机械部件及其制造方法

文档序号:3244788阅读:119来源:国知局
专利名称:机械部件及其制造方法
技术领域
本发明一般地涉及机械部件的制造,更特别地是涉及在机械部件上形成作为部分隔热涂层体系的结合层的方法。

背景技术
已公知的涡轮叶片被联接至附接在转子轴上的中心毂,从而使叶片通常从转子轴处相对于毂和轴的中心轴线向外径向延伸。每个叶片包含一个翼面。在运行期间,一种高能量驱动液体例如一种燃烧气体流冲击到翼面上,从而传给叶片旋转能量继而使轴进行转动。
由于已公知燃烧气体流的高温,因此一些已公知的燃气涡轮叶片至少包含隔热涂层(TBC)体系,所述体系是由翼面的基底表面上的多个层形成。所述多个层具有多种材料组分,以确保TBC体系提供多个保护功能。一些已公知的涡轮叶片具有在翼面基底上形成的第一层,该层一般使用一种经常被称作“结合层”的材料。结合层这一种术语经常用于涉及多种在基底上形成粘附保护生第一层的材料,它们便于使其后的相容材料层和结合层的表面间产生粘接。TBC体系保护功能的一个例子是TBC体系利于遮蔽高温燃烧气体对翼面的影响。更特别地是,已公知的TBC体系可以降低基底温度高达100℃(180),由此减小基底发生热疲劳和/或蠕变的可能性。另外,降低的基底温度促进减小基底发生热致氧化和/或腐蚀的可能性。
在运行期间,由于翼面和它们的TBC体系暴露于一般可能存在于燃气涡轮中的热、氧化和/或腐蚀性环境中,因此翼面TBC体系可能会被改变。例如,持续地暴露于这样的环境中会负面地影响到热生长氧化(TGO)层并可能会引起TGO层的叠层内产生应力,这可能会引起结合层和/或面层材料的过早失效和/或剥落(即,材料部分的除去,或脱层)。TBC体系的剥落不利地将翼面基底暴露于高温中。
此外,持续暴露于这样的环境中也可能会促使铝从结合层扩散。扩散到基底的铝(Al)的扩散损失可能会减小结合层中铝的浓度,由此减小了结合层继续在结合层(bond coat layer)和面层(top coat layer)之间的TGO层的界面上产生保护性的粘附氧化铝皮膜的能力。另外,铝的相互扩散可能会引起在翼面壁内形成扩散区,这会对基底性能产生不利影响。例如,在基底的元素组成中加入铝可能会降低翼面壁的基底疲劳强度和/或缩短翼面的寿命。


发明内容
一个方面,提供一种制造机械部件的方法。该方法包括提供基底包含表面区的机械部件。该方法进一步包括在部件上形成隔热涂层(TBC)体系,由此至少一层TBC结合层形成在基底表面区上。所述至少一层TBC结合层采用高速氧燃料火焰(HVOF)喷涂方法形成。该TBC结合层材料的组成是镍-铬-铝-钇(NiCrAlY),所述组成中还含有硅(Si)、铪(Hf)和重量百分比小于10%的钴(Co)。
另一个方面,提供一种隔热涂层(TBC)体系。所述体系包括形成在基底表面区上的至少一层隔热涂层(TBC)结合层。该TBC结合层包含至少一种TBC结合层材料。所述TBC结合层材料的组成是镍-铬-铝-钇(NiCrAlY),所述组成中还包含硅(Si)、铪(Hf)和重量百分比小于10%的钴(Co)。该TBC体系进一步包括形成在TBC结合层上的至少一个面层。
进一步的一个方面,提供一种机械部件。该机械部件包括具有表面区的基底。基底表面区的至少一部分具有预定的材料组分。所述机械部件还包含隔热涂层(TBC)体系。所述TBC体系包含至少一层TBC结合层和至少一层形成在TBC结合层上的面层。所述TBC结合层包含至少一种TBC结合层材料。该材料的组成是镍-铬-铝-钇(NiCrAlY),所述组成中还包含硅(Si)、铪(Hf)和重量百分比小于10%的钴(Co)。



图1是示例性燃气涡轮叶片的透视图; 图2是可以与图1中的叶片一起使用的示例性翼面的剖面示意图;和 图3是沿图2中的区域3截取的一部分翼面的放大视图。

具体实施例方式 如此处所述,术语“层”涉及但不限于片状展开区域、或覆盖表面或形成比如涡轮部件这一制品的上覆或底层部分或部段的一种或多种材料的区域。所述层具有厚度尺寸。术语“层”不涉及形成所述层的任何特定的方法。例如,层可以采用喷涂、涂覆、层压法形成。
图1是示例性燃气涡轮叶片100的透视图。叶片100包括从燕尾形叶片根部104延伸出的翼面102。根部104插入到位于涡轮(图1未示出)内中心位置的毂(图1中未示出)上的相似形状区。多个涡轮叶片100被联接至附接在燃气涡轮转子轴(图1未示出)上的中心毂,因此叶片100通常从转子轴处相对于毂和转子轴的中心轴线向外径向延伸。在运行期间,一种高能量驱动液体,例如一种燃烧气体流冲击到翼面102上,从而赋予叶片100旋转能量,由此使轴产生转动。
图2是可以和叶片100(图1中所示)一起使用的示例性翼面102的剖面示意图。翼面102具有内部冷却流体通道105,所述内部冷却流体通道渠化引导冷却流体,一般为空气,在翼面102内通过,以促使从限定液体通道105的内表面中除去热量。翼面102还包括可以由超合金材料形成的基底106。超合金一般为镍基或钴基合金,其中镍或钴在超合金中的量以重量计是唯一最大量的元素。示例性的镍基超合金包括但不限于包括至少大约40wt%的镍(Ni)以及选自包括钴(Co),铬(Cr),铝(Al),钨(W),钼(Mo),钛(Ti),钽(Ta),铌(Nb),铪(Hf),硼(B),碳(C)和铁(Fe)组成的组中的至少一种组分。镍基超合金的例子可以是但是不限于商品名称为Inconel,Nimonic,Rene,(例如,Rene80-,Rene95,Rene142和ReneN5合金)和Udimet的合金,并且包括定向固化和单晶的超合金。示例性的钴基超合金包括至少大约30wt%的钴和至少一种选自包括镍,铬,铝,钨,钼,钛,和铁组成的组中的组分。钴基超合金的例子可以是但不限于商品名称为Haynes,Nozzaloy,Stellite和Ultimet的合金。
翼面102还被制成具有额外的基底表面108,该基底表面形成在基底106上,并且可以被成形为具有一组预定轮廓和厚度的预定尺寸,它基本上相似于精整翼面102的尺寸。翼面102还包括隔热涂层(TBC)体系110。由于已公知燃气流的高温,因此一些已公知的燃气涡轮叶片100所具有的隔热涂层(TBC)体系110是由翼面102的基底表面108上的多个层(在图2中未示出)形成的。在一种实施方案中,燃气流的温度范围大约是1316℃到1427℃(2400到2600)。所述层可以具有多种材料组分,以便于TBC体系110有利地防护翼面102免受高温燃气的影响。TBC体系可以降低基底温度差不多100℃(180),因此减小基底产生热疲劳和/或蠕变的可能性。另外,降低的基底温度有利于减小基底产生热致氧化和/或腐蚀的可能性。体系110将在下面进行讨论。
图3是截取图2中所示的区域3获得的翼面102的一部分的放大视图。冷却流体通道105利于从基底106中除去内部热量。如下面进一步讨论地,结合层112形成在基底表面108上。面层120形成在结合层表面114上。所述层的组分在下面进行更详细地讨论。
TBC体系结合层112可由至少一种MCrAlX材料形成。表示用于结合层112的MCrAlX描述了可用于TBC体系110中的多种金属合金的化学组成。Cr和Al是铬和铝的标准缩写。M通常地指元素镍(Ni),钴(Co),和铁(Fe)及其组合。X可指元素比如钽(Ta),铼(Re),钌(Rh),铂(Pt),硅(Si),硼(B),碳(C),铪(Hf),钇(Y),和锆(Zr)及其组合。前述的MCrAlX材料有利于形成抗氧化结合层,它减轻了TBC体系110和基底106间界面的氧化,而所述氧化是主要的TBC失效机理。
在示例性实施方案中,结合层112使用NiCrAlY。在本发明中所使用的材料具有大致下述重量百分比的主要合金元素被用在结合层112中。
除了这些主要的合金元素外,还可以添加少量微量元素来增强抗氧化性能。这些微量元素可以包含铂族金属元素(PGM),通常为钌(Rh)和铂(Pt)。
可选择的是,NiCrAlY可具有大约下述重量百分比的主要合金元素。
与硅有关的4.00%的值是基于在Si值大于4%时以氧化硅(SiOx)的形式形成玻璃态二氧化硅,从而有损失Si的趋势,由此会趋向于降低涂层的稳定性,促使抗氧化性的减弱和增加剥落的可能性。
一般来说,当减少引入到结合层材料中的钴时,作为本发明结果的改进是最显著的。在Co的重量百分比值小于5%时,所显现的有害影响更小。在Co的wt%值大于5%时,减弱了加入Si和Hf到结合层材料中可得到的任何潜在有益效果。Co会增加结合层112与面层120之间的热膨胀失配,进而可降低层120与层112的粘附性。
在示例性实施方案中,上述元素结合并混合成预合金粉末,接着使用高速氧燃料火焰(HVOF)喷涂工艺将其喷涂到基底表面108上。在该工艺中,将结合层材料粉末喷涂到基底表面108上。翼面102被定位在夹具内(图3中未示出),所述夹具使翼面102相对于HVOF枪(在图3中未示出)旋转。保持HVOF枪的自动机(图3中未示出)被定位在距离夹具预定距离的位置处。燃料诸如氧化丙烯或煤油进行燃烧从而将粉末加热成熔融状态。生成的燃烧气体具有的温度范围在1649℃(3000)到2760℃(5000),将这种气体被用作推进剂,它可以施加610米/秒(m/s)(2000英尺/秒(ft/s))到1524m/s(5000ft/s)的速度。在使用HVOF枪喷涂一遍之后,结合层材料的层11 2沉积在给定平面或区域单元。为了基本上完全覆盖基底106的表面108并且得到结合涂层112的必要厚度,在沉积结合涂层112时,一般需要使HVOF枪和基底表面108彼此相对地进行移动。可以采取移动枪、基底表面108或同时移动二者的形式,与喷漆所使用的工艺相类似。可选择的是,形成层112的方法可以包括,但不限于等离子喷涂。
同样,可选择的是,可以采用共喷涂工艺,在该工艺中元素以合适的浓度和比例被同时喷涂到基底上,只要该工艺可提供均一和连续的所需成分涂层即可。这对于硅添加剂而言尤其如此,因为如上所讨论地,任何非均一地分布的硅会导致硅的局部重量百分比超过4%,这样将使得抗氧化性的减弱和增加剥落的可能性。并且,当Si更均匀地分布在整个层112中时,减少了Al由层112进入到基底106的大量扩散。
将具有结合涂层112的翼面102放入到加热炉中进行热处理。在基本上为真空的条件下,将翼面102维持在982℃(1800)到1148℃(2100)的温度下2到4个小时的时间段。翼面102随后从加热炉中被移出并以预定的冷却速度冷却到预定的温度。
在结束冷却之后,除了采用等离子喷涂工艺代替HVOF工艺外,以相似于结合层1 12所用的方式在表面114上形成面层120。面层120一般为陶瓷材料,比如混合有6到8摩尔百分比(mol%)三氧化二钇(Y2O3)的氧化锆(ZrO2),有时被称为氧化钇稳定的氧化锆,或YSZ,化学式为(Y2O3)6(ZrO2)94到(Y2O3)8(ZrO2)92。在该示例性实施方案中,层120大约0.0508厘米(cm)(0.02英寸)厚。可选择的是,可以根据符合或优于燃气涡轮安装时的预定运行参数来改变层120的厚度。
将具有面层120的翼面102放入到加热炉中进行热处理。在基本上为真空的条件下,将翼面102维持在982℃(1800)到1148℃(2100)的温度下2到4个小时的时间段。翼面102随后从加热炉中被移出并以预定的冷却速度冷却到预定的温度。
具有TBC体系110的翼面102在工作使用中暴露于典型地存在于燃气涡轮中的热、氧化性和腐蚀性环境中时,会引起一些冶金学过程而改变TBC体系110。例如,富含Al且通常抗氧化的结合层112最初形成高粘附的热生长氧化物(TGO)层(图3中未示出),所述TGO层在结合层112和面层120之间的界面处生长。氧化铝层有时是指氧化铝(Al2O3)皮膜层。形成的TGO层是温度的函数,即,温度越高,TGO层中的氧化铝形成速率越大。当氧化物层在发动机的工作循环中经历了极小的分层时,结合层112中残存的至少一些Al代替了被除去的TGO层分层,即,会出现基本上持续的形成和再生TGO层。通常希望维持TGO层受控地稳定生长。TGO层的不稳定生长导致在TGO层结合涂层界面108间的分层内产生应力,它会引起分层的应力参数过大和随后的结合涂层和面层材料的剥落(即,材料的部分去除,或分层剥离)。TBC体系110的剥落可使翼面基底106直接暴露于高温流体中。
进一步的热驱动机理趋向于利于铝从结合层112扩散进入基底106。扩散到基底106的Al损失会引发一系列的不利条件。例如,Al迁移进入基底106减小了结合层112中Al的浓度,由此减小了结合层112在结合层112与面层120间的TGO层界面114处持续产生保护性的粘附氧化铝皮膜的能力。同样,Al的互扩散在翼面基底106内形成了扩散区。该互扩散区会削弱基底106的性能。例如,基底106元素组成中Al的添加会在基底106的受影响部分内引起脆性相的析出。脆性相趋向于降低基底106的疲劳强度,这会导致翼面102壁的不希望的消耗。从结合层112向外扩散出Al产生的其它潜在结果是,将导致在结合层112内产生相变。关于结晶材料相的讨论在下面进行。
结合层112和面层120一般具有晶格型分子结构。结晶材料(即,绝大部分固体)具有类似晶格的分子结构。材料也以相的形式存在,并且材料的相在一些条件下决定了它的性能。具有两个分离的结晶结构的材料被认为具有两个相。相是体系中的均质部分,它具有均一的物理和化学特征。在给定的环境中,例如高温时,一些材料会显示出过渡行为,即材料会产生相变,例如,经由本领域专业人员熟知的过程从β相变为γ相。在结合层112内由于结晶结构产生变化而出现的相变将引起在经历相变的区域和那些没经历相变的区域间的边界处的层间区内产生应变。同样,相变会在面层120和结合层112这两层的分层界面处产生应变不匹配。这种应变不匹配会引起与上述方式类似的剥落。
结合层混合物中硅和铪的添加增强了结合层112的抗氧化性,这由此增加了翼面102的有效使用寿命的期望值。氧化硅(SiOx)的减少和硅在整个结合层112中大致均一的分布将促进抗氧化性的提高。在固溶体中,硅将减小氧和硫离子在层112内的扩散速率。并且,Hf将稳定在运行期间形成的氧化物层并且减少剥落。
如同本领域众所周知的,在基本的NiClY涂层混合物中掺杂预定量的硅来提高抗氧化性,这样有降低涂层延展性的趋势,即,在断裂之前产生变形的能力。在涂层中好的延展性将允许在整个燃气涡轮发动机的运行温度范围内进行膨胀和收缩,同时减少材料的结晶结构处缺陷的产生,同时减弱与基底的脱离。结合层112材料中Hf的添加将减少Si的量,所述Si用于获得预期的抗氧化性,由此降低延展性。
除了促进提高抗氧化性,Hf优选存在于β相中,这将减少在结合层112结晶结构内由β相转变为γ相。因此,Hf在示例性结合层112中作为相稳定剂,并且减少不利的结晶相变。
这里所描述的制造涡轮叶片的方法和装置促进了涡轮机系统的运行。更特别地,如上所述在涡轮叶片上形成结合层使得涡轮叶片更坚固、抗磨和稳定。这样的涡轮叶片也降低了维修成本和涡轮机系统的储运损耗。
在上面结合涡轮机系统详细地描述了涡轮叶片的示例性实施方式。所述方法、装置和体系不限于这里描述的特定实施方式,也不限于特定的示例性涡轮叶片。
尽管已经根据不同的特定实施方式描述了本发明,但是,本领域的技术人员应意识到本发明能够在权利要求书的精神和范围内进行修改后实施。
部件列表 100涡轮叶片 102翼面 104叶片根部 105冷却流体通道 106翼面基底 108基底表面 110隔热涂层(TBC)体系 112结合层 114热生长氧化物(TGO)结合层界面 120面层
权利要求
1.一种隔热涂层(TBC)体系(110),包括
形成在基底表面区域(108)上的至少一层隔热涂层(TBC)结合层(112),所述层包含至少一种TBC结合层材料,所述材料的组成是镍-铬-铝-钇(NiCrAlY),所述NiCrAlY组成中包含硅(Si)、铪(Hf)和重量百分比(wt%)小于10%的钴(Co);和
至少一层形成在所述TBC结合层上的面层(120)。
2.根据权利要求1所述的TBC体系(110),其中所述TBC结合层(112)包含大约5.0-30.00wt%的Cr,大约5.00-20.00wt%的Al,大约0.01-5.00wt%的Y,大约0.5-4.00wt%的Si,大约0.20-2.00wt%的Hf,0.00-5.00wt%的Co和基本上为余量的镍。
3.根据权利要求1所述的TBC体系(110),其中所述TBC结合层(112)包含大约21.90wt%的Cr,大约10.10wt%的Al,大约1.04wt%的Y,大约2.5wt%的Si,大约0.20-2.00wt%的Hf和基本上为余量的镍。
4.根据权利要求1所述的TBC体系(110),其中所述基底表面(108)包含超合金,所述超合金是镍基超合金。
5.根据权利要求1所述的TBC体系(110),其中所述TBC结合层(112)进一步包含至少一种氧活性元素,所述至少一种氧活性元素包含选自铂族的金属元素,所述铂族包括铱,锇,钯,铂,铼,铑和钌。
6.根据权利要求1所述的TBC体系(110),其中所述NiCrAlY的组成包括
包含在所述至少一层TBC结合层(112)内大致均匀分布的硅的预定重量百分比的Si,以使Si的局部重量百分比不会超过预定的重量百分比;和
预定重量百分比的Hf,以便于得到预定百分比重量的Si。
7.一种机械部件,包括
基底,所述基底含有表面区域(108),所述基底表面区域的至少一部分包含预定的材料组成;和
隔热涂层(TBC)体系(110),所述隔热涂层体系包含形成在所述基底表面区域上的至少一层隔热涂层(TBC)结合层(112)和至少一层形成在所述TBC层上的面层(120),所述TBC结合层包含至少一种TBC结合层材料,所述材料的组成是镍-铬-铝-钇(NiCrAlY),所述NiCrAlY组成中包含硅(Si)、铪(Hf)和重量百分比小于10%的钴(Co)。
8.根据权利要求7所述的机械部件,其中所述TBC结合层(112)包含大约5.0-30.00wt%的Cr,大约5.00-20.00wt%的Al,大约0.01-5.00wt%的Y,大约0.54.00wt%的Si,大约0.20-2.00wt%的Hf,大约0.00-5.00wt%的Co和基本上为余量的镍。
9.根据权利要求8所述的机械部件,其中所述TBC结合层(112)包含大约21.90wt%的Cr,大约10.10wt%的Al,大约1.04wt%的Y,大约2.5wt%的Si,大约0.20-2.00wt%的Hf,和基本上为余量的镍。
10.根据权利要求7所述的机械部件,其中所述基底表面(108)的预定材料组成中包含超合金,所述超合金是镍基超合金。
全文摘要
本发明一般地涉及机械部件的制造,更特别地是涉及在机械部件上形成作为部分隔热涂层体系的结合层的方法。提供一种隔热涂层(TBC)体系(110)。该体系包括形成在基底表面区域(108)上的至少一层隔热涂层(TBC)结合层(112)。该TBC结合层包含至少一种TBC结合层材料。TBC结合层材料的组成是镍-铬-铝-钇(NiCrAlY),所述组成中还包含硅(Si),铪(Hf)和重量百分比小于10%的钴(Co)。该TBC体系进一步包括形成在TBC结合层上的至少一个面层(120)。
文档编号C23C4/08GK101109291SQ20071010358
公开日2008年1月23日 申请日期2007年3月30日 优先权日2006年3月31日
发明者G·冯, P·S·迪马斯焦, J·C·谢菲尔 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1