一种含硼铁精矿的阶段还原方法

文档序号:3312071阅读:154来源:国知局
一种含硼铁精矿的阶段还原方法
【专利摘要】一种含硼铁精矿的阶段还原方法,属于矿物加工【技术领域】,按以下步骤进行;(1)将含硼铁精矿与水混合均匀后制成球团或柱团;烘干后外配还原剂煤粉和添加剂Na2CO3并置于反应罐中;(2)当反应炉升温至600±50℃时,放入反应罐,以5~10℃/min的速率升温至950~1150℃;(3)保温90~150min进行一段还原;(4)升温至1200~1300℃,保温45~75min进行二段还原;(5)将反应罐取出,盖煤冷却至常温,得到还原球团或还原柱团;(6)破碎至粒度≤2mm,然后加水配制成矿浆,球磨后采用磁选机磁选,获得磁选精矿和富硼渣。本发明的技术不仅实现了含硼铁精矿中铁的高效回收,同时使精矿中的硼矿物得到有效富集,为含硼铁精矿中铁和硼的综合回收利用提供了新的途径。
【专利说明】一种含硼铁精矿的阶段还原方法
【技术领域】
[0001]本发明属于矿物加工【技术领域】,特别涉及一种含硼铁精矿的阶段还原方法。
【背景技术】
[0002]在我国硼矿资源中,硼铁矿中的硼所占比例最大,约占58%,仅辽东地区硼铁矿储量就达2.8亿吨,其中B2O3储量为2184万吨,同时硼铁矿也是重要的铁矿资源;国内相关科研单位对辽宁翁泉沟硼铁矿进行了长期的选矿试验研究,开发了磁选-重选-分级、磁选-重选-浮选和细磨-浮选-磁选等选矿流程方法;结果表明,采用传统的选矿工艺处理硼铁矿,可以实现硼铁矿中硼和铁的初步分离,获得B2O3品位12~16%硼精矿和TFe品位51飞4%含硼铁精矿;该硼精矿可以达到生产硼砂的要求(B2O3品位大于12%),但含硼铁精矿仍不能满足生产钢铁的要求(TFe品位大于60%),更为重要的是含硼铁精矿中硼回收率可达20-30%,这部分硼资源采用传统的物理选矿工艺难以回收利用。
[0003]在选矿工艺实现硼铁矿中硼、铁初步分离的基础上,含硼铁精矿中硼、铁二次分离成为硼铁矿开发利用的关键技术瓶颈。其中具有代表性的技术主要有高炉法、直接还原一电炉熔分法、转底炉珠铁工艺和酸法等,但仍存在许多问题,如:“高炉法”存在能耗高、富硼渣中B2O3品位低且活性差;“直接还原一电炉熔分”工艺则电耗高;“转底炉珠铁工艺”处理硼铁矿时由于工艺的限制,煤灰会进入还原铁中,最终会降低富硼渣中B2O3的品位,同时由于该方案需要高温熔分还原,还原温度高达1400.C,接近于高炉法,造成能耗较高、富硼渣活性较低;“酸法”工艺酸耗量大、生产成本高、废液处理困难、环境破坏严重等问题。因此,大规t旲、闻效利用含砸铁精矿的相关技术还有待开发。

【发明内容】

[0004]针对现有含硼铁精矿利用技术存在的上述不足,本发明提供一种含硼铁精矿的阶段还原方法,通过阶段还原将含硼铁精矿的铁矿物充分还原为金属铁相并控制其长大到适宜分选的粒度,同时保证硼矿物不被还原,然后通过磁选获得高品位铁粉和优质富硼渣,实现含硼铁精矿中硼铁的有效分离。
[0005]本发明的含硼铁精矿的阶段还原方法按以下步骤进行:
1、将含硼铁精矿与水混合均匀后制成球团或柱团,其中水占含硼铁精矿总重量的3^5% ;然后将球团或柱团烘干,再外配还原剂煤粉和添加剂Na2CO3的混合物并置于反应罐中;其中还原剂煤粉的粒度≤3mm,添加剂Na2CO3的粒度≤Imm ;煤粉的加入量为含硼铁精矿总重量的20~60%,Na2CO3的加入量为煤粉总重量的0~5% ;
2、当反应炉升温至600±50°C时,将反应罐放入反应炉内,继续升温并控制反应炉升温速率在5~10°C /min,将反应炉升温至95(Tll50°C ;
3、在950~ll50°C保温90~l50min进行一段还原;
4、一段还原结束后,继续将反应炉升温至1200~l300.C,保温45~75min进行二段还原;
5、二段还原结束后将反应罐取出,盖煤冷却至常温,得到还原球团或还原柱团;6、将还原球团或还原柱团破碎至粒度≤2mm,然后加水配制成质量浓度为65~75%的矿浆,采用球磨机球磨至矿浆中粒度-0.074mm的固体物料占矿浆中全部固体物料重量的60^85% ;然后采用磁选机在6400(T80000A/m磁场强度条件下进行磁选,获得磁选精矿和富硼渣。
[0006]上述方法获得的磁选精矿按重量百分比含TFe 93~96%。
[0007]上述方法获得的富硼渣按重量百分比含B2O3 15.5~25%。
[0008]上述的含硼铁精矿中按重量百分比含TFe 53~57%,B2O3 3.5^5.8%,粒度为-0.074mm的部分占总重量的80%以上。
[0009]上述的煤粉按重量百分比含固定碳30~80%。
[0010]上述方法中磁选精矿的铁的回收率> 90%。
[0011]上述方法中富硼渣的硼的回收率> 90%。
[0012]本发明的原理是:含硼铁精矿中铁氧化物按Fe2O3 — Fe3O4 — FeO — Fe逐级还原出来,而由FeO被还 原到Fe的阶段,是还原过程的关键步骤;因此,对铁的还原仅需满足FeO-Fe的要求,既可满足整个还原过程的需要;固体碳还原铁氧化物时,一般可认为主要通过气体进行,因而包含CO对FeO的还原及碳的气化两步骤;如下式所示:
FeO (s)+CO (g) = Fe (s)+CO2 (g) (I)
+)C02(g)+C(s) = 2C0(g)(2)
FeO+C = Fe+C0(3)
AGr0 =143300-146.45T ;
反应式(3)反应开始温度为978.5 K ;由热力学分析可知=B2O3较铁的各级氧化物都稳定,B2O3被碳还原需要在较高温度下才能实现,硼的氧化物在固相条件下还原反应为:
B2O3(s)+3C (s) = 2Β (s)+3C0 (g) (4)
AG10 =909435-503.4T
反应式(4)的反应开始温度为1806.6 K,从上述数据可知,只要温度在1806.6 K以下,以固体碳为还原剂,铁的氧化物可以被还原为强磁性的金属铁,而B2O3不能被还原,然后经磁选实现硼铁分离。
[0013]本发明的阶段还原总体可分为4个阶段,即预热阶段、一段还原阶段、升温阶段和二段还原阶段;
预热阶段:柱/球团边缘与煤粉直接接触处存在碳直接还原铁氧化物的固体间的直接还原,此阶段必须严格控制预热过程中升温速率< 10°c /min,若升温速度过大,则容易使得柱/球团外围处已被还原的金属铁层发生烧结行为,从而失去多孔性而恶化还原动力学条件,还原速度减慢甚至停止;
一段还原阶段:正确的选择还原温度也显得格外重要,温度是影响球/柱团还原效果的重要因素;当一段还原温度为105(T115(TC时,该温度低于熔化温度,不熔化、不造渣条件下进行,矿石中铁氧化物被还原为金属铁,还原后金属铁还保持着铁矿物的结构形式,金属层保存着多孔性以利于铁氧化物得到充分还原,保证金属化率(高的金属化率是硼、铁高效分离的基础);若温度过高,则会产生以下几个问题:其一,已被还原金属层将烧结生成能阻碍CO2从反应面扩散逸出的烧结层,恶化还原过程,减缓还原速度;其二,含硼铁精矿中B2O3是低熔点物质,熔点仅为450°C,可与原料中许多氧化物形成低熔点化合物,易形成液相,包围未反应的铁氧化物,使暴露在孔隙周围易还原的铁氧化物减少,导致还原阻力增大,金属化率降低;其三,增加了不必要的能源消耗。若温度过低,则还原过程难以达到有效的还原速度和效率;
升温阶段和二段还原阶段:在120(Tl3(KrC高温下,根据分子(离子)扩散理论,高温可促进已还原金属相的迁移、聚集和长大,同时在该温度范围内可促使还原物料局部产生液相(含硼相)而改善铁相迁移、长大的动力学条件,得到颗粒较粗的金属铁,易于铁与其他成份的解离,有助于提高硼、铁的回收率和品位:
简而言之,阶段还原总体可分为:铁氧化物还原阶段和铁颗粒迁移长大阶段。
[0014]与现有技术相比,本发明的特点和有益效果是:
本发明是以煤为还原剂,符合我国的能源结构;在高温下对含硼铁精矿进行阶段还原实现硼、铁分离,技术先进,并通过加入Na2CO3促进碳的气化反应从而提高还原效果、控制还原制度使含硼铁精矿中铁矿物被还原为金属铁相并控制其迁移、聚集生长为适宜分选的金属铁颗粒,而硼矿物则不被还原,并强化其迁移使之进入渣相,最终通过磁选获得铁粉和富硼渣,实现含硼铁精矿中硼铁高效分离。
[0015]本发明的主要创新点是:(I)针对含硼铁精矿矿石性质特征,突破等温还原技术禁锢,创造性提出阶段还原,即根据含硼铁精矿中铁矿物还原和铁颗粒长大最佳的还原条件不同,设置两个还原温 度;低温阶段可避免矿石熔化,有利于铁矿物的金属化,高温阶段有利于铁颗粒迁移长大;
(2)在阶段还原过程中实施金属铁颗粒粒度的控制,为后续硼和铁的高效分离创造良好的条件;
(3)与上述传统工艺技术比较,阶段还原技术还原产物不受污染,最终可获得铁品位大于90%,回收率大于90%的铁粉,该铁粉铁品位闻、金属化率闻、杂质及有害兀素含量低,满足炼钢用直接还原铁标准,可作为炼钢原料,同时可获得富硼渣,该尾矿含B2O3大于12%,硼回收率大于90%,活性大于80%,可用作进一步提取硼的原料。
[0016]本发明的技术不仅实现了含硼铁精矿中铁的高效回收,同时使精矿中的硼矿物得到有效富集,为含硼铁精矿中铁和硼的综合回收利用提供了新的途径。
【专利附图】

【附图说明】
[0017]图1为本发明的含硼铁精矿的阶段还原方法流程示意图。
【具体实施方式】
[0018]本发明实施例中采用的含硼铁精矿按重量百分比含TFe 53~57%,B2O3 3.5飞.8%,SiO2 3.5~5%,Al2O3 0.15~0.4%, CaO 0.10~0.70%, MgO 9~11%,余量为其他杂质。
[0019]本发明实施例中采用的煤粉为市购产品。
[0020]本发明实施例中盖煤采用的煤粉与外配采用的煤粉相同。
[0021]本发明实施例中采用的Na2CO3为市购工业级粉末产品。
[0022]本发明实施例中采用的反应炉为多段升温可控式电阻炉或回转窑。
[0023]本发明实施例中采用的反应罐为坩埚或回转窑配套使用的反应罐。[0024]本发明实施例中制备的球团或柱团的尺寸为直径Φ10-15mm。
[0025]本发明实施例中制备球团或柱团采用的设备为造球机或压柱机。
[0026]本发明实施例中采用的球磨机为Φ 180mmX 200mm筒形球磨机。
[0027]本发明实施例中采用的磁选机为Φ 4000mmX 300mm鼓形湿式弱磁选机。
[0028]本发明实施例中外配还原剂煤粉和添加剂Na2CO3的混合物并置于反应罐中是指:先铺垫一层煤粉在反应罐的底部,再将球团或柱团放入反应罐内,用剩余煤粉与添加剂混合物将球团或柱团覆盖。
[0029]实施例1
采用含硼铁精矿中按重量百分比含TFe 53%,B2O3 5.8%,SiO2 3.5%, Al2O3 0.4%,CaO
0.10%, MgOl0.2%,粒度为-0.074mm的部分占总重量的80% ;
采用的煤粉按重量百分比含固定碳80% ;
将含硼铁精矿与水混合均匀后制成球团,其中水占含硼铁精矿总重量的3%;然后将球团烘干去除水分,再外配还原剂煤粉和添加剂Na2CO3的混合物并置于反应罐中;其中还原剂煤粉的粒度≤3mm, Na2CO3的粒度≤1mm ;煤粉的加入量为含硼铁精矿总重量的20%,Na2CO3的加入量为煤粉总重量的2% ;
当反应炉升温至600±50°C时,将上述反应罐放入反应炉内,继续升温并控制反应炉升温速率在5~10°C /min,将反应炉升温至950~ll50°C ;
在950~ll50°C保温90min进行一段还原;
一段还原结束后,继续将反应炉升温至120(Tl3(KrC,保温55min进行二段还原;
二段还原结束后将反应罐取出,盖煤冷却至常温,得到还原球团;
将还原球团破碎至粒度< 2_,然后加水配制成质量浓度为65%的矿浆,采用球磨机球磨至矿浆中粒度-0.074mm的固体物料占矿浆中全部固体物料重量的85% ;然后采用磁选机在64000A/m磁场强度条件下进行磁选,获得磁选精矿和富硼渣;磁选精矿按重量百分比含TFe 93% ;富硼渣按重量百分比含B2O3 25% ;磁选精矿的铁的回收率95% ;上述方法中富硼渣的硼的回收率93%。
[0030]实施例2
采用含硼铁精矿中按重量百分比含TFe 54%, B2O3 4.9%,SiO2 5%, Al2O3 0.34%, CaO0.33%,MgO 9.5%,粒度为-0.074mm的部分占总重量的85% ;
采用的煤粉按重量百分比含固定碳70% ;
将含硼铁精矿与水混合均匀后制成柱团,其中水占含硼铁精矿总重量的4% ;然后将柱团烘干去除水分,再外配还原剂煤粉和添加剂Na2CO3的混合物并置于反应罐中;其中还原剂煤粉的粒度≤3mm, Na2CO3的粒度≤1mm ;煤粉的加入量为含硼铁精矿总重量的25%,Na2CO3的加入量为煤粉总重量的3% ;
当反应炉升温至600±50°C时,将上述反应罐放入反应炉内,继续升温并控制反应炉升温速率在5~10°C /min,将反应炉升温至950~ll50°C ;
在950~ll50°C保温120min进行一段还原;
一段还原结束后,继续将反应炉升温至1200~l300C,保温75min进行二段还原;
二段还原结束后将反应罐取出,盖煤冷却至常温,得到还原柱团;
将还原柱团破碎至粒度< 2_,然后加水配制成质量浓度为70%的矿浆,采用球磨机球磨至矿浆中粒度-0.074mm的固体物料占矿浆中全部固体物料重量的75% ;然后采用磁选机在80000A/m磁场强度条件下进行磁选,获得磁选精矿和富硼渣;磁选精矿按重量百分比含TFe 94% ;富硼渣按重量百分比含B2O3 22% ;磁选精矿的铁的回收率96% ;上述方法中富硼渣的硼的回收率94%。
[0031]实施例3
采用含硼铁精矿中按重量百分比含TFe 55%,B2O3 4.2%,SiO2 4.1%,Al2O3 0.28%, CaO
0.54%,MgO 10%,粒度为-0.074mm的部分占总重量的90% ;
采用的煤粉按重量百分比含固定碳60% ;
将含硼铁精矿与水混合均匀后制成球团,其中水占含硼铁精矿总重量的5%;然后将球团烘干去除水分,再外配还原剂煤粉和添加剂Na2CO3的混合物并置于反应罐中;其中还原剂煤粉的粒度≤3mm, Na2CO3的粒度≤1mm ;煤粉的加入量为含硼铁精矿总重量的30%,Na2CO3的加入量为煤粉总重量的4% ;
当反应炉升温至600±50°C时,将上述反应罐放入反应炉内,继续升温并控制反应炉升温速率在5~10°C /min,将反应炉升温至95(Tll50°C ;
在95(Tll50°C保温150m in进行一段还原;
一段还原结束后,继续将反应炉升温至120(Tl3(KrC,保温65min进行二段还原;
二段还原结束后将反应罐取出,盖煤冷却至常温,得到还原球团;
将还原球团破碎至粒度< 2_,然后加水配制成质量浓度为75%的矿浆,采用球磨机球磨至矿浆中粒度-0.074mm的固体物料占矿浆中全部固体物料重量的70% ;然后采用磁选机在70000A/m磁场强度条件下进行磁94% ;富硼渣按重量百分比含B2O3 18% ;磁选精矿的铁的回收率96% ;上述方法中富硼渣的硼的回收率95%。选,获得磁选精矿和富硼渣;磁选精矿按重量百分比含TFe。
[0032]实施例4
采用含硼铁精矿中按重量百分比含TFe 56%,B2O3 3.8%,SiO2 4.4%,Al2O3 0.22%, CaO
0.70%, MgO 11%,粒度为-0.074mm的部分占总重量的100% ;
采用的煤粉按重量百分比含固定碳30% ;
将含硼铁精矿与水混合均匀后制成柱团,其中水占含硼铁精矿总重量的3%;然后将柱团烘干去除水分,再外配还原剂煤粉和添加剂Na2CO3的混合物并置于反应罐中;其中还原剂煤粉的粒度≤3mm, Na2CO3的粒度≤Imm ;煤粉的加入量为含硼铁精矿总重量的60%,Na2CO3的加入量为煤粉总重量的5% ;
当反应炉升温至600±50°C时,将上述反应罐放入反应炉内,继续升温并控制反应炉升温速率在5~10°C /min,将反应炉升温至95(Tll50°C ;
在95(Tll50°C保温90min进行一段还原;
一段还原结束后,继续将反应炉升温至120(Tl3(KrC,保温55min进行二段还原;
二段还原结束后将反应罐取出,盖煤冷却至常温,得到还原柱团;
将还原柱团破碎至粒度< 2_,然后加水配制成质量浓度为65%的矿浆,采用球磨机球磨至矿浆中粒度-0.074mm的固体物料占矿浆中全部固体物料重量的65% ;然后采用磁选机在72000A/m磁场强度条件下进行磁选,获得磁选精矿和富硼渣;磁选精矿按重量百分比含TFe 95% ;富硼渣按重量百分比含B2O3 17% ;磁选精矿的铁的回收率97% ;上述方法中富硼渣的硼的回收率95%。
[0033]实施例5
采用含硼铁精矿中按重量百分比含TFe 57%,B2O3 3.5%,SiO2 4.6%,Al2O3 0.15%,CaO
0.61%,MgO 9%,粒度为-0.074mm的部分占总重量的95% ;
采用的煤粉按重量百分比含固定碳75% ;
将含硼铁精矿与水混合均匀后制成球团,其中水占含硼铁精矿总重量的5% ;然后将球团烘干去除水分,再外配还原剂煤粉并置于反应罐中;煤粉的加入量为含硼铁精矿总重量的 25% ;
当反应炉升温至600±50°C时,将上述反应罐放入反应炉内,继续升温并控制反应炉升温速率在5~10°C /min,将反应炉升温至95(Tll50°C ;
在95(Tll50°C保温150min进行一段还原;
一段还原结束后,继续将反应炉升温至120(Tl3(KrC,保温45min进行二段还原;
二段还原结束后将反应罐取出,盖煤冷却至常温,得到还原球团;
将还原球团破碎至粒度< 2_,然后加水配制成质量浓度为75%的矿浆,采用球磨机球磨至矿浆中粒度-0.074mm的固体物料占矿浆中全部固体物料重量的60% ;然后采用磁选机在80000A/m磁场强度条件 下进行磁选,获得磁选精矿和富硼渣;磁选精矿按重量百分比含TFe 96% ;富硼渣按重量百分比含B2O3 15.5% ;磁选精矿的铁的回收率98% ;上述方法中富硼渣的硼的回收率94%。
【权利要求】
1.一种含硼铁精矿的阶段还原方法,其特征在于按以下步骤进行; (1)将含硼铁精矿与水混合均匀后制成球团或柱团,其中水占含硼铁精矿总重量的3^5% ;然后将球团或柱团烘干,再外配还原剂煤粉和添加剂Na2CO3的混合物并置于反应罐中;其中还原剂煤粉的粒度≤3mm,添加剂Na2CO3的粒度≤1mm ;煤粉的加入量为含硼铁精矿总重量的20~60%,Na2CO3的加入量为煤粉总重量的0~5% ; (2)当反应炉升温至600±50°C时,将反应罐放入反应炉内,继续升温并控制反应炉升温速率在5~10°C /min,将反应炉升温至95(Tll50°C ; (3)在95(Tll50°C保温9(Tl50min进行一段还原; (4)一段还原结束后,继续将反应炉升温至120(Tl3(KrC,保温45~75min进行二段还原; (5)二段还原结束后将反应罐取出,盖煤冷却至常温,得到还原球团或还原柱团; (6)将还原球团或还原柱团破碎至粒度<2mm,然后加水配制成质量浓度为65~75%的矿浆,采用球磨机球磨至矿浆中粒度-0.074mm的固体物料占矿浆中全部固体物料重量的60^85% ;然后采用磁选机在6400(T80000A/m磁场强度条件下进行磁选,获得磁选精矿和富硼渣。
2.根据权利要求1所述的一种含硼铁精矿的阶段还原方法,其特征在于所述的含硼铁精矿中按重量百分比含TFe 53~57%,B2O3 3.5~5.8%,粒度为-0.074mm的部分占总重量的80%以上。
3.根据权利要求1所述的一种含硼铁精矿的阶段还原方法,其特征在于所述的磁选精矿按重量百分比含TFe 93~96%。
4.根据权利要求1所述的一种含硼铁精矿的阶段还原方法,其特征在于所述的富硼渣按重量百分比含B2O3 15.5~25%。
5.根据权利要求1所述的一种含硼铁精矿的阶段还原方法,其特征在于所述的煤粉按重量百分比含固定碳30~80%。
【文档编号】C22B1/02GK103937960SQ201410136429
【公开日】2014年7月23日 申请日期:2014年4月8日 优先权日:2014年4月8日
【发明者】高鹏, 韩跃新, 李艳军, 余建文 申请人:东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1