高热导率氮化硅陶瓷的制备方法与流程

文档序号:12395108阅读:373来源:国知局

本发明属于陶瓷制备技术领域,具体涉及一种高热导率氮化硅陶瓷的制备方法。



背景技术:

氮化硅陶瓷具有优异的力学性能,作为结构材料得到了普遍关注。一般氮化硅的抗弯强度可超过1000MPa,然而其热导率只有20-30W/mK,与氧化铝陶瓷相近,远远低于高热导率氮化铝陶瓷(180-260W/mK)。文献“J.S.Haggerty,A.Lightfoot,Opportunities for Enhancing the Thermal Conductivities of SiCand Si3N4Ceramics through ImprovedProcessing,Ceram.Eng.Sci.Proc.,1995,16(4):p475-487.”的计算表明氮化硅的本征热导率为320W/mK。而文献“N.Hirosaki,S.Ogata,C.Kocer,H.Kitagawa,andY.Nakamura,Molecular dynamics calculation ofthe idealthermal conductivity ofsingle-crystalα-andβ-Si3N4,Phys.Rev.B,2002,65,134110”的计算表明氮化硅的β-Si3N4的a轴和c轴的理论热导率分别为170和450W/mK,这为研制高热导率氮化硅陶瓷提供了理论依据。

目前获取高热导率氮化硅陶瓷要靠高温长时间加热处理,例如文献“N.Hirosaki,Y.Okamoto,M.Ando,F.Munakata,Y.Akimune,ThermalConductivity ofGas-Pressure-Sintered SiliconNitride,J.Am.Ceram.Soc.1996,79(11):p2878-82”报道,在100MPa的氮气中2000℃烧结4小时获得了热导率为120W/mK的氮化硅陶瓷;文献“Watari K;Hirao K;Brito ME;ToriyamaM;Kanzaki S,Hot isostatic pressing to increase thermal conductivity ofSi3N4ceramics,J.Mat.Res.1999,14(4):p1538-1541”中报道,在原料中添加β-Si3N4种晶、并使之定向排列,经1800℃热压烧结后在2500℃热等静压处理2小时在与β-Si3N4种晶平行的方向获得了目前最高的热导率155W/mK。这些研究证明了高热导率氮化硅陶瓷的实际可行性,但是所采取的高温长时间加热处理造成陶瓷晶粒异常长大,力学性能急剧降低,无法实际应用。目前可以实际应用的高热导率氮化硅陶瓷的热导率低于60W/mK左右,强度低于700MPa。对于高热导率的产生机理,一般认为高温加热处理或添加晶种烧结后在氮化硅陶瓷中形成的粗大β-Si3N4柱状晶本身具有较高的热导率,是氮化硅陶瓷热导率升高的原因,这意味着热导率和力学性能不可兼得。这是造成高热导率氮化硅陶瓷的应用研究徘徊不前的主要原因。



技术实现要素:

本发明提出一种高热导率氮化硅陶瓷的制备方法,该制备方法可以净化氮化硅晶粒,提高热导率。

本发明的技术方案是这样实现的:

一种高热导率氮化硅陶瓷的制备方法,包括以下步骤:

1)按重量份数计算,称取氮化硅70~80份、稀土氧化物5~10份与烧结助剂2~6份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110~120℃温度下连续干燥,完全干燥后在温度为-20℃~0℃条件下,氢气气流中过筛,得到复合粉料;

2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为10~15K/s,加热温度为1450~1700℃,保温时间为3~8min,获得致密的氮化硅陶瓷;

其中,所述烧结助剂为氧化铝、氧化锰与氧化硼的混合物。

作为优选,本发明的一些实施例,氧化铝、氧化锰与氧化硼之间的质量比为1~2:1~2:6~8。

作为优选,本发明的一些实施例,所述稀土氧化物为氧化钇、氧化镧与氧化铈中的一种或者多种。

添加稀土化合物的目的是为了在烧结或者加热处理过程中能够和氮化硅粉体中所含有的氧元素发生反应,以净化氮化硅晶粒,提高热导率。本发明的实施例中多采用价格低廉的氧化钇稀土化合物。其它化学性能相近的稀土化合物如氧化镧与氧化铈等也能达到同样的目的,同样可以作为本发明的氮化硅陶瓷烧结助剂使用。添加量过少难以充分发挥其作用,添加量过多会形成过多的晶界相,影响热导率。

放电等离子烧结工艺具有升温速度快、烧结时间短、烧结组织均匀的特点。对于氮化硅陶瓷,还可以通过适当控制工艺参数,控制β-Si3N4柱状晶的形态,优化组织,提高氮化硅陶瓷的断裂韧性。申请人的研究发现,通过控制烧结过程中的加热速度、烧结温度和保温时间,能够获得晶粒细小、组织致密的氮化硅陶瓷。加热速度为10~15K/s,加热温度为1450~1700℃,保温时间为3~8min可以得到良好的烧结体。

采用放电等离子烧结工艺虽然可以提供晶粒细小、组织致密的陶瓷,但并不能获得高热导率、高强度氮化硅陶瓷。经过深入的研究,申请人发现,对放电等离子烧结获得的氮化硅陶瓷进行高温加热处理,能够同时提高热导率和力学性能,获得所需的高热导率、高强度氮化硅陶瓷。加热温度过低,加热时间过短,起不到所需的效果,而过高的加热温度和过长的加热时间将导致制造成本急剧增加。

本发明的有益效果:

1、发明人研究发现氮化硅由于原料自身的原因,即使真空等离子烧结,也会出现少量的氧化现象。发明人将氮化硅原料经过-20℃~0℃氢气气流中过筛,再进行真空等离子烧结,可以完全杜绝氧化现象的发生,有利于烧结获得更多的α相的Si3N4。

2、烧结助剂一般有助于抑制晶粒长大,但是并不是所有的抑制晶粒长大的烧结助剂,都会有助于烧结。发明人通过大量实验发现氧化铝、氧化锰与氧化硼作为氮化硅陶瓷的烧结助剂,不仅有助于烧结,而且增强陶瓷在高温条件下的抗疲劳性能(即在1450℃~1500℃长时间使用也不会出现疲劳损坏)。其中,氧化铝与氧化锰烧结过程中可以有效阻止粗大β-Si3N4柱状晶形成。

3、本发明获得的氮化硅陶瓷的热导率高达90~100W/mK,1200℃的抗弯强度为1020~1040MPa。

具体实施方式

实施例1

一种高热导率氮化硅陶瓷的制备方法,包括以下步骤:

1)按重量份数计算,称取氮化硅70份、氧化钇3份、氧化镧3份与烧结助剂3份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110℃温度下连续干燥,完全干燥后在温度为-10℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝、氧化锰与氧化硼的混合物,质量比为1:1:8。

2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为10K/s,加热温度为145℃,保温时间为6min,获得致密的氮化硅陶瓷。

所得氧化硅陶瓷的热导率为93W/mK,抗弯强度为1030MPa,维氏硬度为15.6GPa。

实施例2

一种高热导率氮化硅陶瓷的制备方法,包括以下步骤:

1)按重量份数计算,称取氮化硅76份、氧化钇4份、氧化铈3份与烧结助剂6份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中120℃温度下连续干燥,完全干燥后在温度为-20℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝、氧化锰与氧化硼的混合物,质量比为1.5:1.5:7。

2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为12K/s,加热温度为1540℃,保温时间为3min,获得致密的氮化硅陶瓷;

所得氧化硅陶瓷的热导率为90W/mK,抗弯强度为1020MPa,维氏硬度为14.8GPa。

实施例3

一种高热导率氮化硅陶瓷的制备方法,包括以下步骤:

1)按重量份数计算,称取氮化硅78份、氧化钇10份与烧结助剂4份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110℃温度下连续干燥,完全干燥后在温度为-5℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝、氧化锰与氧化硼的混合物,质量比为2:2:6。

2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为14K/s,加热温度为1600℃,保温时间为6min,获得致密的氮化硅陶瓷。

所得氧化硅陶瓷的热导率为100W/mK,抗弯强度为1040MPa,维氏硬度为15.5GPa。

实施例4

一种高热导率氮化硅陶瓷的制备方法,包括以下步骤:

1)按重量份数计算,称取氮化硅80份、氧化钇3份、氧化镧1份与氧化铈1份与烧结助剂2份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中120℃温度下连续干燥,完全干燥后在温度为0℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝、氧化锰与氧化硼的混合物,质量比为1:2:7。

2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为15K/s,加热温度为1700℃,保温时间为3~8min,获得致密的氮化硅陶瓷。

所得氧化硅陶瓷的热导率为95W/mK,抗弯强度为1034MPa,维氏硬度为15.2GPa。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1