一种基于双层屈曲结构的还原氧化石墨烯薄膜的心尖搏动传感器的制作方法

文档序号:12235945阅读:448来源:国知局
一种基于双层屈曲结构的还原氧化石墨烯薄膜的心尖搏动传感器的制作方法与工艺

本发明属于还原氧化石墨烯传感器领域,尤其涉及一种将抽滤技术,转印技术相结合制备还原氧化石墨烯薄膜的心尖搏动传感器。



背景技术:

虽然心尖搏动的触诊获得的信息很片面,但它却是体检的一个重要组成部分,为了获得客观的诊断信息,心尖搏动图被医学界接纳。然而,传统的心尖搏动图测试仪是大型的设备,需要一个特殊的隔音室,和至少有两个检察人员。由于传统心尖搏动图测试仪需要大的空间和人员的缺点,以及开发更便捷的超声心电图仪,使得传统的心尖搏动图测试仪逐渐被淘汰尽管它能在心脏检查部分提供一定的客观信息。

虽然左心室的复杂机械运动不能直接通过当前的技术监测,但体格检查是保持心脏诊断的一个重要组成部分。除了感测左心室中体积和压力的变化,心尖搏动与心脏的血流动力学状态有着密不可分的联系,是一个描述心脏状况关键指标,能协助心房颤动,瓣膜疾病,贫血,心肌梗死的检测,而这些病症不能在心电图检测中诊断出来。但自从20世纪70年代,心尖搏动由于不易操作且需要大的隔音房,慢慢失去关注。基于此,可携带的,价格低廉的心尖搏动传感器在心脏诊断中被期待促进真实的,连续血液动力学监测。2008年,便携式心尖搏动固态传感器被设计用于床边检测,但其进一步的发展没有成功。此外,用于日常检测的可拉伸的柔性的电子皮肤传感器受到广泛关注。



技术实现要素:

本发明的目的在于针对现有技术的不足,提供一种基于双层屈曲结构的还原氧化石墨烯薄膜的心尖搏动传感器。

本发明的目的是通过以下技术方案实现的:一种基于双层屈曲结构的还原氧化石墨烯薄膜的心尖搏动传感器,包括转换单元、电信号采集单元和恒压单元,所述恒压单元向转换单元输出0.1V的电压信号,电信号采集单元采集转换单元的电阻信号;转换单元采集心尖搏动的机械能量,并转换成电信号。所述转换单元通过以下方法制备得到:

(1)量取还原氧化石墨烯水溶液3mL,加入150mL的去离子水中,搅拌、超声,直至分散均匀,再用装有滤膜的砂芯过滤装置进行抽滤,抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h。

(2)取固化好的PDMS,将其在一个方向上的预拉伸30%,然后通过按压的方式将滤膜上的还原氧化石墨烯转印到已经固化好的PDMS上;然后将PDMS泡在丙酮溶液中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥。

(3)将附着在预拉伸30%的PDMS表面的还原氧化石墨烯薄膜两端用银胶连上铜线电极(电信号采集单元和恒压单元均通过铜线电极与还原氧化石墨烯薄膜相连),再撤销拉伸力,使其恢复到初始状态,得到屈曲的还原氧化石墨烯薄膜;从屈曲的还原氧化石墨烯薄膜中间剪开,把还原氧化石墨烯薄膜面与面接触对扣,形成接触式的转换单元。

进一步地,所述还原氧化石墨烯水溶液的浓度小于1mg/mL。

进一步地,所述砂芯过滤装置中的滤膜为可溶于丙酮的水溶性滤膜,为尼龙材质。

进一步地,步骤(1)中还原氧化石墨烯制备方法为用氨水调节氧化石墨烯溶液pH至10,180℃下水热还原氧化石墨烯。

进一步地,步骤(1)中抽滤出的还原氧化石墨烯的膜厚度为510nm。

本发明具有以下优点:预拉伸30%的PDMS用于转印还原氧化石墨烯,再回复到原始状态,能得到平整性且均匀性都较好的屈曲结构。对扣的屈曲能形成互锁的结构,施加应变时,能减小还原氧化石墨烯片层之间的层间距,增大接触面积,减小电阻,增强导电性,而这种屈曲的互锁结构能增强隧道效应,进一步提高该传感器的导电性,也就是说提高了该传感器的灵敏度。而预拉伸过小,难以形成均匀的屈曲结构且屈曲结构杂乱出现,降低了传感器的灵敏度;预拉伸过大,可以形成较多较明显的屈曲结构,但由于PDMS需承受更大的应力,PDMS的表面会出现裂纹,影响该传感器的性能。因此,,预拉伸值过小或过大,该传感器测试微弱的心尖搏动信号均很难采集到,对灵敏度的提高也均无益处。屈曲结构的还原氧化石墨烯薄膜传感器增大了比表面积,具有优良的导电性和机械性能;以PDMS作为柔性衬体,使其在各种变形中性能保持稳定。该屈曲结构的还原氧化石墨烯薄膜作为心尖搏动传感器的制备方法条件温和,简单易行,工艺参数可控,成本低廉,可重复性高。该屈曲结构的还原氧化石墨烯薄膜心尖搏动传感器具有灵敏度高和能感应微小应变等优点,且可用于可穿戴设备。

附图说明

图1为本发明制备一种双层屈曲结构的还原氧化石墨烯薄膜的XRD图;

图2为本发明制备一种双层屈曲结构的还原氧化石墨烯薄膜的SEM图;

图3为本发明制备一种具有屈曲结构的PDMS示意图;

图4为心尖搏动传感器的测试图。

具体实施方式

实施例1:

本发明采用一种双层屈曲结构的还原氧化石墨烯薄膜作为采集模块的心尖搏动传感器,包括转换单元、电信号采集单元和恒压单元,所述恒压单元向转换单元输出0.1V的电压信号,电信号采集单元采集转换单元的电阻信号;转换单元采集心尖搏动的机械能量,并转换成电信号;电信号采集单元采集。

转换单元为双层屈曲结构的还原氧化石墨烯薄膜,通过医用胶带将无毒、无害、无刺激的双层屈曲结构的还原氧化石墨烯薄膜粘附于成人的左侧第4根和第5根肋骨的间隙靠近中线0.5-1cm处心尖撞击心前区胸壁,使相应部位肋间组织向外搏动的信号。

恒压单元和电信号采集单元可以采用吉时利2400表,将双层屈曲结构的还原氧化石墨烯薄膜两侧的铜引线与吉时利2400表的探针相接触,打开吉时利2400表的开关和显示屏上的软件,通过给定一个远低于人体承受范围内的微弱的0.1V的电压信号,采集频率和保存路径,将心尖搏动的机械信号转化成相对电阻变化的信号。

数据采集过程中,测试者需保持坐姿,放松身体,平稳呼吸,以获得具有诊断和监测意义的数据。

其中,信号采集模块通过以下方法制备得到:

(1)氧化石墨烯的制备方法为:在冰水浴中缓慢将270mL浓硫酸/磷酸混酸(H2SO4:H3PO3=9:1,V/V)滴加至装有2g天然石墨粉烧杯中并保持搅拌,随后缓慢加入12g高锰酸钾,混合均匀后,将烧杯转移至50℃水浴锅中反应12h。反应完毕后,将300mL冰水加入烧杯中,冷却至室温后,再滴加5mL 30%双氧水,得到亮黄色产物。最后将产物分别用盐酸、去离子水离心洗涤,直至pH=6,转速为8000rpm/min,最后冷冻干燥得到氧化石墨烯。

(2)还原氧化石墨烯的制备方法为:量取7.5mg/mL氧化石墨烯1.67mL,加入25mL去离子水中搅拌、超声均匀。用pH计测试氧化石墨烯水溶液的pH,缓慢滴加氨水,调节氧化石墨烯的pH直至10,然后将氧化石墨烯水溶液转移到水热反应釜中,将水热反应釜置于180℃鼓风干燥箱中反应12h。图一为本发明制备一种双层屈曲结构的还原氧化石墨烯柔性薄膜作为心尖搏动传感器的XRD图。氧化石墨烯的衍射峰在12.5°,而还原氧化石墨烯的衍射峰在24.5°,说明氧化石墨烯被还原了。

(3)量取还原氧化石墨烯水溶液3mL,加入150mL的去离子水中,搅拌、超声,直至分散均匀,再用砂芯过滤装置进行抽滤,抽滤所需的滤膜为水溶性滤膜,尼龙材质,能用机溶剂才能溶解。抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h。

(4)按照质量比为10:1的量称取二甲基硅氧烷与交联剂,搅拌20min后,在真空干燥箱中去除气泡,然后将其倒至培养皿中,在水平桌面上静置10min,移至旋涂机上,调节转速为500rpm/min,旋涂15s后,再在水平桌面上静置10min,随后将培养皿移至90℃鼓风干燥箱中1h。

(5)将干燥完全的滤膜取出,转印到已经固化好的预拉伸30%的PDMS上,通过仔细缓慢按压的方式转印还原氧化石墨烯薄膜,还原氧化石墨烯的转印过程为反复按压附着在PDMS上的滤膜,使还原氧化石墨烯完全粘附在PDMS上,增强它们之间的结合力。压印时间控制在30min左右,并排除气泡。随后将其泡在丙酮溶液中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥。图二左图为PDMS表面的SEM,可以看出PDMS表面十分光滑;右图为PDMS表面转印上一层还原氧化石墨烯的SEM,可以看出还原氧化石墨烯是片状、折皱的结构,说明还原氧化石墨烯很好地附着在PDMS的表面。

(6)将附着在预拉伸30%的PDMS表面的还原氧化石墨烯薄膜两端用银胶连上铜线电极,再放松PDMS使其回复到初始状态,形成屈曲结构。然后从还原氧化石墨烯薄膜中间剪开,把还原氧化石墨烯薄膜面与面接触对扣,形成接触式的还原氧化石墨烯薄膜传感器,作为心尖搏动传感器。图三为本发明一种固化的PDMS 3D激光镭射图。由于30%的预拉伸使得PDMS具有屈曲结构,增大了还原氧化石墨烯的比表面积。该双层屈曲结构的还原氧化石墨烯薄膜作为心尖搏动传感器具有高灵敏度,能检测人体心尖搏动的信号。

图四为本发明制备一种双层屈曲结构的还原氧化石墨烯薄膜作为心尖搏动传感器用于心尖搏动测试的波形图。利用该心尖搏动传感器测量了一次心尖搏动时的机械信号转化为电信号的过程,能精确地反映正常成年男性心尖搏动的信号变化。其中,A-C段对应着心电图中QRS复合波的开始到心电图收缩波的开始;O-E-ESS代表着心脏收缩,O-E段是预喷射区,E点对应着最大的心脏收缩峰,E-ESS段是喷射区,ESS对应着收缩末期肩峰;ESS-O-F代表着心脏舒张,ESS-O段为等距舒张期,O点对应着快速充盈波的顶点,O-F段是快速充盈波段。综上所述,一次完整的心尖搏动波就形成了。

实施例2

本实施例旨在研究不同拉伸度对于传感器性能的影响。

从上表可以看出,预拉伸30%的PDMS能得到平整性和均匀性都较好的还原氧化石墨烯屈曲结构,且还原氧化石墨烯的六角形呈蜂巢晶格的二维层片状结构能够紧密堆叠。对扣的屈曲能形成互锁的结构,施加应变时,能减小还原氧化石墨烯片层之间的层间距,增大接触面积,减小电阻,增强导电性,而这种屈曲的紧密堆叠的互锁结构能增强隧道效应,进一步提高该传感器的导电性,也就是说提高了该传感器的灵敏度。而预拉伸过小,难以形成均匀的屈曲结构且屈曲结构杂乱出现,同时PDMS上的还原氧化石墨烯片层之间松散且堆叠不够紧密,还原氧化石墨烯片层之间与PDMS间的结合力较弱,很难感应微弱应变信号的变化,只有当应变大到还原氧化石墨烯六角形片层之间能相互接触时,才能感应出信号的变化,因此,预拉伸过小会降低该传感器的灵敏度;预拉伸过大,可以形成较多较明显的屈曲结构,但由于PDMS需承受更大的应力,PDMS的表面会出现裂纹,同时,大的回复力将还原氧化石墨烯六角形片层结构压缩的过于紧密,片层间过分堆叠,导致蜂窝状的还原氧化石墨烯结构是扁长形的,片层间的空隙很窄,当感受应变时,信号变化也很微弱,从而影响该传感器的性能。因此,预拉伸值过小或过大,该传感器测试微弱的心尖搏动信号均很难采集到,对灵敏度的提高也均无益处。

上述实例用来解释说明本发明,然而并非限定本发明。在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1