一种催化氧化叔丁醇的方法

文档序号:3559719阅读:970来源:国知局
专利名称:一种催化氧化叔丁醇的方法
技术领域
本发明是关于一种叔丁醇氧化的方法,更进一步说是关于一种以含贵金属 的微孔钛硅材料为催化剂催化氧化叔丁醇的方法。
背景技术
叔丁基过氧化氢,又称过氧化叔丁基(英文名称为Tert-butyl Hydrogen Peroxide,简称TBHP),广泛应用于乙烯类单体聚合及共聚引发剂,天然生 胶加硫,改进柴油燃料的十六烷值,过氧化叔丁基团引入剂,也可作不饱和聚 酯的中温和高温用交联剂。
当今,工业上生产叔丁基过氧化氢,主要是用硫酸作催化剂,过氧化氢作 氧化剂,催化氧化叔丁醇而得到的。此方法存在设备腐蚀和有害物排放,极不 符合环境友好的发展方向,而且副产廉价的副产物,经济效益差,另外,还存 在反应液与催化剂同相不易分离的问题。
目前,对叔丁基过氧化氢生产工艺进行研究报道的不多,所发表的文献和 专利中的研究方法也都是用异丁烷为原料进行反应的。
Foster等(USP 4408081 )在超临界条件下,利用异丁垸和氧气为原料生 产叔丁基过氧化氢。此反应为一个连续反应,反应温度介于14(TC至17(TC之间, 压力则超过了混合原料的临界压力,且高于700psig。反应后所得到的异丁烷 的转化率在3%到25°/。之间。
Cochran等人(USP 5196597 )仍然利用异丁烷为原料,分子氧为氧化剂生 产叔丁基过氧化氢。他们根据前人的经验,在液相条件下进行反应,所得到的 主要产物为叔丁醇和叔丁基过氧化氢。此反应的反应温度为100~20(TC,压力 为300 450psig,停留时间为5到10小时。冷凝出来的反应液中,叔丁基过 氧化氢和叔丁醇的重量比大于0. 8。
利用异丁烷和分子氧为原料来生产叔丁基过氧化氢,生成的主要产物除了 叔丁基过氧化氢以外,还有叔丁醇。由于反应是在高温高压下进行的,这就对 反应设备提出了较高要求;工艺流程变得相对复杂;同时,物耗和能耗也相应 增加,这也就相对提高了生产成本。更重要的是,在此反应的产物中除了含有 大量的叔丁醇以外,还有不少其它副产物,这不仅增加了消耗,而且,无形中对物质分离提出了较高的要求。
在钛硅分子篩催化的有机化学反应中,有不少是用叔丁醇作溶剂进行反应 的,如环己酮氨肟化反应,环己烷氧化反应等。但是,由于钛硅分子筛具有 优异的催化活性,因此,在这些反应中,叔丁醇和反应原料实际上存在着竟争
氧化的关系,这种竞争反应在环己烷氧化反应中表现得极为充分在钛硅分子 筛/HA催化氧化体系中,用叔丁醇作溶剂进行环己烷氧化反应实验,结果发现,
反应产物中除了环己烷被氧化的产物以外,还有叔丁基过氧化氢,这说明体系 中存在溶剂叔丁醇被氧化的现象。
由于钛硅分子筛作催化剂进行氧化反应具有催化活性高、目的产物的选择 性高、稳定性好、工艺简单以及对环境无污染等诸多优点,如果将其应用于叔 丁醇氧化反应来生产叔丁基过氧化氢,则不仅消除了现有生产工艺中的设备腐 蚀、物耗高等问题,而且克服了用异丁烷为原料进行反应的消耗高、固定设备 成本高等问题,同时,对于避免钛硅分子筛/%02体系用于其它催化氧化反应的 溶剂效应亦具有借鉴作用。在CN1699339A中公开了这种制备叔丁基过氧化氢的 方法,该方法不但克服了传统硫酸催化法带来的设备腐蚀、有害排放、反应液 与催化剂同相不易分离的问题,而且目的产物的选择性高、无副产物。但由于 &02极不稳定,遇热、光、粗糙表面、重金属及其它杂质会分解,且具有腐蚀 性,在包装、储存、运输中要釆取特别的安全措施。受到成本和安全问题的局 限,且制备HA需要单独的设备和循环系统,耗资较大,现场生产费用很高, 并需要开发与反应相匹配的工艺。在没有更严格的环保法规出台之前,该 TS-1/H202体系工业化有一定的经济障碍。
考虑到分子氧是最理想的氧源,廉价易得且无污染,可以大大降低成本。 那么直接釆用分子氧进行氧化叔丁醇反应是一项环境友好且原子经济性高的工 艺过程,在学术研究和应用上都有重大意义。利用仏和02可以直接合成H202, 进而可以考虑利用&和02来原位合成H力2或类似的活性氧物种再催化氧化叔丁 醇以解决直接利用HA氧化叔丁醇的高成本等问题。由于Pt、 Pd是H2和02合 成HA的有效组分,有许多文献专利报道将其负载在钛硅材料上原位生成HA 用于丙烯气相环氧化反应的研究。如,Meiers R.等(J.Catal., 1998, 176: 376-386 )以Pt-Pd/TS-l为催化剂对丙烯气相环氧化进行了研究。但还未见应 用在氧化叔丁醇方面的相关报道。

发明内容
本发明的目的是提供一种以独特的微孔钛硅材料催化氧化叔丁醇的新方法。
本发明提供的催化氧化叔丁醇的方法,其特征在于按照叔丁醇溶剂氧 气氢气稀释气体=1: (0~ 80 ): ( 0.2 - 20 ): ( 0.1 - 10 ): ( 0 ~100) 的摩尔配比,温度为0~180°C、压力为0.1-3. 0 MPa的条件下,在一种催化 剂存在下进行反应,所说的催化剂为一种微孔钛硅材料或含有该微孔钛硅材料 的组合物,微孔钛硅材料的组成用氧化物的形式表示为 xTi02 '100Si02 'yEA 'zE,其中x值为0. 001 ~ 50. 0、 (y+z)值为0. 005 ~ 20. 0 且y/z〈1, E表示选自Ru、 Rh、 Pd、 Re、 0s、 Ir、 Pt和Au中的 一种或几种贵 金属,m和n为满足E氧化态所需的数,该材料晶粒部分或全部为空心结构。
本发明提供的催化氧化叔丁醇的方法中,所说的微孔钛硅材料在申请号为 200710064981.6的中国专利申请中披露,在氧化物的表示形式中,x值优选 0.005-25、 (y+z)值优选0. 01-10,贵金属E优选Pd、 Pt和Au中的一种或几 种,更优选Pd和/或Pt,当贵金属为两种或两种以上时,所说的y的值为每种 贵金属y值的和,所说的z的值为每种贵金属z值的和,例如,当所选贵金属 为Pt和Pd时,该材料的组成用氧化物的形式表示为 xTi02 . 100SiO2 . y,PtO . y2PdO . z!Pt . z2Pd,即y=y!+y2、 z:z,+Z2。该材料的晶 粒全部或部分为空心结构,空心晶粒的空腔部分的径向长度为2~ 300纳米,优 选为10 200纳米;该材料在25'C, P/P。 = 0. 10,吸附时间l小时的条件下测 得的苯吸附量为至少50亳克/克,优选为至少70亳克/克;其低温氮吸附的吸 附等温线和脱附等温线之间存在滞后环;空腔部分的形状不是固定不变的,可 以为矩形、圆形、不规则圆形、不规则多边形等各种形状,或者是这些形状中 的一种或几种的结合;其晶粒可以为单个晶粒或者由多个晶粒聚集成的聚集晶 粒。
所说的微孔钛硅材料,晶粒全部或部为空心结构,有利于反应物和产物分 子的扩散,使贵金属与钛硅分子筛的协同作用得到提高,克服了贵金属聚集的 弊端。
在申请号为200710064981.6的中国专利申请中同时披露上述所说的微孔 钛硅材料的两种制备方法。
方法之一是先将钛硅分子筛、保护剂、贵金属源和还原剂加入到含有碱源的溶液中混匀后转入反应釜中水热处理,过滤、洗涤、干燥即得,更具体地说 包括U)先将钛硅分子筛、保护剂、贵金属源和还原剂加入到含有碱源的溶液中混勾,其组成为钛硅分子筛(克)保护剂(摩尔)碱源(摩尔)还 原剂(摩尔)贵金属源(克,以贵金属单质计)水(摩尔)=100: ( 0. 0001-5. 0 ): (0,005-5.0 ): ( 0.005-15.0 ): ( 0. 005-10. 0 ) : ( 200-10000 );(2)再将步骤(1)所得的混合物转入反应釜中在水热处理条件下反应, 并回收产物即得本发明的微孔钛硅材料。其中,步骤(1)中组成优选为钛硅分子筛(克)保护剂(摩尔)碱 源(摩尔)还原剂(摩尔)贵金属源(克,以贵金属单质计)水(摩尔) =100: ( 0.005—1.0 ): ( 0.01—2.0 ): ( 0.01—10.0 ): ( 0.01-5.0 ): ( 500—5000 )。步骤U)中所说的钛硅分子筛包括各种类型结构的钛硅分子筛,如TS-1, TS-2, Ti-BETA, Ti-MCM—22等,优选为TS-1。步骤(1 )所说的保护剂是指聚合物或表面活性剂,其中聚合物可以是聚丙 烯、聚乙二醇、聚苯乙烯、聚氯乙烯、聚乙烯等,表面活性剂可以是阴离子表 面活性剂、阳离子表面活性剂以及非离子表面活性剂。步骤(l)所说的还原剂可以是肼、硼氢化物、柠檬酸钠等,其中肼可以是 水合肼、盐酸肼、硫酸肼等,硼氢化物可以是硼氢化钠、硼氢化钾等。步骤(l)所说的贵金属源选自上述贵金属的无机物或有机物,可以是氧化 物、卣化物、碳酸盐、硝酸盐、硝酸铵盐、氯化氨盐、氢氧化物或贵金属的其 它络合物等。以钯为例,钯源可以是无机钯源和/或有机钯源。其中无机钯源可 以是氧化钯、碳酸钯、氯化钯、硝酸钯、硝酸氨钯、氯化氨钯、氢氧化钯或者 钯的其它络合物等,有机钯源可以是醋酸钯、乙酰丙酮钯等。步骤(l)所说碱源为无机碱源或有机碱源。其中无机碱源为氨水、氢氧化 钠、氢氧化钾、氢氧化钡等;有机碱源为尿素、季胺碱类化合物、脂肪胺类化 合物、醇胺类化合物或由它们所组成的混合物。所说的季铵碱类化合物其通式为(R、NOH,其中f为具有1-4个碳原子的烷基,优选的为丙基。所说的脂肪胺类化合物其通式为R2(NH2)n,其中112选自具有1-4个碳原子 的烷基或者亚烷基,n-l或2;所说脂肪胺类化合物为乙胺、正丁胺、丁二胺 或己二胺。所说的醇胺类化合物其通式为(H0R3)mNH _m>;其中f选自具有1-4个碳原子 的烷基;m=l、 2或3;所说醇胺类化合物为单乙醇胺、二乙醇胺或三乙醇胺。步骤(2)所说的水热处理条件是在温度80-20(TC及自生压力下水热处理 2-360小时,所说的回收产物的过程为本领域技术人员所熟知,并无特别之处, 通常包括将晶化产物洗涤、干燥等过程。方法之二包括如下步骤(1) 将钛源、硅源、碱源、保护剂、贵金属源和水混合后于120~ 200°C 水热晶化6小时 10天,取出过滤后干燥、焙烧得中间晶态材料,混合物的摩 尔组成为硅源钛源碱源贵金属源保护剂水=100: ( 0.005-50.0 ):(0,005-20.0 ): ( 0.005-10.0 ): ( 0.005-5.0 ): ( 200-10000 ),其中硅 源以Si03十,钬源以Ti02计,贵金属源以单质计;(2) 将步骤(1)所得的中间晶态材料转入步骤(1)所剩的滤液中,加入 与步骤(l)中所加入的贵金属源的摩尔比为0. l-10的还原剂后,于反应釜中 在温度80-200。C及自生压力下水热处理2-36Q小时,并回收产物即得本发明的 微孔钛硅材料。其中,步骤(1)混合物的摩尔组成优选为硅源钛源碱源贵金属源 保护剂水=100: (0.01-10.0): (0.01-10.0): (0.01-5.0): (0, Ol-l.O): (500-5000)。步骤(l)所说硅源为硅胶、硅溶胶或者有机硅酸酯,优选的是有机硅酸酯; 所说的有机硅酸酯其通式为R\Si04,其中114优选具有l-4个碳原子的烷基,更优选的为乙基。步骤(1)所说钛源为无机钛盐或者有机钛酸酯,优选的为有机钛酸酯;所 说的无机钛盐可以是TiCL、 Ti(S04)2或者TiOCh;所说的有机钛酸酯其通式为 Ti(OR5)4,其中115为具有1-6个碳原子的烷基,更优选的是具有2-4个碳原子 的烷基。步骤(1 )中所说碱源为季胺碱类化合物或季胺碱类化合物与脂肪胺类化合 物、醇胺类化合物所组成的混合物。其中,所说的季铵碱类化合物其通式为 (R6),NOH, W为具有1-4个碳原子的烷基,优选的为丙基。所说的脂肪胺类化 合物其通式为R7(NH2) ,其中R'选自具有1-4个碳原子的烷基或者亚烷基,n = l或2,例如乙胺、正丁胺、丁二胺、己二胺等。所说的醇胺类化合物其通式为(HOR8)mNH(3_m);其中118选自具有1-4个碳原子的烷基;m=l、 2或3,例如单乙 醇胺、二乙醇胺、三乙醇胺等。步骤(1 )所说的保护剂是指聚合物或表面活性剂,其中聚合物可以是聚丙 烯、聚乙二醇、聚苯乙烯、聚氯乙烯、聚乙烯等,表面活性剂可以是阴离子表 面活性剂、阳离子表面活性剂以及非离子表面活性剂。步骤(l)所说的贵金属源选自贵金属的有机物或无机物,可以是它们的氧 化物、卤化物、碳酸盐、硝酸盐、硝酸铵盐、氯化铵盐、氢氧化物或贵金属的 其它络合物等。以钯源为例,可以是无机钯源和/或有机钯源,其中无机钯源可 以是氧化钯、碳酸钯、氯化钯、硝酸钯、硝酸氨钯、氯化氨钯、氢氧化钯或钯 的其它络合物等,有机钯源可以是醋酸钯、乙酰丙酮钯等。步骤(l)中所说的还原剂可以是羟胺、肼、硼氢化物、柠檬酸钠等,其中 肼可以是水合肼、盐酸肼、硫酸肼等,硼氢化物可以是硼氢化钠、硼氢化钾等。本发明提供的催化氧化叔丁醇的方法可以釆用间歇操作或连续的搡作方 式。间歇方式进行时将叔丁醇、溶剂、催化剂加入反应器后,连续加入氧气、 氢气及稀释气体;或将溶剂、催化剂加入反应器后,连续加入叔丁醇、氧气、 氢气及稀释气体;连续方式进行时采用固定床或淤浆床反应器,加入催化剂后 将溶剂、叔丁醇、氧气、氢气及稀释气体连续加入,同时不断分离产物。在釆 用间歇操作或连续的进料方式下反应总气体空速为10 ~ 10000 h-',优选为100 ~ 5000 h—1。本发明提供的方法还可以釆用封闭式釜式反应,即将催化剂、溶剂、叔丁 醇和氧气、氢气、稀释气体同时加入后反应。本发明提供的方法中,所说的含微孔钛硅材料的组合物为该微孔钛硅材料 与其他含钛材料、二氧化硅和氧化铝中的一种或多种组成。本发明提供的方法中,所说的稀释气体可以是氮气、氩气、氦气、氖气等 惰性气体,也可以是二氧化碳、甲烷、乙烷、丙烷等。本发明提供的方法中,原料优选摩尔配比为叔丁醇溶剂氧气氢气 稀释气体=1: (0~50): (0.5~10): (0.5~10): (0~60)。所说的叔 丁醇与催化剂的重量比例优选为(0.1~100) : 1。本发明提供的方法中,反应温度优选为20~120°C,反应压力优选为0. 3~ 2. 5 MPa。本发明提供的方法中,所说的溶剂选自水或丙酮、丁酮等酮类或乙腈等腈 类或它们的混合,优选为水和/或丙酮。本发明提供的方法中,根据实际情况可以加入稀释气体和溶剂,也可以不 加入稀释气体或溶剂。本发明提供的催化氧化叔丁醇的方法,在氢气存在下,以分子氧作氧化剂, 在原料气中无需添加任何抑制剂或引发剂的情况下即可得到高叔丁基过氧化氢 选择性和较高氢气有效利用率,尤其具有较好的活性稳定性。相对于传统方法, 本发明克服了传统生产工艺复杂、设备腐蚀、以及有害排放等问题; 一定程度上解决了 TS-1/HA催化氧化叔丁醇反应体系中高成本的问题。本发明所提供的方法,釆用空心的含贵金属、特别是含钯的微孔钛硅材料 作为催化活性组分,增加了反应物和产物的扩散速度,减少了过度氧化等副反 应的发生,并由于非骨架钛含量明显降低,其催化氧化活性和活性稳定性高。 使得其在氢气存在下催化叔丁醇氧化反应中,高选择性地生成叔丁基过氧化氢, 其催化氧化活性以及催化活性稳定性也较好,利于工业化生产和应用。


图1为实施例1样品A的低温氮气吸附的吸附-脱附等温曲线图。 图2为实施例2样品B的低温氮气吸附的吸附-脱附等温曲线图。 图3为实施例3样品C的低温氮气吸附的吸附-脱附等温曲线图。 图4为实施例4样品D的低温氮气吸附的吸附-脱附等温曲线图。 图5为实施例5样品E的低温氮气吸附的吸附-脱附等温曲线图。 图6为实施例6样品F的低温氮气吸附的吸附-脱附等温曲线图。 图7为实施例7样品G的低温氮气吸附的吸附-脱附等温曲线图。 图8为实施例8样品H的低温氮气吸附的吸附-脱附等温曲线图。 图9为实施例1样品A的透射电子显微镜(TEM)照片。 图IO为实施例2样品B的透射电子显微镜(TEM)照片。 图ll为实施例3样品C的透射电子显微镜(TEM)照片。 图12为实施例4样品D的透射电子显微镜(TEM)照片。 图13为实施例5样品E的透射电子显微镜(TEM)照片。 图14为实施例6样品F的透射电子显微镜(TEM)照片。 图15为实施例7样品G的透射电子显微镜(TEM)照片。图16为实施例8样品H的透射电子显微镜(TEM)照片。
具体实施方式
下面通过实施例对本发明作进一步地说明,但并不因此限制本发明的内容。 实施例中,所有到的试剂均为巿售的化学纯试剂。实施例1~8中所用的钛硅分子筛是按现有技术Zeolites, 1992, Vol.12 第943—950页中所描述的方法制备的TS-1分子筛样品。样品的低温氮气吸附的 吸附-脱附等温曲线是在美国Micromeritics公司ASAP2405静态氮吸附仪上按 照ASTMD4222-98标准方法进行测定。样品的透射电子显微镜照片(TEM)是在 荷兰FEI公司Tecnai G2F20S-TWIN型透射电子显微镜上获得,加速电压20kV。在实施例中叔丁醇转化率(%)=(投料中叔丁醇摩尔量 一 未反应的叔丁醇摩尔量)/ 投料中叔丁醇摩尔量x 100;氢气有效利用率(%)=叔丁基过氧化氢及其衍生物摩尔量/反应消耗的总 氢气摩尔量x 100;叔丁基过氧化氢选择性(%)=产物中叔丁基过氧化氢的摩尔量/叔丁醇转 化的摩尔量x 100。实施例1-8说明本发明提供的方法中用到的微孔钛硅材料A、 B、 C、 D、 E、 F、 G、 H的制备过程。实施例1取20克钬硅分子筛TS-1、浓度为0. 01g/ml (以钯原子计)的硝酸氨钯络 合物溶液以及适量水合肼和十六烷基三甲基溴化铵加入到四丙基氢氧化铵的水 溶液(质量百分比浓度10%)中搅拌混合均匀,其中钛硅分子筛(克)十六 烷基三甲基溴化铵(摩尔)四丙基氢氧化铵(摩尔)水合肼(摩尔)硝 酸氨钯络合物(克,以钯计)水(摩尔)=100: 0.005: 0.5: 3.0: 2.0: 1000。然后放入不锈钢密封反应釜,在15(TC的温度和自生压力下水热处理48 小时,将所得物过滤、用水洗涤,自然干燥后,并在18(TC下继续干燥3小时, 即得含贵金属的微孔钛硅材料A。经表征,其组成用氧化物的形式可以表示为4H02 . 100SiO2 0. 01Pd0 0. 09Pd,其低温氮气吸附的吸附-脱附等温曲线图有 滞后环(图1),透射电子显微镜照片显示出其为空心结构(图9)。实施例2取20克钛硅分子筛TS-1、浓度为0. 01 g/ml (以钯原子计)的氯化钯溶液 以及适量盐酸肼和聚丙烯加入到氢氧化钠的水溶液(质量百分比浓度15%)中 搅拌混合均匀,其中钛硅分子筛(克)聚丙烯(摩尔)氢氧化钠(摩尔) 盐酸肼(摩尔)氯化钯(克,以钯计)水(摩尔)=100: 0.9: 1.8: 0.15: 0.1: 4600。然后放入不锈钢密封反应釜,在18(TC的温度和自生压力下水热处 理24小时,将所得物过滤、用水洗涤,自然干燥后,并在ll(TC下继续干燥3 小时,即得含贵金属的微孔钛硅材料B。经表征,其组成用氧化物的形式可以 表示为8Ti02 100SiO2 . 0. 006Pd0 . 0. 008Pd,其低温氮气吸附的吸附-脱附等 温曲线图有滞后环(图2),透射电子显微镜照片显示出其为空心结构(图10)。实施例3将正硅酸四乙酯、钛酸四丁酯、浓度为0.01 g/ml (以钯原子计)的乙酸 钯溶液和吐温80加入到四丙基氢氧化铵和丁二胺的水溶液(质量百分比浓度均 为10%)中搅拌混合均匀,其中摩尔组成硅源钛源四丙基氢氧化铵丁二 胺钯源保护剂水=100: 0.03: 0.5: 0.1: 0.05: 0.02: 550,硅源以Si02 计,钬源以Ti02计,钯源以Pd计。然后放入密封反应釜,在12(TC的温度和自 生压力下水热处理120小时,将所得物取出过滤后干燥、焙烧得中间晶态材料。 将中间晶态材料转入上述所剩的滤液中,加入适量水合肼后在17(TC的温度和 自生压力下水热处理36小时,将所得物过滤、用水洗涤,自然干燥后,并在 15(TC下继续干燥3小时,即得含贵金属的微孔钛硅材料C。经表征,其组成用 氧化物的形式可以表示为0. 008TiO2 100SiO2 0, 01PdO 0. 2Pd,其低温氮气 吸附的吸附-脱附等温曲线图有滞后环(图3),透射电子显微镜照片显示出其 为空心结构(图11)。实施例4将正硅酸四乙酯、钛酸四丁酯、浓度为0.01 g/ml (以钯原子计)的氯化 氨钯溶液和十二烷基苯磺酸钠加入到四丙基氢氧化铵的水溶液(质量百分比浓 度15%)中搅拌混合均匀,激烈搅拌下分批加入,继续撹拌一段时间,其中摩尔组成硅源钛源碱源钯源保护剂水=100: 2.0: 5.2: 2.0: 0.5: 2500, 硅源以Si03十,钛源以Ti02计,钯源以Pd计。然后放入不锈钢密封反应釜, 在15(TC的温度和自生压力下水热处理96小时,将所得物取出过滤后干燥、焙 烧得中间晶态材料。将中间晶态材料转入上述所剩的滤液中,加入适量盐酸肼 后在12(TC的温度和自生压力下水热处理48小时,将所得物过滤、用水洗涤, 自然干燥后,并在12(TC下继续干燥3小时,即得含贵金属的微孔钛硅材料D。 经表征,其组成用氧化物的形式可以表示为19Ti02 . 100SiO2 . 0. 5PdO . 1. 3Pd, 其低温氮气吸附的吸附-脱附等温曲线图有滞后环(图4),透射电子显微镜照 片显示出其为空心结构(图12)。
实施例5
取20克钬硅分子筛TS-1、浓度为0. 01 g/ml (以钯原子计)的乙酸钯溶液 以及适量硼氢化钠和吐温80加入到丁二胺的水溶液(质量百分比浓度10%)中 搅拌混合均匀,其中钛硅分子筛(克)吐温80(摩尔)丁二胺(摩尔) 硼氢化钠(摩尔)乙酸钯(克,以钯计)水(摩尔)=100: 0.1: 0.02: 0.05: 0.03: 520。然后放入不锈钢密封反应釜,在120°C的温度和自生压力下 水热处理120小时,将所得物过滤、用水洗涤,自然干燥后,并在15(TC下继 续干燥3小时,即得含贵金属的微孔钛硅材料E。经表征,其组成用氧化物的 形式可以表示为0. lTi02 100SiO2 0. lPdO 0. 75Pd,其低温氮气吸附的吸附-脱附等温曲线图有滞后环(图5),透射电子显微镜照片显示出其为空心结构 (图13)。
实施例6
取20克铗硅分子筛TS-1、浓度为0. 01 g/ml (以钯原子计)的氯化氨钯溶
液以及适量硫酸肼和十二烷基苯磺酸钠加入到四丙基氢氧化铵的水溶液(质量 百分比浓度10%)中搅拌混合均匀,激烈搅拌下分批加入,继续搅拌一段时间, 其中钛硅分子筛(克)十二烷基苯磺酸钠(摩尔)四丙基氢氧化铵(摩尔h 硫酸肼(摩尔)氯化氨钯(克,以钯计)水(摩尔)=100: 0.5: 0.1: 8.5: 4.8: 2000。然后放入不锈钢密封反应釜,在9(TC的温度和自生压力下水热处 理240小时,将所得物过滤、用水洗涤,自然干燥后,并在12(TC下继续干燥3 小时,即得含贵金属的微孔钛硅材料F。经表征,其组成用氧化物的形式可以 表示为0. 04TiO2 . 100SiO2 0. 6PdO 5. lPd,其低温氮气吸附的吸附-脱附等温曲线图有滞后环(图6),透射电子显微镜照片显示出其为空心结构(图14)。
实施例7
将正硅酸四乙酯、钛酸四乙酯、浓度为0.01 g/ml (以钯原子计)的乙酸 钯溶液和十六烷基三甲基溴化铵加入到四丙基氢氧化铵(质量百分比浓度13%) 中搅拌混合均匀,其中硅源钛源碱源钯源保护剂水=100: 8.2: 7.5: 0.1: 0.05: 800,硅源以Si02计,钛源以Ti02计,钯源以Pd计。然后放入不 锈钢密封反应釜,在16(TC的温度和自生压力下水热处理96小时,将所得物取 出过滤后干燥、焙烧得中间晶态材料。将中间晶态材料转入上述所剩的滤液中, 加入适量盐酸肼后在17(TC的温度和自生压力下水热处理36小时,将所得物过 滤、用水洗涤,自然干燥后,并在15(TC下继续干燥3小时,即得含贵金属的 微孔钛硅材料G 。经表征,其组成用氧化物的形式可以表示为 23Ti02 . 100SiO2 , 0. 04PdO . 0. 8Pd,其低温氮气吸附的吸附-脱附等温曲线图有 滞后环(图7),透射电子显微镜照片显示出其为空心结构(图15)。
实施例8
取20克钛硅分子筛TS-1、浓度为0. 01 g/ml (以钯原子计)的硝酸氨钯和 硝酸氨铂络合物溶液以及水合肼和十六垸基三甲基溴化铵加入到四丙基氢氧化 铵的水溶液(质量百分比浓度14%)中搅拌混合均匀,其中钛硅分子筛(克) 十六烷基三甲基溴化铵(摩尔)四丙基氢氧化铵(摩尔)水合肼(摩尔) 硝酸氨铂(克,以铂计)硝酸氨钯(克,以钯计)水(摩尔)=100: 0.1: 1.2: 2.0: 0.8: 1.2: 1800。然后放入不锈钢密封反应釜,在180'C的温度和 自生压力下水热处理72小时,将所得物过滤、用水洗涤,自然干燥后,并在 18(TC下继续干燥3小时,即得含双贵金属的微孔钛硅材料H。经表征,其组成 用氧化物的形式可以表示为4Ti02 100SiO2 0. 3PdO ■ 0. 9Pd 0. 1PtO . 0. 7Pt, 其低温氮气吸附的吸附-脱附等温曲线图有滞后环(图8),透射电子显微镜照 片显示出其为空心结构(图16)。实施例9-18说明利用实施例l-8所合成的微孔钛硅材料为催化剂催化氧化
叔丁醇的反应条件和结果。
实施例9
以实施例1制备的A为催化剂催化氧化叔丁醇反应。
在温度为4(TC压力为0. 5MPa下,在小型固定床反应器上装填2g催化剂, 按照叔丁醇、溶剂甲醇、氧气、氢气、稀释气体氮气的摩尔比为1: 10: 1: 1: 25,在总气体空速为500 h—'下反应。
反应2小时的结果如下叔丁醇转化率为11. 3%;氢气有效利用率为39%; 叔丁基过氧化氢选择性为96%。
反应120小时的结果如下叔丁醇转化率为10. 5%;氢气有效利用率为38%; 叔丁基过氧化氢选择性为93%。
实施例10
以实施例2制备的B为催化剂催化氧化叔丁醇反应。
在温度为6(TC压力为0.5 MPa下,在淤浆床反应器中装填5g催化剂,按 照叔丁醇、溶剂甲醇、氧气、氢气、稀释气体氖气的摩尔比为1: 40: 2: 0.8: 15,在总气体空速为200 h-'下反应。
反应2小时的结果如下叔丁醇转化率为9.2%;氢气有效利用率为35%; 叔丁基过氧化氢选择性为93%。
反应120小时的结果如下叔丁醇转化率为9.0%;氢气有效利用率为33%; 叔丁基过氧化氢选择性为94%。
实施例11
以实施例3制备的C为催化剂催化氧化叔丁醇反应。
在温度为7(TC压力为1.5 MPa下,在淤浆床反应器中加入2g催化剂、20g 叔丁醇以及50g溶剂甲醇打浆,将氧气、氢气、稀释气体二氧化碳按照摩尔比 为2: 1: 7的比例在总气体空速为1000 h—'下反应。
反应2小时的结果如下叔丁醇转化率为9.6%;氢气有效利用率为37%; 叔丁基过氧化氢选择性为94%。
反应120小时的结果如下叔丁醇转化率为22. 3%;氢气有效利用率为32%; 叔丁基过氧化氢选择性为81%。实施例12
以实施例4制备的D与二氧化硅按照7: 3的质量比组合为催化剂催化氧化 叔丁醇反应。
在温度为3(TC压力为l.G MPa下,在淤浆床反应器中加入2g催化剂以及 50g溶剂甲醇打浆,将叔丁醇、氧气、氢气、稀释气体甲烷按照摩尔比为1: 5: 2: 30的比例在总气体空速为2000 h-'下反应。
反应2小时的结果如下叔丁醇转化率为8.5%;氢气有效利用率为35%; 叔丁基过氧化氢选择性为96%。
反应120小时的结果如下叔丁醇转化率为8. 3%;氢气有效利用率为34%; 叔丁基过氧化氢选择性为95%。
实施例13
以实施例5制备的E与氧化铝按照8: 2的质量比组合为催化剂催化氧化叔 丁醇反应。
在温度为IO(TC压力为1. 5 MPa下,在小型固定床反应器上装填2g催化剂, 按照叔丁醇、溶剂水、氧气、氢气、稀释气体氩气的摩尔比为1: 20: 4: 8: 10,在总气体空速为1500 h-i下反应。
反应2小时的结果如下叔丁醇转化率为6.8%;氢气有效利用率为35%; 叔丁基过氧化氢选择性为93%。
反应120小时的结果如下叔丁醇转化率为6.6%;氢气有效利用率为33%; 叔丁基过氧化氢选择性为85%。
实施例14
以实施例6制备的F与二氧化钛按照9:1的质量比组合为催化剂催化氧化 叔丁醇反应。
在温度为8(TC压力为1. 5 MPa下,在淤浆床反应器中装填5g催化剂,按 照叔丁醇、氧气、氢气的摩尔比为l: 3: 9,在总气体空速为150 h-'下反应。 反应2小时的结果如下叔丁醇转化率为5.2%;氢气有效利用率为37%;
叔丁基过氧化氢选择性为94%。
反应120小时的结果如下叔丁醇转化率为4.3%;氢气有效利用率为35%; 叔丁基过氧化氢选择性为92%。实施例15
以实施例7制备的G与二氧化硅按照5: 5的质量比组合为催化剂催化氧化 叔丁醇反应。
在温度为IIO'C压力为2. 0MPa下,在淤浆床反应器中加入2g催化剂以及 500g溶剂水打浆,将叔丁醇、氧气、氢气、稀释气体丙烷按照摩尔比为1: 8: 3: 50的比例在总气体空速为4000 h—'下反应。
反应2小时的结果如下叔丁醇转化率为5.2%;氢气有效利用率为38%; 叔丁基过氧化氢选择性为94%。
反应120小时的结果如下叔丁醇转化率为4.3%;氢气有效利用率为32%; 叔丁基过氧化氢选择性为82%。
实施例16
以实施例8制备的H为催化剂催化氧化叔丁醇反应。
在温度为IO(TC压力为2. 0 MPa下,在淤浆床反应器中加入2g催化剂、400g 溶剂甲醇以及50g水打浆,将叔丁醇、氧气、氢气、稀释气体氮气按照摩尔比 为1: 2: 1.2: 7的比例在总气体空速为1000 h—'下反应。
反应2小时的结果如下叔丁醇转化率为9.2%;氢气有效利用率为37%; 叔丁基过氧化氢选择性为95%。
反应120小时的结果如下叔丁醇转化率为8.3%;氢气有效利用率为36%; 叔丁基过氧化氢选择性为92%。
实施例17
以实施例1制备的A为催化剂催化氧化叔丁醇反应。
在温度为5(TC压力为0.8 MPa下,在釜式反应器内装填2g催化剂,按照 叔丁醇、溶剂甲醇、氧气、氢气、稀释气体氮气的摩尔比为1: 10: 2: 1: 5 的比例将原料通入反应器后封闭反应。
反应2小时的结果如下叔丁醇转化率为9. 3%;氢气有效利用率为38%; 叔丁基过氧化氢选择性为97%。
反应IO小时的结果如下叔丁醇转化率为18.5%;氢气有效利用率为36%; 叔丁基过氧化氢选择性为91%。实施例18
以实施例2制备的B为催化剂催化氧化叔丁醇反应。
在温度为4(TC压力为1.5 MPa下,在釜式反应器内装填5g催化剂,按照 叔丁醇、溶剂甲醇、氧气、氢气、稀释气体氖气的摩尔比为1: 20: 3: 1.8: 10的比例将原料通入反应器后封闭反应。
反应2小时的结果如下叔丁醇转化率为8.2%;氢气有效利用率为37%; 叔丁基过氧化氢选择性为93%。
反应IO小时的结果如下叔丁醇转化率为19.1%;氢气有效利用率为34%; 叔丁基过氧化氢选择性为89%。
从实施例9-18的结果可以看出本发明提供的催化氧化叔丁醇的方法,活 性较好,尤其是叔丁基过氧化氢的选择性极高,催化活性稳定性好。
权利要求
1.一种催化氧化叔丁醇的方法,其特征在于按照叔丁醇∶溶剂∶氧气∶氢气∶稀释气体=1∶(0~80)∶(0.2~20)∶(0.1~10)∶(0~100)的摩尔配比,温度为0~180℃、压力为0.1~3.0MPa的条件下,在一种催化剂存在下进行反应,所说的催化剂为一种微孔钛硅材料或含有该微孔钛硅材料的组合物,微孔钛硅材料的组成用氧化物的形式表示为xTiO2·100SiO2·yEmOn·zE,其中x值为0.001~50.0、(y+z)值为0.005~20.0且y/z<1,E表示选自Ru、Rh、Pd、Re、Os、Ir、Pt和Au中的一种或几种贵金属,m和n为满足E氧化态所需的数,该材料晶粒部分或全部为空心结构。
2. 按照权利要求1的方法,其特征在于所说的贵金属E为Pt和/或Pd。
3. 按照权利要求l的方法,其特征在于所说的x值为0. 005 - 25. 0、 (y+z) 值为0. 01~10. 0。
4. 按照权利要求1的方法,其特征在于所说的微孔钛硅材料的晶粒全部或部 分为空心结构,空心晶粒的空腔部分的径向长度为2~ 300纳米。
5. 按照权利要求1的方法,其特征在于所说的微孔钛硅材料在25°C, P/P。= 0.10,吸附时间l小时的条件下测得的苯吸附量为至少50亳克/克。
6. 按照权利要求1的方法,其特征在于所说的微孔钛硅材料的低温氮吸附的 吸附等温线和脱附等温线之间存在滞后环。
7. 按照权利要求1的方法,其特征在于所说的微孔钛硅材料空心晶粒的空腔 部分的形状为矩形、圆形、不规则圆形和不规则多边形中的一种或者几种 的结合。
8. 按照权利要求1的方法,其特征在于所说的含有微孔钛硅材料的组合物由 微孔钬硅材料与其他选自含钛材料、二氧化硅和氧化钼中的一种或多种组 成。
9. 按照权利要求l的方法,其特征在于所说的稀释气体选自氮气、氩气、氦 气或氖气。
10. 按照权利要求1的方法,其特征在于所说的稀释气体选自二氧化碳、甲烷、 乙烷或丙烷。
11. 按照权利要求l的方法,其特征在于所说的叔丁醇溶剂氧气氢气 稀释气体的摩尔配比为1: (0~50): (0. 5~10): (0. 5~10): (0~ 60)
12. 按照权利要求l的方法,其特征在于温度为20~120°C,压力为O. 3~2.5MPa。
13. 按照权利要求l的方法,其特征在于所说的溶剂选自水、甲醇、乙醇、正 丙醇、异丙醇、异丁醇、丙酮、丁酮和乙腈中的一种或多种的混合物。
14. 按照权利要求l的方法,其特征在于所说的溶剂为甲醇和/或水。
15. 按照权利要求l的方法,其特征在于所说的叔丁醇与催化剂的重量比例为(0. 1 ~ 100 ) : 1。
全文摘要
本发明公开了一种催化氧化叔丁醇的方法,其特征在于按照叔丁醇∶溶剂∶氧气∶氢气∶稀释气体=1∶(0~80)∶(0.2~20)∶(0.1~10)∶(0~100)的摩尔配比,温度为0~180℃、压力为0.1~3.0MPa<sup>1</sup>的条件下,在一种催化剂存在下进行反应,所说的催化剂为一种微孔钛硅材料或含有该微孔钛硅材料的组合物,微孔钛硅材料的组成用氧化物的形式表示为xTiO<sub>2</sub>·100SiO<sub>2</sub>·yE<sub>m</sub>O<sub>n</sub>·zE,其中x值为0.001~50.0、(y+z)值为0.005~20.0且y/z<1,E表示选自Ru、Rh、Pd、Re、Os、Ir、Pt和Au中的一种或几种贵金属,m和n为满足E氧化态所需的数,该材料晶粒部分或全部为空心结构。该方法叔丁基过氧化氢的选择性高,活性稳定性好,利于工业化生产和应用。
文档编号C07C409/04GK101314583SQ20071009985
公开日2008年12月3日 申请日期2007年5月31日 优先权日2007年5月31日
发明者史春风, 慕旭宏, 斌 朱, 民 林, 汝迎春, 汪燮卿, 罗一斌, 舒兴田, 军 龙 申请人:中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1