一种用于3d打印的球形合金材料的制备方法

文档序号:9392170阅读:519来源:国知局
一种用于3d打印的球形合金材料的制备方法
【技术领域】
[0001]本发明属于3D打印制造领域,具体涉及用于3D打印的金属材料,进一步涉及用于3D打印的金属材料的制备方法。
【背景技术】
[0002]增材制造技术(Additive Manufacturing),又称快速成型技术、三维打印技术,通俗的称谓是3D打印制造技术。是近20来信息技术、新材料技术与高端制造技术多学科融合发展的先进制造技术。3D打印制造技术是一种通过逐层增加堆积材料来生成三维实体的快速增材制造技术,不但克服了传统减材制造造成的损耗,而且使产品制造更智能化,更精准,更高效。尤其是涉及到复杂形状的高端制造,3D打印技术显示出巨大的优越性。
[0003]3D打印制造技术是一种全新的制造理念,最终将应用于大工业规模化智能生产。高性能金属构件直接制造技术与配套材料的发展密不可分。因此金属构件直接制造所使用的高性能金属粉成为金属制品快速制造的关键。根据已有技术,目前已实现了小尺寸不锈钢、高温合金等零件的激光直接成形。但由于受金属粉性能的限制,因金属粉粒径、球形度、含氧量、流动性、松装密度等性能的限制,使得采用金属增材制造的金属零件性能较差,进而影响增材制造技术的应用。
[0004]3D打印金属材料一般为粉末,且要求球形度、粉末的球化率大于98%。只有高的球化率,才能保证打印粉末均匀、顺利地输送,从而得到精密度、致密度高的金属产品。目前,金属粉末的制备方法主要通过旋转电极法、喷雾法制备,但由于设备和工艺的限制,不但能耗高,而且难以获得球度高、粒径细小均一的金属粉末。

【发明内容】

[0005]针对3D打印所用金属粉存在球形度低、粒径均匀度低的缺陷,本发明所要解决的技术问题是提供一种用于3D打印的球形合金材料的制备方法。该方法克服了旋转电极法、真空喷雾法制备金属微球存在球度低、易粘连、粒径均匀度低、金属易氧化的缺陷。利用该方法得到的球形合金的球化率大于98%,霍尔流速达5s/50g,具有均匀输送效果,是3D打印金属制品优选的材料。
[0006]本发明所采用的技术方案是:
一种用于3D打印的球形合金材料的制备方法,该方法包括以下步骤:
(1)将重量份为10-20的多孔陶瓷微球预热至500-600°C,与5-10重量份的铝加入熔炼炉,熔炼炉温度控制在630-650°C,通过充分混合、搅拌均匀,采用真空吸附法将液态金属铝驻留在多孔陶瓷微球中,通过冷却得到由铝镶嵌的多孔陶瓷微球,从而提高陶瓷微球表面对金属的润湿性;
(2)将70-80重量份的金属粉与步骤(I)得到的由铝镶嵌的多孔陶瓷微球加入研磨机,在0)2保护下,以100-200r/min的速度研磨15_30min,金属以陶瓷微球为核均匀裹覆在陶瓷微球表面形成粒径在50-100目的复合粉体; (3 )将步骤(2 )得到的复合粉体通过高速气流送入球化炉,球化炉设置温度低于金属熔融温度10-15°C,球化炉在火焰喷吹过程中使陶瓷微球表面的金属瞬间软化,并在自身表面张力作用下形成球形状;
(4)将步骤(3)得到的球形合金输入保温槽,在保温槽内300-350°C条件下保温时间30-60min,然后自然冷却,金属与陶瓷微球表面的招均化、连接形成稳定的球形合金材料。
[0007]上述制备方法,步骤(I)所述的多孔陶瓷微球为A1203、ZrO2, S12, SiC、B4C, TiC、TiN、TiB2中的一种或几种,贯通性空隙率大于35%,颗粒度为200-300目。
[0008]上述制备方法,步骤(2)所述的金属粉为招合金、铜合金、锌合金、镁合金、钛合金、镍合金中的一种。
[0009]上述制备方法,步骤(2)所述的研磨机为行星式球磨机。
[0010]本发明一种用于3D打印的球形合金材料的制备方法,通过在多孔陶瓷微球镶嵌金属铝,提升陶瓷微球对金属的湿润性,从而通过研磨包覆使金属均匀裹覆在陶瓷微球表面,使合金的颗粒大小均一,进一步通过高速气流使复合粉体完全分散开,并通过球化炉的瞬间软化,使陶瓷微球表面的金属瞬间软化,并在自身表面张力作用下形成球形状,从而获得了颗粒大小均一、球形度高的球形合金。
[0011]通过测试,利用该方法得到的球形合金的粒径大小为50-100目,球化率大于98%,霍尔流速降至5s/50g,具有均匀输送效果,是3D打印金属制品优选的材料。
[0012]本发明一种用于3D打印的球形合金材料的制备方法,与现有技术相比,其突出的特点和优异的效果在于:
1、本发明一种用于3D打印的球形合金材料的制备方法,通过多孔陶瓷微球镶嵌金属铝,提升陶瓷微球对金属的湿润性,从而通过研磨包覆使金属均匀裹覆在陶瓷微球表面,使合金的颗粒大小均一。
[0013]2、本发明一种用于3D打印的球形合金材料的制备方法,通过高速气流使复合粉体完全分散开,并通过球化炉的瞬间软化,使陶瓷微球表面的金属瞬间软化,并在自身表面张力作用下形成球形状。有效防止颗粒的粘连,获得的颗粒球形度高,具有均匀输送效果,是3D打印金属制品优选的材料。
[0014]3、本发明一种用于3D打印的球形合金材料的制备方法,使陶瓷微球与金属体紧密结合,从而提高了金属的硬度,由于不完全加热熔化,因此能耗低。
【具体实施方式】
[0015]
以下通过【具体实施方式】对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
[0016]实施例1
(I)将重量份为10的多孔Al2O3陶瓷微球预热至500°C,与10重量份的铝加入熔炼炉,熔炼炉温度控制在630-650°C,通过充分混合、搅拌均匀,采用真空吸附法将液态金属铝驻留在多孔陶瓷微球中,通过冷却得到由铝镶嵌的多孔陶瓷微球,从而提高陶瓷微球表面对金属的润湿性; (2)将80重量份的铜合金与步骤(I)得到的由铝镶嵌的多孔陶瓷微球加入研磨机,在0)2保护下,以100-200r/min的速度研磨15min,铜合金以陶瓷微球为核均匀裹覆在陶瓷微球表面形成粒径在50-100目的复合粉体;
(3)将步骤(2)得到的复合粉体通过高速气流送入球化炉,球化炉设置温度1070°C,球化炉在火焰喷吹过程中使陶瓷微球表面的金属瞬间软化,并在自身表面张力作用下形成球形状;
(4)将步骤(3)得到的球形合金输入保温槽,在保温槽内350°C条件下保温时间30min,然后自然冷却,金属与陶瓷微球表面的铝均化、连接形成稳定的球形合金材料。
[0017]将实施例1得到的球形合金通过测试,球形合金的粒径大小D90为50目,球化率大于98%,霍尔流速达5s/50g。
[0018]实施例2
(1)将重量份为15的多孔Zr02陶瓷微球预热至600°C,与5重量份的铝加入熔炼炉,熔炼炉温度控制在630-650°C,通过充分混合、搅拌均匀,采用真空吸附法将液态金属铝驻留在多孔陶瓷微球中,通过冷却得到由铝镶嵌的多孔陶瓷微球,从而提高陶瓷微球表面对金属的润湿性;
(2)将75重量份的锌合金与步骤(I)得到的由铝镶嵌
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1