热冲压成型体的制作方法

文档序号:22757593发布日期:2020-10-31 09:55阅读:130来源:国知局
热冲压成型体的制作方法

本发明涉及一种热冲压成型体。



背景技术:

用于汽车等中的结构部件(成型体)为了提高强度及尺寸精度这两者,有时采用热冲压(热压)来制造。在通过热冲压制造成型体时,将钢板加热至ac3点以上,用模具进行压制加工并快速冷却。即,在该制造中,同时进行压制加工和淬火。通过热冲压能够制造高尺寸精度且高强度的成型体。

另一方面,通过热冲压制造的成型体由于是在高温下进行加工,因此会在表面形成氧化皮。专利文献1~5中提出了通过使用镀覆钢板作为热冲压用钢板来抑制氧化皮的形成、进而提高耐腐蚀性的技术。

例如,日本特开2000-38640号公报(专利文献1)公开了使用了镀al的热压用钢板。日本特开2003-49256号公报(专利文献2)公开了形成有al镀层的高强度汽车部件用镀铝钢板。日本特开2003-73774号公报(专利文献3)公开了形成有zn镀层的热压用钢板。另外,日本特开2005-113233号公报(专利文献4)公开了zn镀覆钢板的镀层中添加有mn等各种元素的热压用zn系镀覆钢材。日本特开2012-112010号公报(专利文献5)公开了使用了镀al-zn系合金的镀覆钢材。

现有技术文献

专利文献

专利文献1:日本特开2000-38640号公报

专利文献2:日本特开2003-49256号公报

专利文献3:日本特开2003-73774号公报

专利文献4:日本特开2005-113233号公报

专利文献5:日本特开2012-112010号公报



技术实现要素:

发明要解决的问题

根据专利文献1的技术,抑制了热冲压时产生氧化皮、以及脱碳等。然而,由于这样的热冲压成型体是以镀覆al为主体,因此与以zn为主体的镀覆钢板相比,牺牲防蚀性倾向于变差,在防锈方面是不充分的。关于以镀覆al为主体的镀覆钢板的专利文献2也具有上述相同的问题。

就专利文献3和专利文献4的技术而言,由于热冲压后zn残留在钢材表层,因此可以期待高牺牲防蚀作用。然而,这些zn系镀覆钢材具有大量的fe元素从铁基体扩散到镀层中,因此较早发生红锈的问题。另外,由于钢板是在zn熔融的状态下进行加工的,因此熔融zn会侵入钢板中,有可能在钢材内部产生裂纹。该裂纹被称为液体金属脆化裂纹(liquidmetalembrittlement,以下也称为“lme”)。并且,由于lme,导致钢板的疲劳特性劣化。

将专利文献5的镀覆钢板供于热冲压时,即使是al-zn系合金镀覆钢板,也会出现液相zn从而发生lme。此外,在al-zn系合金镀覆钢板中,由于镀层的合金化,并且大量的fe元素从铁基体扩散到镀层中,因此有时会产生红锈。

由于热冲压成型体主要用作汽车结构部件,因此在成型后实施点焊。通常而言,为了提高耐腐蚀性,将镀层的厚度设定得较厚是有效的,但是镀层中所含的al和zn与点焊电极的cu反应,镀层较厚的情况下,点焊的连续打点性大幅降低。因此,在镀覆钢板的热冲压成型体中难以兼顾充分的耐腐蚀性和点焊性。

本发明是鉴于上述问题完成的,其目的在于,提供一种改善了疲劳特性、耐腐蚀性和点焊性的新型且改良的成型体。

用于解决问题的方案

为了实现上述目的,本发明人等对具有zn-al-mg系镀层的镀覆钢板进行了深入研究。其结果,本发明人等得到了下述见解。

图1是在通常条件下制造的镀覆钢板10a。钢材10a在母材11a的表面具有镀层13a,在母材11a与镀层13a之间具有铁基体的fe扩散至镀层而形成的扩散层12a。

图2是通常的热冲压成型体20a。热冲压成型体20a是在母材1a的表面上具有固定厚度的表层部2a的热冲压成型体。表层部2a具有层状结构,所述层状结构按照距离母材1a由近到远的顺序依次具备界面层21a、金属层21b,在最表层具备氧化物层4a。

将在通常条件下制造的镀覆钢板10a在通常条件下进行热冲压,就会形成热冲压成型体20a。热冲压成型体20a的界面层21a是源自在通常条件下制造的镀覆钢板10a的扩散层12a的部分。界面层21a包括在热冲压时铁基体的fe扩散到镀层13a中的部分。界面层21a的化学组成根据母材11a和镀层13a的化学组成而不同,例如,镀层13a含有al、mg等且以zn为主体的情况下,镀层13a包含fe2(al,zn)5、fe(al,zn)3等fe-al相并且包含大量si的情况下,形成由fe3(al,si)、fe(al,si)等的fe-al-si相构成的层。另外,氧化物层4a是以zn为主体的氧化物层。

由于在通常条件下制造的镀覆钢板10a的镀层的扩散层12a较厚,因此在热冲压时引起了各种问题。具体而言,镀层13a中的zn在热冲压的加热时呈液相状态并蒸发,从而金属层21b中的zn量减少。另外,由于镀层13a中的zn在热冲压时与界面层21a反应,因此金属层21b中的zn量减少。因此,对在通常条件下制造的镀覆钢板10a进行热冲压时,镀层(热冲压成型体20a的金属层21b中)具有zn牺牲防蚀作用,但难以残留,因此存在耐腐蚀性显著下降的问题。此外,zn的蒸发增加了氧化物层4a的厚度,导致点焊性降低。

为了解决上述问题,本发明人等对在通常条件下制造的镀覆钢板10a与热冲压成型体20a之间的关系进行了研究,结果发现了使镀覆钢板10a的扩散层12a的厚度变薄的制造条件。

通常,为了形成均匀的镀层13a,将镀浴温度设定在镀层的熔融温度+50℃~100℃左右的范围。这是因为,镀浴的温度接近熔融温度时,在制造时镀浴的一部分会固体化而变成浮渣,容易使镀层的表面清洁性变差。

并且,为了充分进行fe向镀层13a的扩散,通常将在镀浴中的浸渍时间设定为5秒以上。此外,浸渍于镀浴之前的钢板的温度(侵入板温)通常被维持在镀浴温度+0~-15℃的温度。原因为提高镀浴的温度是容易的而降低镀浴的温度是困难的,并且侵入板温较高时,需要冷却镀浴。关于这一点,例如在专利文献5中,所有实施例中侵入板温被设定为镀浴温度(℃)~镀浴温度-10(℃)的温度。

但是,对于在这种通常的镀覆条件下(镀浴温度为镀层的熔融温度+50~100℃左右,浸渍时间为5秒以上,钢板的侵入板温为镀浴温度+0~-15℃)制造的镀覆钢板10a,镀浴温度、浸渍时间是决定性的,其处于fe容易向镀覆侧扩散的状态。并且,对于在通常条件下制造的镀覆钢板10a,参见图1,在母材(铁基体)的表层中含有fe2(al,zn)5、fe(al,zn)、镀层含有大量的si时,由fe3(al,si)、fe(al,si)等构成的扩散层12a在铁基体与镀层之间较厚地(1μm以上)生长。

因此,本发明人等通过在与通常的镀覆条件不同的镀浴温度的温度、浸渍时间和钢板的侵入板温的条件下制造镀覆钢板,从而成功地使扩散层12a的厚度比以往薄。

首先是镀浴的温度和浸渍时间。若镀浴的温度过高,则镀覆钢板中的fe2(al,zn)5等扩散层12a生长至1μm以上,并且在热冲压成型体上形成厚的界面层,从而无法避免形成层状的金属层。另外,即使降低镀浴的温度,浸渍时间过长时也会发生相同的问题。因此,尽可能降低镀浴的温度,具体而言限制为镀层的熔融温度+5~20℃,将浸渍时间限制为1~3秒。参见图3,在这种条件下在母材(铁基体)11与镀层13之间生长的扩散层12变为以fe2(al,zn)为主体的薄层。具有这种扩散层12的镀覆钢板10即使之后进行热冲压也不会生长由fe2(al,zn)5等构成的界面层。

其次,对钢板向镀浴的侵入温度进行了研究。在本发明中,降低镀浴的温度并缩短浸渍时间,可以抑制将来会成为厚界面层的fe2(al,zn)5等扩散层12的生长。然而,若侵入板温低于镀浴温度,则镀浴可能会固化并且镀层13的清洁度可能受损。另一方面,侵入温度过高时,则存在冷却速度下降从而fe2(al,zn)5等扩散层12较厚生长的问题。考虑到这些问题,将侵入板温设为镀浴温度+5~20℃。

除了上述制造条件之外,本发明人等对于在镀层13中含有7.0%以上的mg进一步下功夫。mg与镀层13中的zn结合形成mgzn2相32a。因此,在热冲压时,熔融zn侵入钢板中,防止钢材内部产生开裂的lme、熔融zn引起的点焊性下降。并且,通过在镀层13中含有mg,可以抑制热冲压时母材的fe穿透变薄的扩散层12而扩散到镀层13中。并且,可以抑制fe的zn、al的混合物或者zn和al的混合物与铁基体过度反应,还可以抑制扩散层12的生长。此外,镀层13中所含的微量fe与al反应,可以形成岛状的feal2相32b。

另外,令人惊讶的是,本发明人等发现热冲压成型体的feal2相32b是岛状的。认为由于该岛状的feal2相32b是熔点高的金属间化合物,因此具有提高点焊时的连续打点性、抑制lme的效果。

如上所述,图3是在本发明人等发现的条件下制造的镀覆钢板的示意图。如上所述,图4是通过对在本发明人等发现的条件下制造的镀覆钢板进行热冲压而制造的热冲压成型体的示意图。如图4所示,在本发明人等发现的条件下制造的热冲压成型体20中,界面层31较薄,具备mgzn2相32a和岛状feal2相32b混合存在的状态的主层32。岛状的feal2相32b是熔点高的金属间化合物,因此具有提高点焊时的连续打点性、抑制lme的效果。

本发明是基于上述见解完成的,其主旨如下。

(1)一种热冲压成型体,其为具备钢母材和在所述钢母材的表面形成的金属层的热冲压成型体,

所述金属层具备:界面层,其以质量%计包含al:30.0~36.0%,厚度为100nm~5μm,且位于与所述钢母材的界面;以及主层,其中mgzn2相和岛状的feal2相混合存在,厚度为3μm~40μm,位于所述界面层之上,

所述金属层的平均组成以质量%计为

al:20.0~45.0%、

fe:10.0~45.0%、

mg:2.0~10.0%、

sb:0~0.5%、

pb:0~0.5%、

cu:0~1.0%、

sn:0~1.0%、

ti:0~1.0%、

ca:0~3.0%、

sr:0~0.5%、

cr:0~1.0%、

ni:0~1.0%、

mn:0~1.0%、

si:0~1.0%、

余量:12.0~45.0%的zn以及杂质,

在所述主层中,所述mgzn2相以质量%计含有

mg:13.0~20.0%、

zn:70.0~87.0%、

al:0~8.0%、

fe:0~5.0%,

在所述主层中,所述feal2相以质量%计含有

al:40.0~55.0%、

fe:40.0~55.0%、

zn:0~15.0%。

(2)根据上述(1)的热冲压成型体,其中,在所述主层中,

所述feal2相的体积分数为50.0~80.0%,

所述mgzn2相的体积分数为20.0~50.0%。

(3)根据上述(1)或(2)的热冲压成型体,其中,在所述主层中,

所述feal2相的体积分数为60.0~75.0%,

所述mgzn2相的体积分数为25.0~45.0%。

发明的效果

根据本发明,可以提供一种疲劳特性、点焊性以及涂装后耐腐蚀性优异的热冲压成型体。

附图说明

图1是示出通过通常的镀覆工序制造的镀覆钢板的示意图。

图2是示出由通过通常的镀覆工序制造的镀覆钢板得到的热冲压成型体的示意图。

图3是示出在本发明人等发现的条件下制造的镀覆钢板的示意图。

图4是示出由在本发明人等发现的条件下制造的镀覆钢板得到的热冲压成型体的示意图。

图5是示出本发明的一实施方式的热冲压成型体的金属层截面的反射电子图像。

图6是示出本发明的一实施方式的热冲压成型体的岛状的feal2相的定义的示意图。

具体实施方式

以下,对本发明的一实施方式的热冲压成型体、用于得到热冲压成型体的镀覆钢板、以及热冲压成型体的制造方法进行说明。需要说明的是,关于含量的“%”,如果没有特别说明,是指“质量%”。

1.关于热冲压成型体20

参照图4和图5对本实施方式的热冲压成型体20的概要进行说明。参见图4和图5,本实施方式的热冲压成型体20具备钢母材(以下,也简称为“母材”)1和金属层3,金属层3具备与母材1的界面处的界面层31以及主层32,主层32是mgzn2相32a和岛状feal2相32b混合存在的状态。在金属层3的外表面上,可选存在氧化物层4。但是,由于镀层13的化学组成,特别是zn、mg成分的关系,在镀覆钢板的整个表面上,难以在镀层截面上形成层状氧化物。因此,即使观察到氧化物层4,也仅是局部地微量附着有zn、mg、ca成分等的氧化物的程度。另外,有时该氧化物层4通过化学转化处理等工序中的碱处理被去除,不残留在最终产品的表面。

1-1.关于母材1

对母材1没有特别限制,只要其具有相应于本实施方式的热冲压成型体20的用途的特性即可。母材1例如可以使用具有下述化学组成的钢。

c:0.05%~0.40%

碳(c)是有效地提高热冲压成型体的强度的元素,但是c含量过高时,热冲压成型体的韧性下降。因此,将c含量设为0.05%~0.4%。c含量的优选下限值为0.10%,更优选c含量的下限值为0.13%。c含量的优选上限值为0.35%。

si:0.5%以下

硅(si)是使钢脱氧的有效元素。但是si含量过多时,热冲压的加热期间钢中的si扩散从而在钢板表面上形成氧化物,其结果,会降低磷酸盐处理的效率。另外,si是提高钢的ac3点的元素。因此,过量含有si会提高钢板的ac3点,提高热冲压的加热温度,因此无法避免镀层中的zn的蒸发。因此,将si含量设为0.5%以下。si含量的优选上限值为0.3%,si含量的更优选的上限值为0.2%。si含量的优选下限值根据所需的脱氧水平而不同,但通常为0.05%。

mn:0.5%~2.5%

锰(mn)提高淬火性,提高热冲压成型体的强度。另一方面,即使过量含有mn,其效果会饱和。因此,将mn含量设为0.5%~2.5%。mn含量的优选下限值为0.6%,mn含量的更优选的下限值为0.7%。另外,mn含量的优选上限值为2.4%,mn含量的更优选的下限值为2.3%。

p:0.03%以下

磷(p)是钢中所含的杂质。p在晶界处偏析从而降低钢的韧性,并且降低耐延迟断裂性。因此,将p含量设为0.03%以下。优选尽可能减少p含量,优选设为0.02%以下。过度减少p含量会导致成本上升,因此优选下限为0.01%。

s:0.01%以下

硫(s)是钢中所含的杂质。s形成硫化物从而降低钢的韧性,并降低耐延迟断裂性。因此,将s含量设为0.01%以下。优选尽可能减少s含量,优选设为0.005%以下。过度减少s含量会导致成本上升,因此优选下限为0.0001%。

sol.al:0.1%以下

铝(al)对钢脱氧有效。但是,过量含有al会提高钢板的ac3点,从而提高热冲压的加热温度,因此无法避免镀层中zn的蒸发。钢的ac3点提高,从而热冲压时的加热温度可能会超过镀层中zn的蒸发温度。因此,将al含量设为0.1%以下。al含量的优选上限值为0.05%,al含量的更优选下限值为0.01%。另外,在本说明书中,al含量是指sol.al(酸可溶al)的含量。

n:0.01%以下

氮(n)是钢中不可避免含有的杂质。n形成氮化物而使钢的韧性下降。在钢中还含有硼(b)的情况下,n与b结合从而减少固溶b的量,降低淬火性。因此,将n含量设为0.01%以下。优选尽可能减少n含量,优选设为0.005%以下。过度减少n含量会导致成本上升,因此优选下限为0.0001%。

b:0~0.005%

硼(b)提高钢的淬火性,提高热冲压后的钢板的强度,因此可以在母材中含有。然而,即使过量含有b,其效果也会饱和。因此,将b含量设为0~0.005%。b含量的优选下限值为0.0001%。

ti:0~0.1%

钛(ti)可以与氮(n)键合形成氮化物,从而可以抑制由bn形成而导致的淬火性下降。另外,ti通过钉扎效应,在热冲压的加热时使奥氏体粒径微细化,提高钢板的韧性等。因此,可以在母材中含有ti。但是,即使过量含有ti,上述效果也会饱和,并且ti氮化物过量析出时,降低钢的韧性。因此,将ti含量设为0~0.1%。ti含量的优选下限值为0.01%。

cr:0~0.5%

铬(cr)有效地提高钢的淬火性,并提高热冲压成型品的强度,因此可以在母材中含有。但是,cr含量过多,在热冲压的加热时大量形成难以溶解的cr碳化物时,钢的奥氏体化难以进行,淬火性反而下降。因此,将cr含量设为0~0.5%。另外,cr含量的优选下限值为0.1%。

mo:0~0.5%

钼(mo)提高钢的淬火性,因此可以在母材中含有。但是,即使过量含有mo,上述效果也会饱和。因此,将mo含量设为0~0.5%。另外,mo含量的优选下限值为0.05%。

nb:0~0.1%

铌(nb)是形成碳化物,在热冲压时使晶粒微细化,并提高钢的韧性的元素,因此可以在母材中含有。但是,过量含有nb时,上述效果会饱和,并且会降低淬火性。因此,将nb含量设为0~0.1%。nb含量的优选下限值为0.02%。

ni:0~1.0%

镍(ni)可以抑制在热冲压的加热时由熔融zn引起的脆化,因此可以在母材中含有。但是,即使过量含有ni,上述效果也会饱和。因此,将ni含量设为0~1.0%。ni含量的优选下限值为0.1%。

构成本实施方式的热冲压成型体的母材的化学组成的余量为fe和杂质。在本说明书中,杂质是指在工业上制造钢材时,在作为原料的矿石或废料中能够被含有的成分或者因制造环境等而能够被混入的成分,是在不妨碍本发明的效果的范围内可接受的成分。需要说明的是,任选的添加元素可以作为上述杂质包含在母材中。

1-3.关于金属层3

(a)关于界面层31

界面层31是通过热冲压的加热使镀层中的al成分扩散到母材(铁基体)中从而与fe键合而成的层,由fe-al主体的金属间化合物(以下,也简称为“fe-al”)构成。

fe-al是具有固定原子比的金属间化合物。fe-al的元素组成比(质量%)为al:约33%,fe:约67%。根据tem(transmissionelectronmicroscope,透射电子显微镜)观察,有时al浓度高的al3fe相在界面层31的极表层上形成为不成层的微小析出物,有时fe3al相等在母材附近形成为不成层的微小析出物。并且,使用sem-edx(扫描电子显微镜-能量色散x射线分析法)等以5000倍左右的倍率对该层进行定量分析时,al含量在30.0~36.0%的范围内变动。因此,将界面层的al含量设为30.0~36.0%的范围。

需要说明的是,fe-al主体的金属间化合物中,根据镀覆钢板的母材和镀层的化学组成,有时少量zn、mn、ni等固溶于fe-al中从而被含有。因此,fe-al主体的金属间化合物可以是指含有al:30.0~36.0%,余量基本上为fe。在此,“基本上”是指允许含有低于3%的其他成分(例如zn、mn、si和ni)。

在此,界面层成为母材的阻挡覆膜,具有一定的耐腐蚀性。因此,界面层防止涂膜下腐蚀时铁基体的溶出,能够抑制在腐蚀试验等中由划痕产生的流锈(具体而言是从划痕形成流挂状的条纹的红锈)。为了获得这种效果,将界面层的厚度设为100nm以上。然而,界面层过厚时,则由fe-al自身形成的红锈会变成流锈,因此将界面层的厚度设为5μm以下。因此,界面层的厚度设为100nm以上且5μm以下。需要说明的是,对于界面层的厚度,为了确认明确的防锈效果,优选将下限设为500nm,优选将上限设为2μm。上限更优选设为1μm。

(b)关于主层32

参见图4和图5,主层32是mgzn2相32a和岛状feal2相32b混合存在的状态的层。主层32具有抑制热冲压时生成氧化皮的效果,并且承担热冲压成型体20的耐腐蚀性。热冲压成型体20的耐腐蚀性的发挥体现在,通过主层32的牺牲防蚀使得母材(铁基体)不生成红锈的作用;以及确保主层32与再上层的涂膜(未示出)之间的密合性,并且不扩大锈的范围的作用。

mgzn2相32a和岛状feal2相32b混合存在的状态是指,岛状feal2相32b分散(零散)在整个主层32。岛状feal2相32b的具体形态如图5所示。岛状feal2相32b不仅包括单独存在的岛状feal2相32b,而且还包括相邻的多个岛状feal2相32b聚集而成的形态。

本发明的feal2相32b的特征在于具有岛状。将feal2相32b投射于金属层3与母材1之间的界面上的长度设为2d(参见图6中的2d1、2d2、2d3、2d4),feal2相32b的周长设为l,基于测定的2d和l,使用下式算出比周长r,将r为2以上的feal2相判定为岛状。

r=l/2d≥2

岛状的feal2相32b不是在镀层与铁基体的界面上从铁基体侧向镀层中层状生长的相,而是在镀层中生成球形的核并生长的相。观察实际的截面组织时,观察到球形的相接触并固定的状态。岛状的feal2相32b在三个维度上球形生长,因此与利用通常的制造方法形成的镀层/铁基体的界面的层状feal2相相比,与主层内部中的mgzn2相的接触面积大。

形成岛状feal2相32b的机理的细节尚不清楚,但是认为有以下假设。本发明的热冲压之前的镀覆钢板10的扩散层12(fe2(al,zn)5等),其厚度较薄小于1μm,并且向扩散层12中的si固溶量少,因此为化学键不太牢固的状态。因此,在制造镀覆钢板10时,微量的fe通过扩散层12分散在镀层13中。此外,在热冲压的加热期间,母材中的fe也通过扩散层12向处于熔融状态的镀层13中扩散。推测,镀层中的微量分散fe在热冲压时作为成核位点与al原子和zn原子键合,并且生长为岛状。

形成岛状feal2相的情况下,使用发烟硝酸将加热前的镀层13溶解得到溶液,并且对该溶液进行分析时,检测出0.05~0.5%的fe。另外,可以认为在通常条件下制造的镀覆钢板10a的情况下,母材中的fe无法扩散到处于熔融状态的镀层13a,结果是使得fe2(al,zn)5等界面层21a生长,得到的热冲压成型体20a变为具有层状结构。

由于mgzn2相32a是金属间化合物,因此从原子比来看,成分浓度几乎恒定,mg浓度为16.0%左右,zn浓度为84.0%左右。然而,在mgzn2相中,有时al以0~8.0%的范围固溶,fe以0~5.0%的范围固溶,因此mg浓度定义为13.0~20.0%的范围,zn浓度定义为70.0~87.0%的范围。除了这些成分以外,其余为杂质。作为杂质,例如可列举出0~0.01%的ni、0~0.01%的si等。

由于岛状的feal2相32b是金属间化合物,因此从原子比来看,成分浓度几乎恒定,al浓度和fe浓度均为50.0%左右。但是,在feal2相中,有时zn以0~15.0%的范围固溶,因此al浓度定义为40.0~55.0%的范围,fe浓度定义为40.0~55.0%的范围。除了这些成分以外,其余为杂质。作为杂质,例如可列举出0~0.01%的ni、0~0.01%的si等。

由于feal2相32b从层状变为岛状,从而金属层中的mgzn2相32a内的al成分减少,因此点焊时的连续打点性提高。这是因为,存在于mgzn2相32a中的al成分与点焊的cu电极反应从而大幅降低连续打点性。另外,feal2相不是层状而是变为岛状,由此可以抑制在热冲压时产生的熔融zn侵入母材,具有抑制lme的效果。但是,如果仅仅是增加feal2相32b的量,耐腐蚀性反而会恶化,因此,feal2相的量与形态之间的平衡很重要。

岛状的feal2相32b的尺寸没有特别限制,但如果太大,则有可能会偏向于分布在主层32中。岛状feal2相32b偏向分布时,可能会给耐腐蚀性和耐崩刃性带来不利影响。因此,优选岛状feal2相32b的尺寸尽可能差异小,并且优选均匀分布。

通过mgzn2相32a被包含在主层32中,由此可以抑制在热冲压成型体中产生红锈。通常,随着mgzn2相的量增加,耐腐蚀性越高。另外,mgzn2相32a防止zn在主相层中固溶,抑制在热冲压的加热时产生液相zn。在点焊时也会生成液相zn,并与cu电极发生反应,从而降低连续打点性。通过使mgzn2相32a存在于主层32中,可以抑制液相zn的生成,可以抑制连续打点性的下降。然而,mgzn2相的量过多时,则在热冲压时镀层可能会与模具熔接,或者在mgzn2相内形成zn浓度高的区域,从而可能会出现lme。

因此,在主层32中,优选feal2相32b的体积分数为50.0~80.0%,mgzn2相32a的体积分数为20.0~50.0%。若在此范围内,则容易获得优异的耐腐蚀性、点焊性、lme性以及模具熔接性。feal2相32b的体积分数优选设为60.0~75.0%,mgzn2相32a的体积分数优选设为25.0~40.0%。

主层32的厚度小于3μm的情况下,则在腐蚀时不能充分保护母材(铁基体),因此将主层32的厚度设为3μm以上。主层32的厚度增加时,耐腐蚀性有提高的倾向,但是如果太厚,则会给点焊性带来不利影响,因此将主层32的厚度设为40μm以下。需要说明的是,主层32的厚度的下限优选设为6μm,更优选设为10μm。主层32的厚度的上限优选设为30μm,更优选设为25μm。

(c)关于金属层3的平均组成

金属层3具有下述平均组成。

al:20.0~45.0%

al是通过热冲压时的加热,在母材1和金属层3的界面附近形成界面层31,从而在主层32中生成feal2相32b,由此抑制fe从母材1过量扩散到主层32中的必要元素。金属层3中的al含量过少时,界面层31的厚度变薄,fe变得容易从母材1扩散到主层32,固溶于mgzn2相32a中的fe含量增加。另外,使得主层32中的feal2相32b减少。其结果,导致点焊性下降,产生lme,以及热冲压时发生熔接。因此,将金属层3中的al含量的下限值设为20.0%。

另一方面,金属层3中的al含量过多时,会发生如下问题:金属层3中的固溶于mgzn2相32a内的al浓度变高,牺牲防蚀作用变弱,涂膜下耐腐蚀性下降,到产生红锈为止的时间变差。因此,将金属层3中的al含量的上限设为45.0%。al含量的优选下限为25.0%,更优选下限为29.0%。al含量的优选上限为44.0%,更优选上限为38.0%。

fe:10.0~45.0%

在热冲压时对镀覆钢板进行加热时,fe从母材1扩散到金属层3,因此热冲压成型体20的金属层3中必然包含fe。fe与金属层3中的al键合从而在界面层31和主层32中形成feal2相32b。金属层3中的fe浓度随着界面层31的厚度增加、主层32中的feal2相32b的量增加而增加。fe浓度低的情况下,feal2相32b的量也减少,因此主层32的结构容易崩塌。具体而言,fe浓度低于10.0%时,主层32中的mgzn2相32a的量相对增加,点焊性和熔接性有变差的倾向,因此将金属层3的fe含量的下限设为10.0%。另一方面,fe浓度过高时,feal2相32b的量变多,主层32中的mgzn2相32b相对减少,从而存在主层32的结构崩塌并且耐腐蚀性变差的倾向。因此,将金属层3的fe含量的上限设为45.0%。金属层3的fe含量的下限优选设为20.0%,更优选设为27.0%,进一步优选设为32.5%。金属层3的fe含量的上限优选设为42.0%,更优选设为36.5%。

mg:2.0~10.0%

mg是提高金属层3的耐腐蚀性,有效改善腐蚀试验中涂膜下的鼓凸宽度的元素。另外,mg在热冲压的加热时与金属层3中的zn成分键合从而防止生成液相zn,因此具有抑制lme裂纹的效果。金属层3中的mg浓度过低时,不会形成mgzn2相,并且固溶zn残留在主层32中,因此产生lme的可能性变大。因此,将mg含量设为2.0%以上。另一方面,金属层3中的mg含量过多时,过度发挥牺牲防蚀作用,在腐蚀试验中,涂膜鼓凸宽度、和流锈有迅速增加的倾向。因此,将mg含量的上限设为10.0%。mg含量优选设为3.0%以上,更优选设为3.5%以上。

sb:0~0.5%

pb:0~0.5%

cu:0~1.0%

sn:0~1.0%

ti:0~1.0%

sb、pb、cu、sn和ti在金属层3中与zn置换并在mgzn2相内形成固溶体,如果在规定的含量范围内,则不会对热冲压成型体20产生不利影响。因此,这些元素可以包含在金属层3中。然而,各个元素的含量过多时,在热冲压的加热时,这些元素的氧化物析出,存在使得热冲压成型体20的表面性状劣化,磷酸化学转化处理不良而涂装后的耐腐蚀性劣化的倾向。另外,腐蚀试验中直到出现红绣的时间也会变早。此外,pb、sn的含量过多时,熔接性和lme性变差。将sb和pb的含量设为0.5%以下,cu、sn和ti的含量设为1.0%以下。sb和pb的含量优选设为0.2%以下,cu、sn和ti的含量优选设为0.8%以下,更优选设为0.5%以下。

ca:0~3.0%

sr:0~0.5%

ca和sr可以抑制在制造时形成于镀浴上的顶部浮渣的生成。另外,ca和sr在热冲压的热处理时有抑制大气氧化的倾向,因此可以抑制热处理后的镀覆钢板的颜色变化。sr比ca在这些效果方面更强,因此sr少量就会发挥效果。另外,这些元素的含量过多时,在腐蚀试验中会对涂膜鼓凸宽度和流锈产生不利影响。因此,可以在金属层3中以ca含量为3.0%以下、sr含量为0.5%以下的范围含有选自ca和sr中的一种以上。ca含量优选设为2.0%以下,更优选设为1.5%以下。sr含量优选设为0.3%以下,更优选设为0.1%以下。为了获得上述效果,ca含量优选设为0.1%以上,sr含量优选设为0.05%以上。

cr:0~1.0%

ni:0~1.0%

mn:0~1.0%

cr、ni和mn在镀覆钢板中在镀层与母材的界面附近富集,具有消除镀层表面的闪光的效果等。这些元素在热冲压成形体20的金属层3中与fe置换并包含在界面层31中,或者在主层32中的feal2相32b中形成固溶体。因此,可以在金属层3中包含选自cr、ni和mn中的一种以上。但是,这些元素的含量过多时,有涂膜鼓凸宽度和流锈变大、耐腐蚀性恶化的倾向。因此,将cr、ni和mn的含量分别设为1.0%以下。cr、ni和mn的含量优选设为0.5%,更优选设为0.1%以下。cr、ni和mn的含量的下限优选设为0.01%。

si:0~1.0%

si是大大降低熔融状态的zn和al的活性,并且极大地影响热冲压时的fe和构成金属层3的元素的扩散的元素。因此,si会极大地破坏feal2相32b的分散结构,因此需要将其限制为合适的含量。金属层3中的si含量过多时,金属层3中的mgzn2相32a减少,从而以母材与金属层之间的界面为起点形成mg2si相,耐腐蚀性大幅恶化。另外,由于mgzn2相的减少,游离的zn形成zn相,因此可能会发生lme。此外,si抑制了fe向金属层3内部扩散,抑制界面层31的生长和feal2相32b的生长。因此,优选将尽可能减少si含量,设为1.0%以下。si含量优选设为0.2%以下,更优选设为0%。

余量:12.0~45.0%的zn以及杂质

从防锈的角度出发,在金属层3中含有zn是必须的。金属层3中所含的大部分zn成分以mgzn2相32a的形式存在。另一方面,由于zn原子可以与al原子置换,所以虽然zn的量少,但是zn也可以固溶于feal2相32b中。因此,金属层中所含的mgzn2相32a的量增大时,金属层3中的zn浓度也增大。

在此,将金属层3中的zn含量高、zn作为mgzn2相32a存在的热冲压成形体20供于腐蚀试验时,mgzn2相32a溶出从而产生白锈。另一方面,将金属层3中的zn含量低、mgzn2相等不含fe的金属间化合物几乎不存在的热冲压成型体供于腐蚀试验时,金属层中的含有fe的金属间化合物腐蚀,从而产生红锈。即,腐蚀时产生白锈或者红锈的任一种与金属层3中的zn含量以及主层32中的mgzn2相32a的存在密切相关。

具体而言,金属层3中的zn含量为12.0%以上时,在腐蚀试验中会产生来自涂膜横切划痕的白锈,但是金属层3中的zn含量低于12.0%时,会立即产生红锈。因此,将金属层3中的zn含量设为12.0%以上。另一方面,zn含量过多时,会在金属层3中析出不与mg反应的zn相。zn相的析出可能会导致产生lme,结果可能会使热冲压成型体的疲劳强度劣化。因此,将zn含量设为45.0%以下。zn含量的优选下限为16.5%,更优选下限为18.5%。另外,zn含量的优选上限为40.0%,更优选的上限为32.0%。

由此,将金属层3的余量设为12.0~45.0%的zn和杂质。作为杂质,可以在不妨碍本发明效果的范围内包含除上述以外的任意元素。

1-4.关于氧化物层4

在本实施方式的热冲压成型体20的最表层上,由于镀覆成分的氧化,有时会形成氧化物层4。氧化物层4可能会使在热冲压之后所赋予的磷酸化学转化处理性和电沉积涂装性劣化,因此较薄比较好。如果厚度为1.0μm以下,则不影响金属层3的主要性能。

2.关于镀覆钢板10

对用于得到本实施方式的热冲压成型体20的镀覆钢板10进行说明。参见图3,用于得到本实施方式的热冲压成型体20的镀覆钢板10在母材(铁基体)11与镀层13之间具备扩散层12。母材11的化学组成与本实施方式的热冲压成型体20的母材1的化学组成相同,因此省略其说明。扩散层12是以fe2(al,zn)为主体的薄层。镀层13为zn-al-mg系镀层,只要是在热冲压后形成具有上述化学组成的金属层3的层就没有特别限定。作为镀层13,例如,可以使用具有以下化学组成的镀层。

zn:17.0%以上

zn是用于在本实施方式的热冲压成形体20的主层32中形成mgzn2相32a的必要元素,推荐将其含量设为17.0%以上。

al:10.0~70.0%

al是用于在本实施方式的热冲压成型体20的主层32中形成岛状feal2相32b的必要元素,推荐将其含量设为10.0~70.0%。

mg:7.0~20.0%

mg是用于在本实施方式的热冲压成型体20的主层32中形成mgzn2相32a的必要元素,推荐将其含量设为7.0~20.0%。该范围内的mg抑制了熔融状态的zn、al、或者zn与al的混合物与铁基体之间的过度反应。

fe:0.05~2.0%

由于fe在热冲压的加热期间析出岛状的feal2相,因此推荐将其含量设为0.05%以上。另一方面,为了抑制热冲压时的过度合金化反应,fe的含量优选为2.0%以下。镀层中的fe不仅包括镀浴中所含的fe,还包括源自母材的fe。

si:0~1.0%

si的含量过多时,会在热冲压时与mg反应而形成mg2si相,耐腐蚀性大幅劣化。因此,其含量优选为1.0%以下。

在镀层13中可以进一步包含下述元素。这些元素的含量在热冲压前后几乎不发生变化。另外,各元素的含量范围与金属层3中的说明相同,因此省略。

sb:0~0.5%

pb:0~0.5%

cu:0~1.0%

sn:0~1.0%

ti:0~1.0%

ca:0~3.0%

sr:0~0.5%

cr:0~1.0%

ni:0~1.0%

mn:0~1.0%

需要说明的是,可以在不妨碍本发明效果的范围内,在镀层13中包含除上述以外的任意元素作为杂质。

镀层13的厚度例如可以设为3~50μm。另外,可以将镀层13设置在钢板的两面,也可以仅设置在钢板的单面。

3.热冲压成型体20的制造方法

接下来,对本实施方式的热冲压成型体20的制造方法进行说明。本实施方式的热冲压成型体的制造方法包括:准备母材的工序(母材准备工序);在母材上形成zn-al-mg镀层而准备镀覆钢板的工序(镀覆处理工序);以及对镀覆钢板进行热冲压的工序(热压工序),根据需要,包括防锈油膜形成工序以及冲裁加工工序。以下,对各工序进行详细描述。

[母材准备工序]

本工序是准备母材的工序。例如,制造具有上述化学组成的钢水,使用所制钢水通过铸造法来制造板坯。或者,使用所制造的钢水通过铸锭法来制造钢锭。另外,通过对所制造的板坯或钢锭进行热轧来制造母材(热轧板)。需要说明的是,根据需要,可以对上述热轧板进行酸洗处理后,对热轧板进行冷轧,将冷轧板作为母材使用。

[镀覆处理工序]

本工序是在母材上形成zn-al-mg镀层的工序。在本工序中,在母材的两面上形成具有前述组成的zn-al-mg镀层。镀层的附着量优选设为每单面170.0g/m2以下。需要说明的是,在本工序中,作为镀层附着的辅助,可以实施ni预镀覆、sn预镀覆等各种预镀覆,但是各种预镀覆会影响合金化反应,因此优选将预镀覆的附着量设为每单面2.0g/m2以下。

但是,为了防止由fe2(al,zn)5等构成的扩散层12a在镀覆钢板上生长,建议在满足以下条件下进行镀覆处理。

镀浴的温度过高时,镀覆钢板中的fe2(al,zn)5等扩散层12a生长至1μm以上,在热冲压成型体中形成厚的界面层从而无法避免形成层状的金属层。另外,即使降低镀浴的温度,浸渍时间过长时也会发生相同的问题。因此,优选尽可能降低镀浴温度,具体而言限制在镀层的熔融温度+5~20℃,浸渍时间限制在1~3秒。参见图3,在这种条件下在母材(铁基体)11与镀层13之间生长的扩散层12成为以fe2(al,zn)为主体的薄层。具有这种扩散层12的镀覆钢板10即使之后进行热冲压也不会使由fe2(al,zn)5等构成的界面层生长。

如上所述,如果降低镀浴的温度、缩短浸渍时间,则可以抑制将来会成为厚的界面层的fe2(al,zn)5等扩散层12的生长。然而,侵入板温低于镀浴温度时,担心镀浴会固化并且破坏镀层13的清洁。另一方面,侵入温度过高时,存在冷却速度降低从而fe2(al,zn)5等扩散层12较厚生长的问题。考虑到这些问题,优选将侵入板温设为镀浴温度+5~+20℃。

[热压工序]

本工序是对上述镀覆钢板缓慢加热后进行热冲压的工序。在本工序中,主要是利用通电加热(焦耳热)或辐射热来加热镀覆钢板。

在热冲压工序中,首先将镀覆钢板装入加热炉,以钢板的ac3点以上的温度900℃使镀覆钢板均热化,然后将镀覆钢板从炉中取出并立即用具备水冷套的平板模具夹住,由此进行冲压加工的同时进行冷却。需要说明的是,从炉中取出被加热的镀覆钢板至开始冷却为止的时间是5秒左右,当镀覆钢板的温度为800℃左右时开始冷却。需要说明的是,即使是镀覆钢板的冷却速度较慢的部分,也以直到马氏体相变开始点(410℃)为止的冷却速度为50℃/秒以上地进行冷却。

对于热冲压的升温过程和保持时间是存在最佳条件的。升温过程中的升温速度优选为10℃/秒以上,更优选为30℃/秒以上。通过将升温速度设为上述值以上,可以抑制过量的fe从铁基体被供给至镀层中。另外,出于相同的原因,用于均热的保持时间在900℃下优选为60秒以下,更优选为30秒以下。

通过上述热冲压工序,能够由镀覆钢板得到热冲压成型体。在热冲压工序中,镀覆钢板暴露于高温下,但是由于镀层会抑制铁基体的氧化,因此可以抑制氧化皮的形成。需要说明的是,通过将冷却模具制成矩形、圆形等各种形状,能够改变热冲压成型体的形状。

以上对从准备镀覆钢板的母材到本实施方式的热冲压成型体的制造方法进行了说明,但是不限于上述说明。例如,也可以通过对从市场等购得的、具有期望的镀层的镀覆钢板进行热冲压来制造本实施方式的热冲压成型体。以下,一并记载该制造方法中任意可选的工序。

[防锈油膜形成工序]

本工序是在镀覆处理工序后且热冲压工序前,在热冲压用镀覆钢板的表面涂布防锈油而形成防锈油膜的工序。在从热冲压用镀覆钢板被制造出来开始到进行热冲压为止的时间长的情况下,镀覆钢板的表面有可能会发生氧化。但是,通过本工序而形成有防锈油膜的镀覆钢板的表面难以氧化,由此抑制氧化皮的形成。需要说明的是,防锈油膜的形成方法也可以适当使用公知的技术。

[冲裁加工工序]

本工序是在防锈油膜形成工序后且热冲压工序前,对热冲压用镀覆钢板进行剪切加工或冲切加工的至少任一种,从而将镀覆钢板加工成特定形状的工序。冲裁加工后的镀覆钢板的剪切面容易氧化,但是如果通过上述防锈油膜形成工序预先在镀覆钢板的表面形成防锈油膜,则防锈油也会在某种程度上扩散到镀覆钢板的剪切面,由此可以抑制冲裁加工后的镀覆钢板的氧化。

以上,对本发明的一实施方式的热冲压成型体进行了说明,但上述的实施方式只不过是本发明的例示。因此,本发明并不限于上述的实施方式,在不脱离其主旨的范围内,可以进行适当设计变更。

4.关于热冲压成型体20的解析方法

接着,对本实施方式的热冲压成型体中的金属层的解析方法进行说明。

本实施方式的热冲压成型体20的金属层3、界面层31和主层32各自的厚度可以如下判断:从热冲压成型体20切出试验片并加工,埋入树脂等中之后进行截面研磨,对sem观察图像进行长度测量。另外,如果在sem中利用反射电子图像进行观察,观察时的对比度会根据金属成分而不同,因此可以识别各层并确认各层的厚度。需要说明的是,在难以判断界面层31和主层32之间的界面并且难以确定界面层31的厚度的情况下,实施线分析,将al浓度为30.0~36.0%的位置确定为界面层31和主层32之间的界面即可。在3个以上不同的视场中观察相同的组织结构,计算各视场中的平均厚度,并将其作为金属层3、界面层31和主层32各自的厚度。

需要说明的是,金属层3的组织中存在扩散的情况下,如果利用由epma(电子探针显微分析仪、electronprobemicroanalyser)得到的映射图像等,则能够准确地掌握各层的厚度。另外,使用预先确定了成分的合金,利用高频辉光放电发射光谱仪(glowdischargespectrometer:gds)创建定量分析用的校准曲线,掌握在目标层的深度方向上的元素强度分布,由此也可以确定各层的厚度。例如,可以通过φ5mm的gds分析掌握深度方向的成分强度大致平坦的位置处的成分,并基于5处以上的测量结果采用其平均值从而确定各层的厚度。

另外,可以通过将金属层3溶解在添加有抑制铁基体腐蚀的抑制剂的酸溶液中,并利用icp(高频感应耦合等离子体)发射光谱法测定金属层3的剥离溶液,来确认金属层3整体的化学组成。这种情况下,测定的是界面层31与主层32的总平均成分值。加热前的镀层的平均组成可以通过使用发烟硝酸溶解镀层,并利用icp发射光谱法测定剥离溶液来确认。在此,之所以使用发烟硝酸,是因为如果使用发烟硝酸,则可以残留fe-al系金属间化合物而不使其溶解,可以测定仅包含在镀层中的fe浓度。

优选通过sem-edx、epma观察等对主层32中的mgzn2相32a和feal2相32b的成分值实施定量分析。在这种情况下,优选在具有相同组织结构的多个位置实施定量分析,并将它们的平均值作为成分值采用。在确定各相的成分时,优选采用至少10处以上的平均值。

主层32中的mgzn2相32a和feal2相32b的体积分数可以基于任意截面中的主层32的sem的反射电子图像,通过实施计算机图像处理算出。通常,mgzn2相32a和feal2相32b在反射电子图像中是对比度大不相同的组织,因此可以通过二值化简单地测定各相的面积率。具体而言,对于mgzn2相32a和feal2相32b的体积分数,基于至少5个截面(5个视场)以上的sem的反射电子图像来测定mgzn2相32a和feal2相32b的面积率,将测得的面积率的平均直接定义为主层32中各相所占的体积分数。

对于金属层3的耐腐蚀性,最优选使用能够得到符合实际环境的数据的暴露试验来评价,但是由于高耐腐蚀性镀覆的评价需要时间,因此可以通过加速腐蚀试验来进行耐腐蚀性的评价。例如,可以通过进行盐雾试验、或者复合循环腐蚀试验来判断白锈发生状况、或红锈发生状况,从而评价耐腐蚀性。由于热冲压成型体大多是涂装使用的,因此也可以在热冲压成型体上预先实施汽车用涂装,也可以根据需要赋予热冲压成型体的表面划痕。

对于点焊性,可以通过使用点焊机,对实施了与热冲压同等的热处理的镀覆钢板进行焊缝试验从而测定恰当电流值,然后进行连续打点试验来评价。例如,可以通过将开始时的熔核直径设为6mm,测定直到熔核直径低于4√t(t是钢板厚度)的打点数来评价点焊性。

可以通过在热冲压后进行了弯曲试验的试验片上观察源自金属层3的裂纹部,从而确认lme的产生。具体而言,立即将热冲压成型体供于v形弯曲试验等,并将进行了v形弯曲试验的试验片埋入树脂等中,进行表面研磨,观察源自金属层3的裂纹部来确认。另外,同时通过观察弯曲试验中使用的模具,可以判断热冲压时的镀层是否发生熔接。

通过以下步骤判断feal2相为岛状。

(1)如上所述,以与测定feal2相的面积率同样的方式,通过sem的反射电子图像对在主层32中能识别出整个轮廓线的feal2相32b进行识别。此时,将根据feal2相的面积计算出的圆当量直径为100nm以上的feal2相作为测定对象。低于100nm的feal2相对性能没有实质影响,因此忽略不计。

(2)测定将feal2相32b投影到金属层与母材之间的界面上而得到的长度2d、feal2相的轮廓线(周长)l。需要说明的是,相邻的多个岛状feal2相聚集的情况下,测定构成聚集体的各个feal2相的2d和l。

(3)然后,将测得的2d和l代入公式r=l/2d,算出r值。

(4)如上所述,以与测定feal2相32的面积率同样的方式,基于至少5个截面(5个视场)以上的sem的反射电子图像,对每1个截面5个以上、共计50个以上的feal2相32b的r值进行测定。然后,将测得的r值的平均作为在主层32中所占的feal2相32的r值。

(5)r=2.0以上时,认定feal2相32b为岛状。另一方面,feal2相32b低于2.0时,认定feal2相32b为层状。feal2相32b低于2.0时,feal2相32b呈现与以往的热冲压成型体几乎相同的状态,能够用于测定r值的feal2相32b非常少。

实施例

以下,通过实施例对本发明进行具体说明。本发明不限于以下实施例。

首先,准备构成热冲压成型体的母材。即,使用含有表1所示化学组成且余量为fe和杂质的钢水,通过连铸法制造板坯。接着,将板坯热轧从而制造热轧钢板,进一步将热轧钢板酸洗,然后进行冷轧从而制造冷轧钢板。将制造的冷轧钢板作为用于热冲压的镀覆钢板的母材(板厚:1.4mm或0.8mm)。

[表1]

表1

余量:fe和杂质

接着,使用制造的母材,使用lesca公司制间歇式热浸镀装置,使用含有表2和表3所示成分的镀浴,在表4和表5所示的条件下,制造镀覆钢板。需要说明的是,no.45、46的比较例中,作为热冲压用的镀覆钢板,分别是以往使用的al合金镀覆钢板和合金化镀锌钢板。具体而言,no.45的比较例中是al-10%si合金镀覆钢板,no.46的比较例中是zn-11%fe合金化镀锌钢板。

热冲压如下实施:将加热炉的炉温设定为钢板的ac3点以上的温度900℃,将镀覆钢板装入加热炉在900℃下加热后,在具备水冷套的模具中进行压制。需要说明的是,改变加热处理的条件,实施两种热冲压。

在加热处理a中,热冲压的加热方式是通电加热,用电极夹住钢板的两端,以50℃/秒从室温升温至900℃后保持30秒,然后从加热炉中取出钢板,立即将钢板夹在具备水冷套的平板模具中进行热冲压,由此制造热冲压成型体。此时,通过在加热炉内流动氮气,将炉内的氧气浓度控制为小于18%。

在加热处理b中,热冲压的加热方式是在露天开放炉中进行辐射热加热,以5~10℃/秒用120秒从室温升温至900℃后保持60秒,然后从加热炉中取出钢板,立即将钢板夹在具备水冷套的平板模具中进行热冲压,由此制造热冲压成型体。

需要说明的是,对于加热处理a和b的冷却条件均相同,即使是冷却速度较慢的部分,也控制以50℃/秒以上的冷却速度进行淬火直到马氏体相变开始点(410℃)左右为止。另外,根据需要从热冲压成型体切出样品。

[表2]

表2

下划线表示偏离本申请说明书中建议的范围。

[表3]

表3

下划线表示偏离本申请说明书中建议的范围。

[表4]

表4

下划线表示偏离本申请说明书中建议的范围。

[表5]

表5

下划线表示偏离本申请说明书中建议的范围。

从制造的热冲压成型体切出切板样品,并剥离镀层从而测定热冲压成型体的金属层的化学组成。另外,将切板埋入树脂中,通过sem-edx或epma分析实施定量分析,测定界面层和主层的厚度。另外,对al2fe相和mgzn2相的成分进行了定量分析。将结果示于表6~表9。

[表6]

表6

下划线表示偏离本发明所限定的范围。

[表7]

表7

下划线表示偏离本发明所限定的范围。

[表8]

表8

下划线表示偏离本发明所限定的范围。

[表9]

表9

下划线表示偏离本发明所限定的范围。

将热冲压成型体的性能示于表10和表11。需要说明的是,各性能的试验方法如下。

[v形热弯曲试验]

为了调查lme性能,将热冲压前的镀覆钢板(50mm×50mm×1.4mm)装入加热炉中并加热至900℃。需要说明的是,将加热炉的炉温设定为钢板的ac3点以上的温度900℃。

然后,将钢板从加热炉中取出,立即使用大型冲压机进行v形热弯曲加工。需要说明的是,从开始从加热炉中取出钢板到开始钢板的加工为止的时间设定为5秒。加工后,以50℃/秒以上的冷却速度进行淬火直至马氏体相变开始点(410℃)左右。对于模具的形状,是使通过v形弯曲加工得到的弯曲半径的外侧部分在弯曲加工结束时伸长15%的形状。

通过使用sem和反射电子检测器观察v形弯曲加工部位的钢板的厚度方向上的截面,确认反射电子图像,从而确认是否产生液体金属脆化裂纹(lme)。

观察v形弯曲加工部位的截面,按照下述方式评价。将未产生裂纹的样品以及虽然产生了裂纹但裂纹末端在主层内的样品评价为“aaa”(最佳)。将裂纹的末端在界面层内的样品评价为“a”(良好)。将裂纹到达母材的样品评价为“b”(不良)。并且,评价为“a”以上的视为合格。将该结果一并示于表10和表11中。

同时,相同的v形弯曲试验重复100次。每次试验后,确认镀层对v形热弯曲试验中使用的模具的附着(熔接)情况,即使在模具上确认到仅少量的熔接,也判断为有熔接。熔接的发生率为0%时,评价为“aaa”(最佳);熔接的发生率为0~5%时,评价为“a”(良好);熔接的发生率为5%以上时评价为“b”(不良)。并且,评价为“a”以上的视为合格。将该结果一并示于表10和表11中。

[腐蚀试验]

接下来,对热冲压成型体(板状100×50mm),使用日本帕卡设计工程株式会社制造的表面调节处理剂(商品名:prepalenex),在室温下进行20秒表面调节。然后,对表面调节后的热冲压成型体使用日本帕卡设计工程株式会社制造的磷酸锌处理溶液(商品名:palbond3020)进行磷酸盐处理。具体而言,处理液的温度设为43℃,将热冲压成形体在处理液中浸渍120秒。由此,在热冲压成型体的钢板表面形成了磷酸盐覆膜。

在实施上述磷酸盐处理后,对各试验编号的板状的热冲压成型体,将nipponpaintco.,ltd.制的阳离子型电沉积涂料以电压为160v的斜坡通电进行电沉积涂装,进而,以烘烤温度为170℃进行了20分钟烘烤涂装。对于各个试样,电沉积涂装后的涂料的膜厚的平均都为15μm。

对于耐红锈性的评价,通过对上述涂装后的热冲压成型体进行横切以到达钢材,并进行复合循环腐蚀试验(jasom609-91)来评价。作为具体的评价方法,根据直到产生红锈为止的时间进行评价。将在上述复合循环腐蚀试验的30次循环时产生红锈的试样评价为“b”(不良);将在60次循环时产生红锈的试样评价为“a”(稍好);将在90次循环时产生红锈的试样评价为“aa”(良好);将即使经过150次循环以上仍然未产生红锈的试样评价为“aaa”(最佳)。并且,评价为“a”以上的视为合格。将该结果一并示于表10和表11中。

另外,在上述复合循环腐蚀试验的120次循环时,通过以横切周围的8个点的平均计算出由划痕引起的涂膜的最大鼓凸宽度,评价涂膜鼓凸性。在120次循环时鼓凸宽度为3mm以上的试样评价为“b”(不良);涂膜鼓凸宽度为2mm~3mm的试样评价为“a”(良好);涂膜鼓凸宽度小于2mm的试样评价为“aaa”(最佳)。并且,评价为“a”以上的视为合格。将该结果一并示于表10和表11中。

另外,在上述复合循环腐蚀试验的120次循环时,以横切周围的8个点的平均计算出从涂膜鼓凸部的前端到锈附着部前端的流锈(锈滴宽度),并测定流锈宽度。将在120次循环时流锈宽度为5mm以上的试样评价为“b”(不良);流锈宽度为3mm~5mm的试样评价为“a”(良好);流锈宽度小于3mm的试样评价为“aaa”(最佳)。并且,评价为“a”以上的视为合格。将该结果一并示于表10和表11中。

[点焊]

接下来,为了确认热冲压成型体的连续打点性,准备了在热冲压成型体中主层厚度为25μm的样品(0.8mm板)。

焊接条件设为:加压力1860n、预压时间30次循环、上坡焊3次循环、通电时间7次循环、保持时间25次循环、所用电极obaradhom型、预打点20点。熔核直径通过剥离来测定,将金属小球直径作为熔核直径来评价。在直径不同的情况下,将长径和短径的平均值作为熔核直径。对于连续打点的电流值,预先在相同的焊接条件下实施焊缝试验,并采用熔核直径为6mm的电流值。在上述条件下,实施连续打点直到平均熔核直径为3.8mm以下的打点。

将连续打点数少于100点的样品评价为“b”(不良);连续打点数为100点~200点的样品评价为“a”(稍好);连续打点数为200点~1000点以上的样品评价为“aa”(良好);连续打点数为1000点以上评价为“aaa”(最佳)。并且,评价为“a”以上的视为合格。将该结果一并示于表10和表11中。

[表10]

表10

[表11]

表11

参见表2~表11可知,发明例的热冲压成型体的疲劳特性、点焊性和耐腐蚀性优异。

另一方面,比较例的热冲压成型体的结果显示,疲劳特性、点焊性和耐腐蚀性的评价项目中包含“b”(不良),不满足疲劳特性、点焊性和耐腐蚀性中的任一个或者多个。

附图标记说明

10镀覆钢板

11母材

12a扩散层

13a镀层

20本实施方式的热冲压成型体

1钢母材(母材)

3金属层

31界面层

32主层

32amgzn2相

32bfeal2相

4氧化物层

10a在通常条件下制造的镀覆钢板

11a母材

12a扩散层

13a镀层

20a通常的热冲压成型体

1a母材

2a表层部

21a界面层

21b金属层

4a氧化物层

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1