一种铝合金材料及其制备方法和应用

文档序号:8247507阅读:290来源:国知局
一种铝合金材料及其制备方法和应用
【技术领域】
[0001]本发明涉及一种铝合金材料,具体地说,涉及一种高强度、高韧性、高焊合性能的铝合金材料及其制备方法和应用,属于有色金属材料领域。
【背景技术】
[0002]目前对高强度、高韧性、焊合性能高要求的铝合金压力管道、空调散热器用多孔型扁平流管、轨道车辆的箱体均采用6063-T5铝合金材料,其主要成分:Mg0.45?0.9%,S1.2?0.6%,其抗拉强度彡160Mp,屈服强度彡llOMPa,延伸率彡8%。普通6063-T5合金挤压时采用风冷淬火,冷却速度受到限制,加之采用高温时效硬化工艺,使其晶界两侧形成无析出区(PFZ),如合金强度增高,则合金的脆性也随之增加,导致材料的机械加工性能不足,无法满足高强度、高韧性、焊合性能高压力管道用铝合金材料的要求。
[0003]由于铝合金材料重量轻,表面经阳极氧化处理后耐腐蚀性能好、美观,使用寿命长,在压力管道、空调散热器用多孔型扁平流管、轨道车辆的箱体等领域应用越来越广泛。传统的6063合金,由于过剩硅及杂质含量的影响,极易形成点状的砂眼以及沿纵向或径向分布的由于焊合不良产生的细小裂纹,迫切需要高强度、高韧性、焊合性能高的铝合金材料代替传统的6063合金。

【发明内容】

[0004]本发明的目的是提供一种高强度、高韧性、高焊合性能的铝合金材料。
[0005]本发明的另一目的是提供一种高强度、高韧性、高焊合性能的铝合金材料的制备方法。
[0006]本发明的再一目的是提供一种高强度、高韧性、高焊合性能的铝合金材料在制备成热挤压型材时的加工方法,该热挤压型材可应用于压力管道、空调散热器用多孔型扁平流管、轨道车辆的箱体中。
[0007]为了实现本发明的目的,本发明一种铝合金材料,包括以下质量百分含量的组分:Mg 为 0.55 ?L 0%, Si 为 0.40 ?0.80%, Bi 为 0.05 ?0.25%, Re 为 0.10 ?0.45%,余量为Al以及不可避免的杂质。杂质应尽量减小在铝合金材料中的含量,杂质应控制单个杂质(0.05%,合计彡 0.15%。
[0008]所述铝合金材料还包括Cu < 0.10%, Cr ( 0.10%, Fe ( 0.20%, Zn ( 0.10%,Ti ( 0.10%ο
[0009]所述Mg 为 0.60%, Si 为 0.45%, Bi 为 0.15%, Re 为 0.35%。
[0010]本发明一种铝合金材料的制备方法,包括如下步骤:
I)熔铸
先将45?100重量份的铝硅中间合金、5?25重量份的铝铋中间合金、10?45重量份的铝稀土中间合金和830?895重量份的铝锭,一起加热到720V?760°C熔化;然后加入5?10重量份的块状纯镁锭;再采用惰性气体-熔剂混和精炼法对熔体进行精炼,其中,惰性气体采用纯度不小于99.997%的高纯氮气,熔剂采用重量百分比分别为40%?50%的KCl,25%?35%的NaCl、18%?26%的Na3AlFgi成的粉状熔剂,熔剂用量为1.5?2kg/t熔体重量比例,精炼温度控制在710V?750°C,时间为25分钟?30分钟;精炼结束后,静置25?35分钟;在690°C?710°C温度条件下进行铸造;
2)铸棒均匀化处理
采用560°C?580°C均匀化处理温度,保温4?6.5小时出炉,采用风冷加水雾冷却方式进行快速冷却,使铸棒于I?1.5小时冷却到180°C以下;
其中,铝硅中间合金中硅的重量百分比含量为11%?13% ;铝铋中间合金中铋的重量百分比含量为9%?11% ;铝稀土中间合金中硅的重量百分比含量为9%?11%。
[0011]本发明一种铝合金材料,具有高强度、高韧性、高焊合性能的特点,可作为压力管道、空调散热器用多孔型扁平流管、轨道车辆的箱体结构件的原材料。
[0012]本发明一种铝合金材料在制备成热挤压型材时的加工方法,包括如下步骤:
1)挤压工艺
将铝合金铸棒预加热至480°C?520°C,模具加热至440°C?460°C,保温2?3.5小时;挤压筒加热至420°C?440°C,铝合金型材出口温度控制在525°C以上,采用强制风冷,3分钟冷却到180°C以下;
2)时效工艺
采用低温时效工艺,整个时效过程中,控制铝合金型材的温度150?170°C,保温4?8小时。低温时效工艺控制铝合金型材在时效升温过程中温度的均匀性和炉膛温度的温差,形成细密、均匀、弥散的G.P.区,使铝合金结晶状态从无序不稳定到有序稳定,达到强度和韧性均衡的目的,从而获得高强度、高韧性、焊合性能高的铝合金型材。
[0013]本发明压力管道、空调散热器用多孔型扁平流管、轨道车辆的箱体结构件的加工方法可采用本领域热挤压铝合金型材的常规设备进行。
[0014]本发明一种铝合金材料是研究镁和硅在材料中的配比,并在合金成分中引入微量的铋元素和轻质混和稀土元素,铋和混和稀土元素能对铝及铝合金产生净化、变质和微合金化作用。铋和混和稀土元素在铝中的固溶度极低,大部分稀土元素会和其他元素及杂质作用,生成弥散分布的高熔点化合物,对铝合金熔体起精炼和净化作用(净化气体和有害元素),降低夹杂物的数量,还能改变夹杂物的形状并使其重新分布,减小其有害影响,使粗大化合物球化,晶界净化,对铸态组织产生变质作用,改善铝合金的铸造性能和后续加工性能。混和稀土中微量Ce元素与添加的微量Bi元素原子发生包晶反应生成的高熔点化合物CeBi作为异质核心,从而使铝的晶粒得到细化。同时稀土化合物以微小固态质点存在于铝合金熔液中,也为铝合金结晶提供了大量的异质核心,而其在结晶界面前沿的偏聚,既能阻碍晶粒长大,又能促进枝晶的分支,提高了形核率和晶粒长大速率的比值,从而显著细化了铸态晶粒和枝晶组织,改善铝合金的显微组织。稀土元素还能使第二相的形状、尺寸更加符合强化机制的要求,同时,稀土对铸态组织的变质作用也为合金的回复再结晶准备条件。因此,铋和轻质混和稀土变质剂既能对铸态组织产生细化变质作用,也能细化变形和热处理组织,在铝合金生产的几个阶段都产生组织微细化作用,同时材料热挤压成形后,Bi元素在快速冷却过程中膨胀,有利于材料的焊合性能和消除热挤压型材头尾端的收缩,从而获得高强度、高韧性、高焊合性能的铝合金材料的目的。
[0015]本发明铝合金热挤压型材为新型Al-Mg-S1-B1-Re合金材料,合金材料保持高强度同时具备高韧性,并提高压力管道、空调散热器用多孔型扁平流管、轨道车辆箱体的焊合性能闻。具有以下优点:
1、本发明在Al-Mg-Si基础上,引入微量Bi元素和轻质混和稀土元素,轻质混和稀土中微量Ce元素与添加的微量Bi元素原子发生包晶反应生成高熔点化合物CeBi作为异质核心,从而使铝的晶粒得到细化。
[0016]2、稀土化合物以微小固态质点存在于铝合金熔液中,也为铝合金结晶提供了大量的异质核心,而其在结晶界面前沿的偏聚,既能阻碍晶粒长大,又能促进枝晶的分支,提高了形核率和晶粒长大速率的比值,从而显著细化了铸态晶粒和枝晶组织,改善铝合金的显微组织。
[0017]3、控制热挤压型材模具出口的温度在525°C以上,3分钟强制风冷到180°C以下,使新合金材料中的强化相Mg2Si在材料中完全固溶。
[0018]4、材料热挤压成形后,Bi元素在快速冷却过程中膨胀,有利于材料的焊合性能和消除热挤压型材头尾端的收缩。
[0019]5、本发明铝合金材料与6063-T5的力学性能相比,抗拉强度从160MPa提高到260Mpa、屈服强度从IlOMPa提高到220MPa、延伸率从8%提高到10%以上。
【具体实施方式】
[0020]以下实施例用于说明本发明,但不用来限制本发明的范围。
[0021]实施例1
本实施例一种铝合金材料采用如下方法制备而成:
I)熔铸
先将45公斤的铝硅中间合金、10公斤的铝铋中间合金、26公斤的铝稀土中间合金和880公斤的铝锭,一起加热到760°C熔化。其中,铝硅中间合金中硅的重量百分比含量为12% ;铝铋中间合金中铋的重量百分比含量为10% ;铝稀土中间合金中硅的重量百分比含量为10%。然后加入5.8公斤的块状纯镁锭。再采用惰性气体-熔剂混和精炼法对熔体进行精炼。其中,惰性气体采用纯度不小于99.997%的高纯氮气,熔剂采用重量百分比分别为40%的KC1、35%的NaCl、25%的Na3AlFgi成的粉状熔剂,熔剂用量为1.5kg/t熔体重量比例,精炼温度控制在750°C,时间为25分钟。精炼结束后,彻底扒除铝液表面的浮渣,静置25分钟。在700°C温度条件下进行铸造。
[0022]2)铸棒均匀化处理
采用570°C均匀化处理温度,保温5小时出炉,再采用风冷加水雾冷却方式进行快速冷却,使铸棒于1.5小时冷却到175°C。由此获得高强度、高韧性、焊合性能高的铝合金材料,其包括以下质量百分含量的组分=Mg为0.55%,Si为0.50%, Bi为0.10%, Re为0.25%,Cu为 0.005%, Cr 为 0.005%, Zn 为 0.015%, Ti 为 0.007%,余量为 Al。
[0023]本实施例一种铝合金材料加工压力管道型材时的加工过程为:
I)挤压工艺
将铝合金铸棒预加热至500°C,模具加热至445°C,保温2小时;挤压筒加热至440°C,铝合金型材出口温度控制在530°C,采用强制风冷,3分钟冷却到175°C。
[0024]2)时效工艺
采用低温时效工艺,控制铝合金型材的温度在155°C,保温8小时。
[0025]本实施例一种铝合金材料的性能检测数据如下:
抗拉强度、屈服强度、延伸率的检测采用《GB/T228-2002金属材料室温拉伸试验方法》,本发明一种铝合金材料的性能为:抗拉强度(Rm) 265MPa,屈服强度(Rpa2) 235MPa,延伸率(A50) 13%。经无损检测铝合金圆管的内壁和外壁纵向和径向均未发现裂纹。
[0026]实施例2
本实施例一种铝合金材料采用如下方法制备而成:
I)熔铸
先将45公斤的铝硅中间合金、15公斤的铝铋中间合金、30公斤的铝稀土中间合金和885公斤的铝锭,一起加热到740°C熔化。其中,铝硅中间合金中硅的重量百分比含量为12% ;铝铋中间合金中铋的重量百分比含量为10% ;铝稀土中间合金中硅的重量百分比含量为10%。然后加入5.2公斤的块状纯镁锭。再采用惰性气体-熔剂混和精炼法对熔体进行精炼。其中,惰性气体采用纯度不小于99.997%的高纯氮气,熔剂采用重量百分比分别为40%的KC1、35%的NaCl、25%的Na3AlFgi成的粉状熔剂,熔剂用量为1.5kg/t熔体重量比例,精炼温度控制在730°C,时间为25分钟。精炼结束后,彻底扒除铝液表面的浮渣,静置30分钟。在710°C温度条件下进行铸造。
[0027]2)铸棒均匀化处理
采用560°C均匀化处理温度,保温5.5小时出炉,再采用风冷加水雾冷却方式进行快速冷却,使铸棒于1.2小时冷却到175°C。由此获得高强度、高韧性、焊合性能高的铝合金材料,其包括以下质量百分含量的组分=Mg为0.58%,Si为0.45%,Bi为0.15%,Re为0.30%,Cu 为 0.003%, Cr 为 0.
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1