。他们报导了来自于这些结构的表面的有效的场致电子发射,并且将其归因于在纳米级尖端的场的高度集中。B.H.Fishbine等人[Mat.Res.Soc.Symp.Proc.Vol.359,93(1955)]讨论了有关巴克管(碳纳米管)的冷场致发射体阵列阴极的发展的实验和理论。R.S.Robinson等人[J.Vac.Sci.Technolo.(真空科学技术杂志)21,1398(1983)]公开了在离子轰击下在基片的表面上形成锥体。针对各种基片材料报导了这一效果,这个效果是通过在用低能淀积的杂质原子播种一个表面的同时高能溅射这个表面产生的。他们还公开,当用来自于不锈钢靶的杂质对石墨基片进行离子轰击时,所形成的碳须长度最大为50微米。J.A.Floro等人[J.Vac.,Sci.Technolo.Al,1398(1983)]公开了在对加热的石墨基片进行相当高的电流密度的离子轰击期间形成碳须。所公开的碳须的长度为2-50微米,其直径为0.05-0.5微米,并且碳须的生长的方向平行于离子束的方向。同时进行的杂质播种据报导是为了抑制碳须的生长。J.A.VanVechten等人[J.CrystalGrowth(晶体生长杂志)82,289(1987)]讨论了在离子溅射条件下石墨表面的碳须的生长。他们注意到,最小直径的碳须(特征直径约为15纳米)肯定与碳纤维中发现的金刚石结构或卷轴石墨结论不同,所说的碳纤维是通过碳氢化合物的催化热解生长的。在溅射系统中,还观察到有直径范围从30纳米到100纳米的较大的碳须在生长。较小直径的碳须的直径沿长度方向是恒定不变的,较大直径的碳须略微有一点变细。M.S.Dresselhaus等人[GraphiteFibersandFilaments(石墨纤维和细丝)(Springer-Verlag,Berlin,1988),pp32-34]公开了细丝是在几种类型的六边形碳表面生长的,而不是在金刚石或玻璃状的碳上生长的。T.Asano等人[J.Vac.Sci.Technol.B13,431(1995)]公开了从金刚石薄膜发出的增大的电子发射,金刚石薄膜是通过化学蒸气淀积方法在硅上淀积的,进行氩离子研磨以形成金刚石锥体,然后在600℃进行退火处理。如果金刚石是孤立的颗粒形式,则形成这些锥体。C.Nützenadel等人[Appl.Phys.Lett.(应用物理通讯)69,2662(1996)]公开从通过离子溅射蚀刻进入合成的掺硼金刚石和硅这两者内的锥体的场致发射。S.Bajic等人[J.Phys.(物理杂志)D;Appl.Phys.(应用物理)21,200(1988)]公开了具有悬浮在树脂层中的石墨颗粒的场致发射体复合物。R.A.Tuck等人(WO97/06549)公开了一种场致发射材料,它包括一个导电基片和设置在所说导电基片上的导电颗粒,导电颗粒嵌入、加入、或涂敷一层无机的电绝缘材料,从而在导电颗粒的基片之间界定绝缘材料的第一厚度,并在导电颗粒和环境之间界定绝缘材料的第二厚度。可以将场致发射材料印刷在基片上。M.Rabinowitz(U.S.5697827)公开了一种方法和设备,用于生产、维持、和产生电子的热场辅助发射的阴极源,并且公开了这个源的电场强化碳须成分的再生。所公开的唯一的碳须是碳纳米管。为了形成阴极,通过用一个电场推动纳米管将这些纳米管束缚到一个载体上,借此将这个纳米管嵌入包围这个载体的软材料内。不管现有技术如何,总是需要一种可以用在各种平板型应用中的、能够容易和经济地生产小尺寸和大尺寸的强发射的场致发射电子发射体的方法。在参照附图和随后的详细描述后,本发明的其它目的和优点对于本领域的普通技术人员来说将是显而易见的。发明的概述本发明提供用于生产场致发射电子发射体的方法,该方法包括如下步骤(a)形成一层复合物,这个复合物包括在一个基片上的石墨颗粒和玻璃,其中玻璃附着到基片上并且附着到部分石墨颗粒上,借此使石墨颗粒相互结合并且结合到基片上,并且其中这层复合物的至少50%的表面面积是由石墨颗粒部分组成的,和(b)用包括氩、氖、氪、或氙的离子束轰击在步骤(a)中形成的复合物层的表面,轰击的时间足以在所说的石墨颗粒上产生碳须。优选地,至少70%的复合物层的表面积是由石墨颗粒部分组成的。石墨颗粒的体积百分数是石墨颗粒和玻璃的总体积的约35%到约80%,优选的是总体积的约50%到约80%。本发明还提供用于生产场致发射电子发射体的方法,其中的复合物还包括导电材料。优选地,离子束是氩离子束,氩离子束的离子流密度从约0.1毫安/厘米2到约1.5毫安/厘米2,离子束能量从约0.5千电子伏到约2.5千电子伏。离子轰击时间是约15分钟到约90分钟。更加优选的是含氩和氮的离子束气体组合物。优选地,玻璃是低软化点玻璃。优选地,导电材料是银或金。优选地,当复合物层包括石墨和玻璃时,在基片上形成复合物层的方法包括按照期望的图案向基片网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且焙烧干燥的并且带有图案的糊剂。对于较大范围的应用,例如需要较精细分辨率的那些应用,优选的方法包括网板印刷还包括光引发剂和可光硬化单体的糊剂,用光学方法制作干燥的糊剂的图案,和焙烧干燥的并且带有图案的糊剂。优选地,当复合物层还包括导电材料时,在基片上形成复合物层的方法包括按照期望的图案向基片网板印刷由石墨、玻璃原料、和导电材料组成的糊剂,并且焙烧干燥的并且带有图案的糊剂。对于较大范围的应用,例如需要较精细分辨率的那些应用,优选的方法包括网板印刷还包括光引发剂和可光硬化单体的糊剂,用光学方法制作干燥的糊剂的图案,和焙烧干燥的并且带有图案的糊剂。优选地,当基片是玻璃时,干燥的并且带有图案的糊剂在约450℃到约575℃的温度下、最好在约525℃的温度下焙烧约10分钟。优选地,复合物的焙烧层厚度从约5微米到约30微米。本发明还提供一种可网板印刷的或可涂敷的糊剂,它可用于在基片上形成含石墨和玻璃的复合物层的优选方法中。基于糊剂的总重量,糊剂包含约40%(重量)到约60%(重量)的固体。固体由石墨颗粒和玻璃原料组成,或由石墨颗粒、玻璃原料、和导电材料组成。石墨颗粒的体积百分数约为固体总体积的约35%到约80%,最好约为固体总体积的50%到约80%。石墨颗粒的大小最好约为0.5微米到约10微米。此外,本发明提供一种用于在基片上形成含石墨和玻璃的复合物层的方法,该方法包括如下步骤(a)按照期望的图案在基片上网板印刷含石墨颗粒和玻璃原料的一种糊剂,其中石墨颗粒的体积百分数约为石墨颗粒和玻璃原料的总体积的约35%到约80%,和(b)培烧干燥的并且带有图案的糊剂以软化玻璃原料,使之附着到基片上并且附着到部分石墨颗粒上,借此使石墨颗粒相互结合并且结合到基片上,从而产生复合物层,其中至少50%的复合物层表面积由石墨颗粒部分组成。优选地,至少70%的复合物层表面积由石墨颗粒部分组成。本发明还提供一种用于在基片上形成含石墨和玻璃的复合物层的方法,该方法包括如下步骤(a)在基片上网板印刷由石墨颗粒、玻璃原料、光引发剂、和可光硬化单体组成的糊剂,其中石墨颗粒的体积百分数约为石墨颗粒和玻璃原料的总体积的约35%到约80%,(b)用光学方法制作干燥的糊剂的图案,和(c)焙烧干燥的并且带有图案的糊剂以软化玻璃原料,使之附着到基片上并且附着到部分石墨颗粒上,借此使石墨颗粒相互结合并且结合到基片上,从而产生复合物层,其中至少50%的复合物层表面积由石墨颗粒部分组成。优选地,至少70%的复合物层表面积由石墨颗粒部分组成。此外,本发明提供一种复合物层,它包括通过以上方法在基片上形成的石墨和玻璃,可对该复合物层进行随后的处理以生产场致发射电子发射体。在包括石墨和玻璃的复合物层中,石墨颗粒的体积百分数是石墨颗粒和玻璃的总体积的约35%到约80%,最好约为总体积的约50%到约80%。本发明还提供由本发明的方法生产的电子发射体。这些电子发射体和由其制造的场致发射体阴极组件可以用在真空电子设备、平板型计算机和电视显示器、发射选通放大器、速调管、和照明设备。平板型显示器可以是平面的或曲面的。由本发明生产的平板型显示器包括由通过本发明的方法生产的电子发射体组成的阴极组件、与阴极组件隔开的阳极、和一层磷光体,所说的阳极包括在阳极载体板的面对阴极的表面上用光学方法制成图案的透明导电膜,所说的磷光体层在由阴极组件的电子发射体发出的电子的轰击下能够发光,磷光体层的位置靠近位于阳极和阴极之间的用光学方法制成图案的透明导电膜,在阳极和阴极之间定位选通电极,选通电极包括一个由导电路径构成的结构,这些导电路径基本上垂直于用光学方法制成图案的透明导电膜设置,每个导电路径按可操作方式有选择地连接到一个电子源,并且在阳极和电子发射体之间连接电压源。除了上述三极管结构中的单个选通电极外,还可以使用附加的控制电极,使用控制电极可以允许在选通电极上的发射电压较低,并可提供较高的加速电压。这些附加电极可用于调节场的分布和场的发射,并且可以用于聚焦发射的电子。附图简述图1表示例1-5的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图2是来自例4的电子发射体的电子发射撞击的磷光体层发出的光的一张照片。图3表示例6-8的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图4表示例9的样品在离子轰击前的对于两种不同的放大倍数的扫描电子显微照片。图5表示例9-13的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图6表示例6的样品在离子束轰击之前和之后的扫描电子显微照片。图7表示例13和14的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图8表示例15-17的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图9表示18-20的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图10表示例15、18、21的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图11表示例22-25的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图12表示例26-29的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图13表示例30-34的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图14表示例35-37的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图15表示例38-41的电子发射体的发射结果,图中绘出的是发射电流随所加电压的变化。图16表示一个三极管电子发射设备的示意图。图17表示例42的三极管结构的发射结果,图中绘出的是发射电流随所加电压的变化。图18表示用于例43-45的三极管结构的发射触发的选通偏置导通电压。优选实施例的详细描述本发明的用于生产场致发射电子发射体的方法包括在基片上形成含石墨和玻璃的复合物层。玻璃附着到基片上,并且附着到部分石墨颗粒上,借此使石墨颗粒彼此结合并且结合到基片上。期望有尽可能多的包括石墨部分在内的复合物层表面面积,并且期望在复合物层表面的石墨部分没有玻璃。本发明的方法提供一种复合物层,其中至少50%复合物层表面面积由石墨颗粒组成。这种复合物还可包括导电材料,在这种情况下石墨和导电材料附着到基片上、它们相互附着、并且附着到石墨颗粒上。如这里所用的,“石墨颗粒”意指通常的六边形的颗粒,既有合成的形式又有天然的形式。各种方法都可用于在基片上形成含石墨颗粒和玻璃的复合物层,但优选的方法是按照期望的图案在基片上网板印刷包括石墨颗粒和玻璃原料的糊剂、然后焙烧干燥的并且带有图案的糊剂。对于较大范围的应用,例如需要较精细分辨率的那些应用,优选的方法包括网板印刷还包括光引发剂和可光硬化单体的糊剂,用光学方法制作干燥的糊剂的图案,和焙烧干燥的并且带有图案的糊剂。基片可以是复合物层中的玻璃能够附着的任何材料。硅、玻璃、金属、或诸如氧化铝的耐火材料都可以用作基片。非导电材料需要一层导电材料用作阴极电极,并且提供向石墨颗粒施加电压和向石墨颗粒供应电子的手段。如这里所使用的,“基片”意指其上形成复合物层的结构,或者是一种材料或者是材料的组合,例如具有一层电导体的非导电材料(如玻璃)。提供这种导电层的优选技术是通过网板印刷和焙烧银或金的导体组合物形成导电的复合物。当使用网板印刷或用光学方法制图来形成一层复合物层时,特别优选的基片包括玻璃和钠钙玻璃。用来网板印刷的糊剂一般来说包含石墨颗粒、低软化点玻璃原料、有机媒剂、溶剂、和表面活化剂。有机媒剂和溶剂的作用是在糊剂中以典型的制图方法(如网板印刷)的正确的流变学关系悬浮并扩散颗粒状组分(如固体)。在现有技术中已知有大量的这种媒剂。可以使用的树脂例是纤维素树脂,如各种分子量的乙基纤维素和醇酸树脂。有用的溶剂例有丁基卡必醇、丁基卡必醇醋酸酯、二丁基卡必醇、二丁基邻苯二甲酸酯和萜品醇。对于这些溶剂和其它的溶剂进行调配,以获得期望的粘度和挥发性要求。可以使用表面活化剂改善粒子的扩散性。典型的表面活化剂为有机酸(如油酸和硬脂酸)和有机磷酸盐(如卵磷脂或Gafac_有机磷酸盐)。在焙烧温度下能充分软化以附着到基片上并且附着到石墨颗粒上的玻璃原料是需要的。在某些例中使用的是铅玻璃原料,但还可以使用具有低软化点的其它玻璃,如钙或锌的硼硅酸盐,并且在其它例中已证实可以使用铋-锌-铝-硼硅酸盐。使用无铅玻璃原料是优选的。优选地,石墨颗粒的最小尺寸为1微米。如果期望得到具有较高导电性的复合物层,则糊剂还要包括一种金属,如银或金。相对于糊剂的总重量,糊剂一般包含约占40%(重量)到约占60%(重量)的固体。这些固体包含石墨颗粒和玻璃原料,或者包含石墨颗粒、玻璃原料、和金属。石墨颗粒的体积百分数约为固体总体积的约35%到约80%。可以利用组分的变化来调节印刷材料的粘度和最终厚度。糊剂一般是通过研磨由石墨颗粒、低软化点玻璃原料、有机媒剂、表面活化剂和溶剂组成的混合物来制备。使用众所周知的网板印刷技术,例如使用一种165-400网眼的不锈钢网板,可对这种糊剂混合物进行网板印刷。按照期望的图案形式,例如分散元、相互连接的区域、或连续膜的形式来淀积所说的糊剂。在焙烧之前一般在125℃下加热约10分钟以干燥网板印刷糊剂。当基片包括玻璃时,在约450℃到约575℃的温度下,最好在约475℃到约525℃的温度下,焙烧干燥的糊剂持续约10分钟。对于能够耐较高温度的基片,可以使用较高的焙烧温度。与在525℃温度下焙烧的场致发射电子发射体相比,在约450℃到约500℃的温度下焙烧的糊剂得到的场致发射电子发射体有较低的导通电压和在一个指定的发射电流下的较低的电压。然而,对于在这些例中所用的玻璃原料来说,与在较低温度下焙烧的糊剂相比,在525℃温度下的焙烧产生的复合物层表现出较好的基片附着性质。在糊剂中可以使用可在较低温度下软化的玻璃原料,以便为在450℃到500℃温度下焙烧的糊剂提供较好的附着性能,并且因此可以利用在这些较低的焙烧温度下产生的复合物的较好的发射性质。正是在这个焙烧步骤,有机材料挥发,离开由石墨颗粒和玻璃组成的复合物。令人惊奇的是,在焙烧期间石墨颗粒没有经受任何明显的氧化或其它化学的或物理的变化。如果要用光学方法对于网板印刷的糊剂进行制图,该糊剂要包含光引发剂和可光硬化单体,这种可光硬化单体例如至少包含一种附加的可聚合的烯键式不饱和化合物,该化合物具有至少一个可聚合的烯基。焙烧的材料的扫描电子显微照片(SEM)表明,石墨颗粒在复合物层中占据大部分表面面积。一般来说,80%以上的表面面积是由石墨颗粒部分组成的。淀积的糊剂层在焙烧时厚度减小了。优选地,焙烧后的复合物层的厚度从约5微米到约30微米。随后对包含在基片上的石墨颗粒和玻璃的复合物层进行处理,以产生场致发射电子发射体。例如复合物层然后在下述条件下经受离子束轰击。可以使用氩、氖、氪、或氙离子束。优选的是氩离子。可以在氩气中加入反应性气体,如氮和氧,以便降低导通电压、发射的触发点、和产生1毫安发射电流所需的电压。对于氮和氧这两者,优选的替换数量最好是从约8%到约15%,即在离子轰击中使用的优选的气体组合物是从约92%Ar/8%N2到约85%Ar/15%N2,以及从约92%Ar/8%O2到约85%Ar/15%O2。组分90%Ar/10%N2和90%Ar/10%O2是特别优选的。所有的气体百分数都是按体积计的。对于相同百分数的可替换物来说,氮在降低发射所需的电压方面的效果比氧更好些。氧离子[O+]在化学方面更加活泼一些,并且可以产生挥发性物质,如CO和CO2。这将导致较快的蚀刻,并且在这个过程中还要消耗较细的碳须。氮离子[O+]不是那么容易起反应,并且反应产物不是挥发性的。在轰击中的压力约为从0.5×10-4乇(0.7×10-2巴)到约5×10-4乇(6.7×10-2巴),最好约为从1.0×10-4乇(1.3×10-2巴)到约2×10-4乇(2.7×10-2巴)。进行离子束轰击的离子流密度从约为0.1毫安/厘米2到约为1.5毫安/厘米2,最好约为0.5毫安/厘米2到约为1.2毫安/厘米2,离子束的能量约为0.5千电子伏到约为2.5千电子伏,最好约为1.0千电子伏到约为1.5千电子伏。可以使用约10分钟到90分钟或更长的轰击时间。在这些条件下,可以在石墨颗粒表面上形成碳须和锥体,最终的产品是一种良好的场致发射电子发射体。照射时间的范围和最佳照射时间取决于其它轰击条件和复合物层的厚度。轰击的时间必须足够长,以能在石墨颗粒上形成碳须和锥体,但照射时间也不能太长,以致复合物层的一些部分由于发射特性变差导致的蚀刻到基片。为了避免发生这种情况,但仍旧还要有足够长的轰击时间在石墨颗粒上产生碳须和锥体,更加优选的作法是,焙烧的复合物层的厚度定为从约7微米到约30微米,最优选是焙烧的复合物层的厚度范围是从约10微米到约30微米。长于约60分钟的轰击时间需要很厚的样品。约15分钟到约60分钟的轰击时间对于优选厚度的复合物层是优选的,约40分钟到约50分钟的轰击时间是特别优选的。当复合物层没有覆盖整个基片时,暴露到离子轰击的部分表面可能是基片材料。例如,当复合物层不是一个连续的薄膜而是一个由分散元或相互连接的区域构成的图案时,那么基片的一些部分就要受到离子束的照射。当基片是由非导电的材料例如玻璃构成并带有一层导体时,玻璃和/或导电层的一些部分就要受到离子束的照射。即使当复合物层是连续层的形式,也可能有部分基片(例如包围复合物层的玻璃和/或导电层)要受到离子束的照射。另一情况,为了提供复合物连续层的一些分散的区域,这些分散的区域用作良好的电子发射区,并且这些良好的电子发射区由发射性能差得多的一些区域分隔开来,这就必须防止复合物连续层的部分受到离子轰击。在所有的这些情况下,优选的作法是掩蔽可能会受到离子轰击的任何基片部分,并且掩蔽不期望受到离子轰击的复合物层的任何期望部分。为了一致性地产生期望的电子情况,使用这种掩模是优选的作法。石墨薄膜掩模是特别优选的。可以使用任何一种离子源。当前,在市场上最容易得到的是考夫曼离子源。在离子轰击步骤期间,石墨颗粒的表面结构发生了显著的变化。由于蚀刻,这个表面结构不再平滑,而是变得有纹理的,并且有锥体。锥体的直径范围从约0.1微米到约0.5微米。锥体沿朝向入射离子束方向发展,从而只在90度(即垂直于这个表面)的角度实现离子束蚀刻时,锥体才垂直于这个表面。石墨在被轰击的表面上均匀地实现了蚀刻,即锥体的密度(每单位面积的锥体数目)和锥体的外观都是一致的。所形成的锥体的传输电子显微照片(TEM)表明,这些锥体是由结晶碳的小颗粒构成的。据信锥体是在经离子轰击蚀刻后剩下来的原来的石墨表面的一部分。除了锥体外,在石墨颗粒表面的离子轰击期间还形成碳须。碳须的典型位置在锥体的顶部。碳须的长度可从2微米延伸到20微米或更长。碳须的长度可比石墨颗粒的初始尺寸大得多。碳须的直径范围从0.5纳米到50纳米。碳须沿朝向入射的离子束的方向形成。碳须是柔性的,并且已经观察到碳须在扫描电子显微镜(SEM)测量期间的移动。可以改变离子束的入射角。如这里所使用的,入射角定义为入射离子束和复合物层平面之间的角度。在入射角从90度(即垂直于这个平面)变化到45度时,发射特性没有明显改变。然而,入射角极大地影响该结构,这是因为如以上所述,锥体和碳须通常是沿入射离子束的方向生长的。为了在典型的三极管设备中作为发射体使用,优选的入射角是90度,因为这样作的结果是所产生的锥体和碳须垂直于复合物层的平面。对于下面的这些例子,使用3厘米直径的离子枪(考夫曼离子源,Ⅱ型),在样品表面上产生直径约为2英寸(5厘米)的氩、氩和氮、或氩和氧的离子束。这是一种涡轮泵系统,基压为1×10-8乇(1.3×10-6巴)。在达到基压后,通过一个针阀将工作气体氩、氩和氮、或氩和氧加入这个系统,直到达到稳定的工作压力1×10-4乇(1.3×10-2巴)时为止。离子枪和该表面之间的距离为4-5英寸(10-12.5厘米)。碳须的传输电子显微照片表明,它们是实心的,并且由非结晶碳构成。据信这种材料是通过从离子束蚀刻的初始石墨颗粒上去除的,又然后重新淀积的碳,该碳初始时一般在锥体的尖端上,随后就在生长的碳须的尖端上。另一方面,通过用漫射到锥体或碳须的尖端的离子束激活碳,也可能形成碳须。碳须在结构上不同于碳纳米管。碳纳米管是中空的并且包含碳的石墨状的外壳。碳须则是实心的,并且在任何方向都没有展示出长距离的结晶顺序。使用平板型发射测量单元在最终的样品上进行场致发射试验,所说的平板型发射测量单元由两个电极组成,一个电极用作阳极或收集极,另一个电极用作阴极。这个平板型发射测量单元由两个正方形的铜板组成,铜板的尺寸为1.5英寸×1.5英寸(3.8厘米×3.8厘米),所有的角和边缘都经过倒角处理,以便把电弧减至最小。每个铜板都嵌入分别的聚四氟乙烯(PTFE)块中,聚四氟乙烯块的尺寸为2.5英寸×2.5英寸(4.3厘米×4.3厘米),大小为1.5英寸×1.5英寸(3.8厘米×3.8厘米)的铜板表面露在PTFE块的前侧。通过穿过聚四氟乙烯块的背部并且伸入铜板里边的一个金属螺栓和铜板电触点,借此提供向铜板施加电压的手段和牢固地保持铜板就位的方法。确定这两个聚四氟乙烯块的位置,使两个外露的铜板表面相互面对,并且与两个铜板之间的距离对齐,这两个铜板是借助于放在聚四氟乙烯块之间的但又距铜板有一定距离以防止表面泄漏电流或电弧放电的玻璃垫圈固定的。可以调节电极间的分开距离,但要一次选定,对于在一个样品上的指定的一组测量来说,这个距离是固定的。一般来说,采用的分开距离是0.5毫米到约2毫米。样品放在用作阴极的铜板上。对于导电的基片,将样品夹持就位,并且在样品的后背上涂一小滴碳并使其干燥,从而产生电触点。对于具有导电膜的绝缘基片,用导电的铜带在两侧固定基片,导电铜带还用来提供电触点。将试验设备插入真空系统,将这个真空系统抽空到低于5×10-6乇(6.7×10-4巴)的基压。在阴极上加上负电压,并且测量发射电流随所加电压的变化。测量两个铜板之间的分开距离。颗粒尺寸特征d50应是这样的颗粒尺寸所有较小尺寸颗粒的重量应等于所有较大颗粒的重量。这里报告的d50是使用Microtrak_设备测量的。使用Hegman型测量仪测量晶粒细度(扩散细度)。这种方法提供一种快速的可视的度量,以便评估在糊剂中固体颗粒的扩散和结块的程度。所用的这个测量仪由一个钢块组成,在这个钢块中切出一个平直的具有V形横截面的通道,这个V形的横截面从深端的25微米逐渐变细到另一端的0。在通道的深端放置足够多的糊剂充满这个通道,并且用医生的手术刀向浅部移动糊剂。在沿通道的某一点,较大的颗粒或结块将变为可见的。糊剂的表面随后出现刮痕,这反映结块的存在。对于这里所要达到的目的,记录刮第4次时的通道深度,以此作为晶粒细度的第一度量值。记录已有50%的区域被刮痕覆盖的通道深度,以此作为晶粒细度的第二度量值,所报告的晶粒细度是第一度量值/第二度量值。本发明的实例下面的非限制性实例旨在进一步说明和描述本发明。除非另有规定,所有的份额和百分数都是按重量计的。在形成糊剂中所用的材料是石墨颗粒Ⅰ天然的HPN-10石墨粉,d50=8微米,表面面积=8.6米2/克石墨颗粒Ⅱ天然的片(AsburyCarbon,Inc.),d50=3-5微米,表面面积=13米2/克石墨颗粒Ⅲ合成的UF440(AsburyCarbon,Inc.),d50=1微米,表面面积=85米2/克玻璃Ⅰ1.6%SiO2,1.7%Al2O3,85.8%PbO,10.9%B2O3玻璃Ⅱ2.00%SiO2,2.98%Al2O3,13.2%B2O3,8.99%ZnO,0.96%Na2O,71.87%B2O3有机媒剂Ⅰ10%的N-22乙基纤维素,30%的二甘醇,30%的二丁基醚,和30%的β-萜品醇有机媒剂Ⅱ13%的P-50乙基纤维素,和87%的β-萜品醇有机媒剂Ⅲ10%的N-22乙基纤维素,和90%的β-萜品醇表面活化剂大豆卵磷脂溶剂β-萜品醇所有的加热操作都是在实验室用的加热箱中进行的,温度的不确定性为±10℃。例1-5使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在玻璃基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且对其进行焙烧以形成含石墨颗粒和玻璃的复合物层。这些实例表现出不同量的石墨对于电子发射的影响。通过混合表1中所示的用百分数表示的材料制备在例1和5中所用的40克的糊剂样品。使用一台3级辊式破碎机以100/200psi(6.9/13.8×105Pa)的压力轧制每个混合物。表1<tablesid="table1"num="001"><table>石墨颗粒Ⅰ玻璃Ⅰ有机媒剂Ⅰ有机媒剂Ⅱ有机媒剂Ⅲ表面活化剂溶剂例18.341.70103910例225253700310</table></tables>例2、3、4所用的糊剂是通过分别按3∶1、1∶1、1∶3的比例混合制备例1和5的糊剂部分制备出来的。在例1-5中所用的糊剂中的石墨颗粒的百分数分别是8.3%、12.5%、16.7%、20.8%、25%。在糊剂中固体(即石墨颗粒和玻璃原料)的总百分数在所有的这些例中都是50%。依据石墨颗粒和玻璃原料的总体积,石墨颗粒的体积百分数从例1糊剂的37%变到例5糊剂的74%。使用200网眼的网板按照1英寸(2.5厘米)的正方形图案把每个例的糊剂加到玻璃板上。在空气中焙烧干燥的糊剂,为此要以20℃/分钟的速率增加温度到525℃,并在温度525℃下维持10分钟,然后再以20℃/分钟的速率降低温度并冷却到环境温度。焙烧的复合物层的厚度约为20微米。结果,形成在基片上的含石墨颗粒和玻璃的复合物层。焙烧的材料的扫描电子显微照片(SEM)表明,石墨颗粒占据复合物层表面面积的大部分,几乎没有玻璃。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在下述条件下使被照射区域中的复合物层的表面区域受到氩离子束轰击离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1×10-4乇(1.3×10-2巴),照射时间为45分钟。在离子束轰击后的扫描电子显微照片表示,石墨颗粒的表面由垂直于该表面的碳锥体构成,在碳锥体尖端的碳须也垂直于这个表面,即沿入射离子束的方向。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到低于5×10-6乇(6.7×10-4巴)的基压。提高电压,直到发射电流如对于例1和例2为500微安、对于例3-5为1000微安时为止。在图1中绘出例1-5的电子发射体的发射结果。这些结果表明,具有最高石墨含量的例5的电子发射体在给定的外加电压下表现出最高的发射。通过使用由涂有铟锡氧化物的玻璃构成的阳极,并在铟锡氧化物上叠加磷光体层,让发射的电子撞击这个磷光体层,并且观察从磷光体发出的最终的光,从而就可以确认在整个1厘米×1厘米区域上发射的一致性。在图2的照片中表示出从例4的电子发射体的获得的结果。例6-8使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在玻璃基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且对其进行焙烧以形成包含石墨颗粒和玻璃的复合物层。这些实例表现出3种不同的石墨的使用对于电子发射的影响。通过混合表2中所示的用百分数表示的材料制备在例6-8中所用的糊剂样品。在每个例中,使用25%所示类型的石墨颗粒。使用一台3级辊式破碎机以100/200psi(6.9/13.8×105Pa)的压力轧制每个混合物。表2使用200网眼的网板按照1英寸(2.5厘米)的正方形图案把每个例的糊剂施加到玻璃板上。在空气中焙烧干燥的糊剂,为此要以20℃/分钟的速率增加温度到525℃,并在温度525℃下维持10分钟,然后再以20℃/分钟的速率降低温度并冷却到环境温度。焙烧的复合物层的厚度约为20微米。结果,形成在基片上的含石墨颗粒和玻璃的复合物层。焙烧的材料的扫描电子显微照片(SEM)表明,石墨颗粒占据复合物层表面面积的大部分。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在下述条件下使被照射区域中的复合物层的表面区域受到氩离子束轰击离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪一样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1×10-4乇(1.3×10-2巴),照射时间为45分钟。在离子束轰击后的扫描电子显微照片表示,石墨颗粒的表面由垂直于该表面的碳锥体构成,在碳锥体尖端的碳须也垂直于这个表面,即沿入射离子束的方向。图6(a)是在离子轰击之前例6样品的SEM,图6(b)是在离子轰击之后例6样品的SEM。这些照片清晰表明,在离子轰击之前没有锥体和碳须存在,在离子轰击之后存在锥体和碳须。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到低于5×10-6乇(6.7×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图3中绘出例6-8的电子发射体的发射结果。用石墨颗粒Ⅲ(即具有最大表面面积的石墨颗粒)制造的例8的电子发射体在给定的外加电压下表现出最大的电子发射。例9-12使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在玻璃基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且对其进行焙烧以形成包含石墨颗粒和玻璃的复合物层。这些实例表现出糊剂中所用的固体的研磨细度对于电子发射的影响。通过混合表3中所示的用百分数表示的材料制备40克的糊剂样品。表3将混合物分成4个样品。对于例9-12的样品,使用一台3级辊式破碎机分别以100、150、200、250psi(6.9、10.3、13.8、17.3×105Pa)的压力轧制这4个样品。使用每个样品的一个部分来确定如以上所述的研磨细度。对于例9-12的每个样品,其特征分别是17/15、9/7、5/4、4/3。使用一个200网眼的网板按照1英寸(2.5厘米)的正方形图案把每个例的糊剂施加到玻璃板上。在空气中焙烧干燥的糊剂,为此要以20℃/分钟的速率增加温度到525℃,并在温度525℃下维持10分钟,然后再以20℃/分钟的速率降低温度并冷却到环境温度。焙烧后的复合物层的厚度对于例9-12的复合物层分别为27、25、21、16微米。结果,形成在基片上的含石墨颗粒和玻璃的复合物层。焙烧的材料的扫描电子显微照片(SEM)表明,石墨颗粒占据复合物层表面面积的大部分。图4是例9样品在两个不同的放大倍数下的SEM,并且表示复合物的表面几乎全部由石墨颗粒组成。对于每个样品,利用一个掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在下述条件下使被照射区域中的复合物层的表面区域受到氩离子束轰击离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1×10-4乇(1.3×10-2巴),照射时间为45分钟。在离子束轰击后的扫描电子显微照片表示,石墨颗粒的表面由垂直于这个表面的碳锥体构成,在碳锥体尖端的碳须也垂直于这个表面,即沿入射离子束的方向。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到低于5×10-6乇(6.7×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流为1000微安时为止。在图5中绘出例9-12的电子发射体的发射结果。研磨细度似乎对于发射结果没有影响。例13-14使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在玻璃基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且对其进行焙烧以形成一层包含石墨颗粒和玻璃的复合物层。这些实例表明可以使用无铅玻璃和不同的石墨来获得类似于含铅玻璃获得的结果。通过混合表4中所示的用百分数表示的材料制备在例13和14中所用的6克糊剂样品。使用一台3级辊式破碎机以300psi(20.7×105Pa)的压力轧制每个混合物。表4在糊剂中固体(即石墨颗粒和玻璃原料)的总百分数在这两个例中都是50%。使用200网眼的网板按照1英寸(2.5厘米)的正方形图案把每个例的糊剂施加到玻璃板上。在空气中焙烧干燥的糊剂,为此要以20℃/分钟的速率增加温度到525℃,并在温度525℃下维持10分钟,然后再以20℃/分钟的速率降低温度并冷却到环境温度。结果,形成在基片上的含石墨颗粒和玻璃的复合物层。焙烧的复合物层的厚度对于例13的样品为27.6微米,对于例14的样品为20.4微米。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在下述条件下使被照射区域中的复合物层的表面区域受到氩离子束轰击离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1.5×10-4乇(2.0×10-2巴),照射时间为45分钟。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到低于5×10-6乇(6.7×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图7中绘出例13和14的电子发射体的发射结果。在用两种不同的石墨获得的结果中没有明显的差别。例15-21使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在玻璃基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且对其进行焙烧以形成包含石墨颗粒和玻璃的复合物层。这个基片由在玻璃板上的一层银导体组合物层构成。这些实例表示离子束的组成对于电子发射体的发射性质的影响。使用200网眼的网板向1英寸×1英寸(2.5厘米×2.5厘米)的玻璃板网板印刷一层银导体组合物(DuPont#7095银导体组合物,一种可网板印刷的厚膜组合物,在市场上可以从E.I.duPontdeNemoursandCompanyWilmington,DE.得到),并在温度525℃下焙烧干燥的层达10分钟,以产生导电的银复合物层,从而就可以制成每个样品的基片。通过混合表5中所示的用百分数表示的材料制备40克糊剂样品。使用一台3级辊式破碎机以300psi(20.7×105Pa)的压力轧制混合物。表5该糊剂用来制作7个样品,每个例一个样品。使用200网眼的网板向银组合物层施加糊剂,从而制成每个样品。在空气中焙烧干燥的糊剂,为此要以20℃/分钟的速率增加温度到525℃,并在温度525℃下维持10分钟,然后再以20℃/分钟的速率降低温度并冷却到环境温度。结果,形成在银组合物层/玻璃板基片上的含石墨颗粒和玻璃的复合物层。对于每个样品,利用掩模来照射向1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在照射区中的石墨/玻璃复合物层的表面区域受到具有不同的离子束组分的离子束轰击。对于例15,所用的气体是90%Ar/10%O2;对于例16,所用的气体是95%Ar/5%O2;对于例17,所用的气体是80%Ar/20%O2;对于例18,所用的气体是90%Ar/10%N2;对于例19,所用的气体是95%Ar/5%N2;对于例20,所用的气体是80%Ar/20%N2;对于例21,所用的气体是100%Ar。所有的气体百分数都是按体积计的。对于所有的这些样品,都使用下述离子束条件离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),分压为1.5×10-4乇(2.0×10-2巴),照射时间除例18外都为45分钟,例18为50分钟。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到低于5×10-6乇(6.7×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图8中绘出例15-17的电子发射体的发射结果,并在图9中绘出例18-20的电子发射体的发射结果。组分为90%Ar/10%O2的例15比例16和17表现出较好的发射性质,组分为90%Ar/10%N2的例18比例19和20表现出较好的发射性质。在图10中绘出例15、18、21的电子发射体的发射结果,并且清晰表示出在用于离子轰击的气体中具有约10%N2或约10%O2的优点。约10%N2在改善发射性质方面尤其有效。例22-25使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在玻璃基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且对其进行焙烧以形成一层包含石墨颗粒和玻璃的复合物层。这些实例表现出焙烧复合物的温度对于电子发射体的电子发射的影响。使用例8的糊剂制作4个样品,每个例一个样品。使用200网眼的网板把糊剂施加到1英寸×1英寸(2.5厘米×2.5厘米)的玻璃板上,借此来制造每个样品。分别将例22-25的样品的干燥的糊剂加热到450℃、475℃、500℃、525℃。在空气中焙烧干燥的糊剂,为此要以20℃/分钟的速率将温度增加到焙烧温度,并在该焙烧温度下维持10分钟,然后再以20℃/分钟的速率降低温度并冷却到环境温度。结果,形成在基片上的含石墨颗粒和玻璃的复合物层。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在下述条件下使被照射区域中的复合物层的表面区域受到氩离子束轰击离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1.5×10-4乇(2.0×10-2巴),照射时间为45分钟。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到对于例22为2.0×10-6乇(2.7×10-4巴)的基压,对于例23为1.5×10-7乇(2.0×10-5巴)的基压,对于例24为1.3×10-6乇(1.7×10-4巴)的基压,和对于例25为2.8×10-6乇(3.7×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图11中绘出例22-25的电子发射体的发射结果。在450℃、475℃、500℃温度下焙烧的例22-24的样品表现出类似的发射特性,在525℃温度下焙烧的例25的样品表现出需要较高的电压才能接通发射并且得到1毫安的发射电流。例26-29使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在玻璃基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,并且对其进行焙烧以形成一层包含石墨颗粒和玻璃的复合物层。这些实例表现出复合物的焙烧层厚度对于电子发射体的电子发射的影响。使用例8的糊剂制作4个样品,每个例一个样品。使用325网眼的网板把糊剂施加到1英寸×1英寸(2.5厘米×2.5厘米)的玻璃板上,并且对于4个例施加不同的厚度,借此来制造每个样品。然后在空气中焙烧干燥的糊剂,为此要以20℃/分钟的速率增加温度到525℃,并在这个焙烧温度下维持10分钟,然后再以20℃/分钟的速率降低温度并冷却到环境温度。焙烧后的复合物层的厚度对于例26-29的复合物层来说分别为14.4、11.0、7.7和6.4微米。结果,形成在基片上的含石墨颗粒和玻璃的复合物层。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在下述条件下使被照射区域中的复合物层的表面区域受到氩离子束轰击离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1.5×10-4乇(2.0×10-2巴),照射时间为45分钟。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到对于例26为4.8×10-6乇(6.4×10-4巴)的基压,对于例27为2.6×10-6乇(3.5×10-5巴)的基压,对于例28为1.2×10-7乇(1.6×10-5巴)的基压,和对于例29为7.7×10-7乇(1.0×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图12中绘出例26-29的电子发射体的发射结果。焙烧厚度为6.4微米的例29的样品在离子束轰击期间被蚀刻到基片。复合物层依然是连续的,但发射性质不如例26-28那么好。这些结果表明,只要复合物层有足够大的厚度,可以防止在离子束轰击期间的蚀刻穿透复合物层,并且离子束轰击的时间足以导致在石墨颗粒上形成碳须和锥体,那么电子发射就和焙烧的复合物层的厚度无关。例30-34使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在基片上网板印刷由石墨颗粒和无铅玻璃原料组成的糊剂,并且对其进行焙烧以形成一层包含石墨颗粒和玻璃的复合物层。该基片是由在玻璃板上的银导体组合物层构成的。这些实例表现出离子束轰击时间对于电子发射体的电子发射性质的影响。基本上如例15-21所述制备具有一层复合物层的5个样品,这个复合物层包含在银复合物层/玻璃板基片上的石墨颗粒和玻璃,制备过程中使用和例15-21相同的糊剂以及相同的焙烧条件。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且使被照射区域中的复合物层的表面区域受到不同时间长度的离子束轰击。用于离子束轰击的气体组分是90%Ar/10%N2(按体积计)。对于所有的5个样品都采用以下的离子束条件离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1.5×10-4乇(2.0×10-2巴),照射时间对于例30-34分别是5、10、15、30、45分钟。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到5×10-6乇(6.7×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图13中绘出例30-34的电子发射体的发射结果。发射特性随着照射时间的增加而得以改善。获得1000微安发射电流所需的电压随着照射时间的增加而减小。对于照射时间为5分钟的例30,获得1000微安发射电流所需的电压接近4000伏。对于照射时间为45分钟的例34,获得1000微安发射电流所需的电压约为1400伏。例35-37使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在基片上网板印刷由石墨颗粒和无铅玻璃原料组成的糊剂,并且对其进行焙烧以形成一层包含石墨颗粒和玻璃的复合物层。该基片是由在玻璃板上的银导体组合物层构成的。这些实例表现出离子束的入射角对于电子发射体的电子发射性质的影响。基本上如例15-21所述制备具有一层复合物层的3个样品,所说的复合物层包含在银复合物层/玻璃板基片上的石墨颗粒和玻璃,制备中使用和例15-21相同的糊剂和相同的焙烧条件。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且使被照射区域中的复合物层的表面区域在下述条件下受到氩离子束轰击对于例35-37,离子束相对于样品平面分别是90度、60度、和45度角入射,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1.5×10-4乇(2.0×10-2巴),照射时间为45分钟。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到为5×10-6乇(6.7×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图14中绘出例35-37的电子发射体的发射结果。发射特性对于不同的离子束的入射角没有发生大的变化。例38-41使用下面的方法在每个实例中制备电子发射体。在每个实例中,都是在基片上网板印刷由石墨颗粒和无铅玻璃原料组成的糊剂,并且对其进行焙烧以形成一层包含石墨颗粒和玻璃的复合物层。该基片由在玻璃板上的银导体组合物层构成。基本上如例15-21所述制备具有一层复合物层的4个样品,所说的组合物层包含在银复合物层/玻璃板基片上的石墨颗粒和玻璃,制备中使用和例15-21相同的糊剂和相同的焙烧条件。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且在下述条件下使被照射区域中的组合物层的表面区域受到氩离子束轰击离子束相对于样品平面是90度角入射,即离子束垂直于复合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1.5×10-4乇(2.0×10-2巴),照射时间为45分钟。在上述的测量单元的铜块阴极上放置包含已经经过网板印刷的并且经过离子轰击的石墨颗粒的玻璃板,从而可以获得已经受到离子轰击的1厘米×1厘米区域的发射结果。在基片的每一侧都加上两块导电的铜带,既保持基片就位,又给经过网板印刷的样品提供电触点。经网板印刷的样品的表面和铜块阳极之间的距离是0.6毫米。将这个系统抽真空到3×10-6乇(4×10-4巴)的基压。测量发射电流随电压的变化。提高电压,直到发射电流达到1000微安时为止。在图15中绘出例38-41的电子发射体的发射结果。对于这4个样品,产生1000微安发射电流所需的电压从约1500伏变化到约2000伏。例42使用以下的方法制备三极管设备,以便说明本发明的电子发射体在平板型显示器中的应用。在图16中示意地表示出这个三极管,作为方法描述的参照。基本上如针对例15-21所述的使用和例15-21所用的相同的糊剂和相同的焙烧条件制备复合物层1,所说的复合物层1包含在银复合物层2/玻璃板3基片上的石墨颗粒和玻璃。利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且使被照射区域中的石墨/玻璃组合物层的表面区域受到氩离子束轰击。对于这个样品,使用下述离子束条件离子束相对于样品平面是90度角入射,即离子束垂直于组合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的分压为1.5×10-4乇(2.0×10-2巴),照射时间为45分钟。在银复合物层/玻璃板基片上的经过离子束处理的复合物层用作该三极管的电极。为方便起见,将一个厚度为100微米的玻璃盖条4用作阴极和选通电极5之间的绝缘体。通过直流溅射向这个玻璃盖条淀积金选通电极。将这个玻璃盖条放在直流溅射系统的基底平台上,在一个6英寸(15厘米)的99.999%纯金靶的下方。抽空小室的压力到1×10-6乇(1.3×10-4巴)。引入氩气,并且使室的压力升到10毫乇(1.3巴)的溅射压力。向金靶加100瓦的直流功率,并且让溅射进行50分钟。淀积速率是20纳米/分钟,最终的金膜厚度是1微米。在这个涂金的玻璃盖条中加工出4个孔,每个孔的直径是700微米。然后将这个玻璃盖条放在经过离子束处理的复合物层上,如图16所示,以使该复合物层通过这4个孔露出来,从而可以提供可能发生电子发射的4个发射极区。阳极是一个玻璃板6,在玻璃板6上首先淀积一个透明的、导电的、每平方20欧姆的、铟锡氧化物膜,然后淀积几微米厚的ZnO磷光体层8。选通电极5和阳极上磷光体膜8之间的间距为4毫米。为了测量发射电流,将可变电压源9和10连接到选通电极5和阳极的铟锡氧化物膜7。两者相对于阴极都是正偏置的。如图所示使用安培计11、12、13测量各个电流,在阴极和选通电极连线中放置1兆欧的电阻器。图17是相对于阴极在阳极施加5千伏的恒定电压的情况下发射电流相对于外加的选通偏置电压的曲线图。在相对于阴极的约为350伏的选通偏置电压下发生电子发射的导通状态,并且观察到从磷光体发出的单个光点。当选通偏置电压提高到500伏时,从所有的4个发射极区都发生电子发射,并且观察到从磷光体发出的4个光点。总发射电流约为3微安,对应于约为0.2毫安/厘米2的电流密度。在选通电极没有观察到漏电流。存在一点滞后,导通电压是200伏。观察到的发射电流依赖于阳极电压的情况据信是用来隔开选通电极和阴极的相当厚的玻璃盖条的作用结果。使用较薄的绝缘体能够消除发射电流依赖于阳极电压的这种情况。这个例子表示的是三极管设备和电子发射体在平板型显示器中的应用。例43-45使用以下的方法制备3个三极管设备,以便说明本发明的电子发射体在平板型显示器中的应用。三极管的结构基本上如例42所表示的。这些例43-45表示在阴极和选通电极之间的绝缘体的厚度的影响。基本上如针对例15-21所述的使用和例15-21所用的相同的糊剂和相同的焙烧条件制备复合物层,所说的复合物层包含在银复合物层/玻璃板基片上的石墨颗粒和玻璃。对于每个样品,利用掩模来照射1英寸×1英寸(2.5厘米×2.5厘米)样品的1厘米×1厘米的区域,并且使被照射区域中的石墨/玻璃复合物层的表面区域受到氩离子束轰击。对于这个样品,使用下述离子束条件离子束相对于样品平面是90度角入射,即离子束垂直于组合物层表面,束流为10毫安,束电压为1.4千伏,离子束枪-样品之间的距离为4英寸(10厘米),在样品处的束直径为2英寸(5厘米),氩的部分压力为1.5×10-4乇(2.0×10-2巴),照射时间为45分钟。在银复合物层/玻璃板基片上的经过离子束处理的这个组合物层用作这个三极管的电极。在阴极和选通电极之间的所用的绝缘体对于例43-45分别是12微米、18微米、25微米厚的1英寸×1英寸(2.5厘米×2.5厘米)的正方形的Mylar_膜。在每个膜中,使用聚焦的CO2激光进行激光烧蚀,形成4个孔。孔的标称直径是70微米。然后通过直流溅射在Mylar_膜上淀积金电极。将这个Mylar_膜放在一个直流溅射系统的基底平台上,在6英寸(15厘米)的99.999%纯金靶的下方。这个膜相对于靶表面成60度角放置,以避免膜淀积在用激光钻出的孔中。抽空小室的压力到1×10-6乇(1.3×10-4巴)。引入氩气,并且使室的压力升到10毫乇(1.3巴)。向金靶加100瓦的直流功率,并且让溅射进行10分钟。淀积速率是20纳米/分钟,最终的金膜厚度是0.2微米。然后将这个Mylar_膜放在经过离子束处理的复合物层上,如图16所示,以使该复合物层通过这4个孔露出来,从而可以提供可能发生电子发射的4个发射极区。所用的阳极基本上和例42中所用的阳极相同。在选通电极和在阳极上的磷光体膜之间的距离是4毫米。为了测量发射电流,将可变电压源连接到选通电极和阳极的铟锡氧化物膜。两者相对于阴极都是正偏置的。图18是用于触发电子发射的选通偏置导通电压相对于绝缘体厚度的变化曲线图。选通偏置导通电压从绝缘体厚度为25微米的例45的150伏减小到绝缘体厚度为12微米的例43的50伏。在电子发射刚触发时可观察到从磷光体上的一个点发出的光,随着选通偏置电压的增高可从磷光体上的4个点观察到光。这些例子表示的是三极管设备和电子发射体在平板型显示器中的应用。虽然在上述描述中已经描述了本发明的特殊实施例,但本领域的普通技术人员都会理解,在不偏离本发明的构思和基本性质的条件下本发明还能有一系列修改、替换、和重新安排。应参照表示本发明范围的所附的权利要求书而不是以上的说明书。权利要求1.一种用于生产场致发射电子发射体的方法,该方法包括如下步骤;(a)形成一层复合物层,该复合物层包含在基片上的石墨颗粒和玻璃,其中所说的玻璃附着到所说基片上并且附着到所说的石墨颗粒部分上,借此使所说的石墨颗粒相互结合并且结合到所说基片上,并且其中所说复合物层的表面面积的至少50%由所说石墨颗粒部分组成;和(b)用离子束轰击在(a)中形成的复合物层的表面,轰击时间足以在所说石墨颗粒上形成碳须,所说的离子束包括氩、氖、氪、或氙的离子。2.权利要求1的方法,其特征在于所说离子束包括氩离子。3.权利要求2的方法,其特征在于所说离子束含包括氮离子。4.权利要求1-3中任何一个所述的方法,其特征在于所说复合物层的至少70%表面面积由所说石墨颗粒部分组成。5.权利要求1-3中任何一个所述的方法,其特征在于所说石墨颗粒的体积百分数是所说石墨颗粒和所说玻璃的总体积的约35%到约80%。6.权利要求5的方法,其特征在于所说石墨颗粒的体积百分数是所说石墨颗粒和所说玻璃的总体积的约50%到约80%。7.权利要求3的方法,其特征在于;离子束气体来自于约85到约90体积百分数的氩,和约8到约15体积百分数的氮。8.权利要求2的方法,其特征在于所说的离子束还包括氧离子。9.权利要求2、3、7、或8中任何一个所述的的方法,其特征在于所说离子束的离子流密度从约0.1毫安/厘米2到约1.5毫安/厘米2,束能量从约0.5千电子伏到约2.5千电子伏,离子轰击时间从约15分钟到约90分钟。10.权利要求9的方法,其特征在于离子轰击时间从约40分钟到约50分钟。11.权利要求2的方法,其特征在于;所说的复合物层是通过下述方法形成的,它包括(a)按照期望的图案在所说的基片上网板印刷由石墨颗粒和玻璃原料组成的糊剂,其中所说石墨颗粒的体积百分数约为所说的石墨颗粒和所说的玻璃原料的总体积的约35%到约80%;和(b)焙烧干燥的呈图案的糊剂以软化所说的玻璃原料,并且使其附着到所说基片上并附着到所说石墨颗粒部分上,借此使所说石墨颗粒相互结合,并结合到所说基片上以产生所说的复合物层。12.权利要求2的方法,其特征在于;所说的复合物层是通过下述方法形成的,它包括(a)在所说的基片上网板印刷包括石墨颗粒、玻璃原料、光引发剂、和可光硬化单体的糊剂,其中所说石墨颗粒的体积百分数约为所说的石墨颗粒和所说的玻璃原料的总体积的约35%到约80%;和(b)用光学方法制作干燥的糊剂的图案;和(c)焙烧干燥的呈图案的糊剂以软化所说的玻璃原料,并且使其附着到所说基片上并附着到所说石墨颗粒部分上,借此使所说石墨颗粒相互结合,并结合到所说基片上以产生所说的复合物层。13.权利要求11或12的方法,其特征在于所说的糊剂由从约40%(按重量计)到约60%(按重量计)的由石墨颗粒和玻璃原料组成的固体构成。14.权利要求13的方法,其特征在于所说的基片包括玻璃,所说的焙烧是在约450℃到约575℃的温度下进行约10分钟。15.权利要求14的方法,其特征在于所说的焙烧是在约450℃到约525℃的温度下进行约10分钟。16.权利要求2、11、或12中任何一个所述的方法,其特征在于所说的玻璃是无铅玻璃。17.权利要求11或12的方法,其特征在于焙烧的复合物层的厚度从约10微米到约30微米,所说的离子束还包括氮离子。18.通过权利要求2、11、或12中任何一个所述的方法制作的电子发射体。19.一种用作网板可印刷的糊剂的组合物,所说的糊剂包括约40%(按重量计)到约60%(按重量计)的由石墨颗粒和玻璃原料组成的固体,其中的重量百分数是依据所说组合物的总重量而言的,并且所说石墨颗粒的体积百分数是所说固体总体积的约35%到约80%。20.权利要求19的方法,其特征在于所说石墨颗粒的体积百分数是所说固体总体积的约50%到约80%。21.权利要求20的方法,其特征在于所说石墨颗粒的大小从约0.5微米到约10微米。22.一种形成复合物层的方法,所说的复合物层包括在基片上的石墨颗粒和玻璃,该方法包括如下步骤(a)按照期望的图案在基片网板印刷包含石墨颗粒和玻璃原料的糊剂,其中所说石墨颗粒的体积百分数约为所说的石墨颗粒和所说的玻璃原料的总体积的约35%到约80%;和(b)焙烧干燥的呈图案的糊剂以软化所说的玻璃原料,并且使其附着到所说基片上并附着到所说石墨颗粒部分上,借此使所说石墨颗粒相互结合,并过结合到所说基片上以产生所说的复合物层,其中所说复合物层的至少50%表面面积由所说石墨颗粒部分组成。23.权利要求22的方法,其特征在于所说石墨颗粒的体积百分数约为所说的石墨颗粒和所说的玻璃原料的总体积的约50%到约80%;所说复合物层的至少70%表面面积由所说石墨颗粒部分组成。24.包含权利要求18的电子发射体的一种平板型显示器。25.权利要求24的平板型显示器,还包括至少一个选通电极。26.权利要求1、2、11、12中任何一个所述的的方法,其特征在于掩模覆盖所说基片的任何部分,否则这些部分将要受到离子束的照射。27.权利要求26的方法,其特征在于所说的掩模还覆盖所说复合物层的不打算受到离子束照射的部分。28.权利要求26的方法,其特征在于所说的掩模是石墨箔掩模。29.权利要求27的方法,其特征在于所说的掩模是石墨箔掩模。全文摘要公开了带有图案的离子轰击式石墨电子发射体以及用于生产它们的方法。电子发射体是通过在基片上形成由石墨颗粒和玻璃组成的复合物层、然后用离子束轰击该复合物而产生的。这种电子发射体用在制成平板型显示器的场致发射体阴极组件中。文档编号H01J9/02GK1281585SQ9881216公开日2001年1月24日申请日期1998年12月8日优先权日1997年12月15日发明者小D·I·阿梅,R·J·布查德,S·I·U·沙申请人:纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1