甲酰胺卤化的卟啉的低分子量衍生物、即二氢卟酚和菌绿素及其应用的制作方法

文档序号:13520638阅读:359来源:国知局
本申请涉及新的低分子量的甲酰胺卤化的卟啉衍生物,即二氢卟酚(chlorin)和菌绿素(bacteriochlorin)衍生物,及其制备过程和在光动力疗法中的用途。发明背景光动力疗法(pdt)是临床上批准的治疗,基于给予光敏化分子,其在靶标组织中蓄积,然后用光敏剂选择性吸收的光进行光照。该选择性用吸收光照治疗窗口中的光(650-850nm)的光敏剂来改善,在该窗口下组织具有更高的光穿透深度(例如δ=2.3mm,于750nm)(1)。吸收光使得光敏剂处于电子激发态,其通过电子转移反应与底物分子反应,形成超氧化物阴离子和羟基残基(类型i反应),或者将其能量转移至基态分子氧,产生单线态氧(类型ii反应)。这些光产生的反应性氧类(ros)触发生物学机理,其使得pdt成为有效的抗癌程序(2)。pdt在治疗过增殖障碍中的范例已经是,在光照治疗窗口中具有更强光吸收和高ros量子产率(φros)的稳定染料应该是更佳的光敏剂。额外地,靶向革兰氏阴性细菌的pdt光敏剂开发指导是,在光敏剂中需要存在至少一个正电荷(3)。这种光敏剂通常是分子量高于600da的卟啉衍生物(二氢卟酚或菌绿素)。尽管用微摩尔每升光敏剂浓度和约10j/cm2的光剂量实现细菌悬浮液的5-6个数量级的光动力灭活(4),其向临床应用的转用是并不成功的。将细菌悬浮液的光动力灭活转用于临床情况失败的可能原因是在吸收红外光的光敏剂大尺寸与在生物膜中快速扩散并被细胞摄取所需要的小分子尺寸之间的不相容性。相似困难已发现在将pdt光敏剂转用于皮肤病学障碍的局部治疗当中。虽然光敏剂比如卟吩姆钠(商品名)和替莫泊芬已获批用于癌症适应症的静脉内给药,但是局部施用还并未转用于临床(5)。同样地,局部施用光敏剂以引起治疗效果的失败可能涉及所述光敏剂跨过皮肤外层(称为角质层)并到达靶标的困难。角质层是外源分子穿透皮肤的主要屏障。药物在局部施用之后跨过皮肤的最佳最大通量(jmax)受到药物(6)分子量(mw)的强烈限制,logjmax=-3.90-0.0190mw例如,mw=600或700da的药物应分别具有jmax=5x10-16或6x10-18mol/(cm2h)。这些计算显示,高于600da的分子量的适度增加能够导致光敏剂透皮通量的显著下降。在实际情况中,700da的光敏剂可能需要比600da的光敏剂更长100倍的时间来达到皮下靶标中的治疗浓度。期望用于局部施用必须符合的药物的又一关键特性是在角质层脂质区域中的适当溶解度从而允许扩散通过该区域,而同时仍具有足够的亲水性质从而允许分配入有活力的表皮组织。符合该决定因素的药物的对数正辛醇-水分配系数(logpow)为1至3(7)。用于局部施用pdt和用于细菌光灭活的理想光敏剂必须具有mw<700da的分子量,1至3的logpow,在650至850nm之间ε>30,000m-1cm-1的高摩尔吸收系数,和φros>0.3的ros量子产率。额外地,光敏剂的光稳定性也是pdt成功的关键(8)。光敏剂的光稳定性能够与化学催化剂的翻转比拟:其与在催化剂(即光敏剂)灭活(即光分解)之前1摩尔催化剂能够转化的底物摩尔数(即产生的ros数)有关。两种最广泛使用的癌症pdt光敏剂是卟吩姆钠(商品名)和替莫泊芬(专用名)。卟吩姆钠是多至8个卟啉单元的醚和酯连接部分形成的低聚物混合物,在水溶液中相对可溶,logpow≈0。卟吩姆钠不是单个分子个体并且并不具有特征分子量,但是最小二聚体的分子量超过1000da。替莫泊芬是很亲油的5,10,15,20-四(间-羟基苯基)二氢卟酚,分子量680da和在生理学ph的logpow=5.5。卟吩姆钠和替莫泊芬的单线态氧量子产率分别是0.36和0.43(8)。它们在红色范围的最大吸收峰是,卟吩姆钠在λmax=630nm的摩尔吸收系数ε630=1170m-1cm-1,和替莫泊芬在λmax=650nm的摩尔吸收系数ε650=29600m-1cm-。它们是相对光稳定的,卟吩姆钠和替莫泊芬的光分解量子产率分别是φpd=5.5x10-5和3.3x10-5。在将卟吩姆钠或替莫泊芬与ct26(小鼠结肠腺癌)细胞温育、在洗涤之后用匹配其红色吸收带的波长、给出1j/cm2的光剂量的激光光照的情况下发现的是,需要18μm的卟吩姆钠浓度(基于卟啉单元分子量估计)来灭除培养物中50%的细胞(ic50=18μm),而对于替莫泊芬在相同光剂量获得相同毒性所需的浓度是0.2μm(ic50=0.2μm)(8)。卟吩姆钠的特性不足以穿透生物学屏障即皮肤,原因是其过度高的分子量、亲水性和在光照治疗窗口中的中等光吸收。替莫泊芬部分解决了分子量问题,但是其对于透皮递送来说过于亲油并且光吸收恰好位于光照治疗窗口的极限。这些临床批准的光敏剂渗透生物学屏障即皮肤屏障的困难被加剧:在生物学靶标中这些光敏剂需要相对大的浓度才能获得pdt提供良好治疗结果所需的光毒性。在将光敏剂用于pdt的早先使用中并未认识到,对于pdt的光敏剂理想特性能与用于局部施用的药物理想特性在单个分子中得以结合。快速扩散通过生物学屏障的能力是下述应用成功的关键,例如在治疗皮肤病学障碍中局部施用的光敏剂的真皮内或透皮递送,光敏剂在生物膜中穿透用于细菌光灭活,光敏剂扩散通过甲用于治疗真菌感染比如甲癣。快速扩散通过生物学屏障的能力也是光敏剂在其生物学靶标中快速蓄积的关键,比如渗透通过真核生物细胞外膜或细菌细胞膜。所述快速扩散缩短在给予光敏剂与光照靶标之间的时间,这有利于光动力疗法的许多应用,并且增加对靶标的光毒性。本领域技术人员不会期望的是:示于式(i)的卤化的卟啉衍生物(尤其是菌绿素和二氢卟酚)的至少一个meso位的甲酰胺基团能够有助于所述菌绿素或二氢卟酚衍生物的两亲性和光稳定性,而不损害ros产生,并且在光敏剂分子量的上述小贡献的情况下其通过生物学屏障的扩散不会受到削弱。本发明首次公开用于过增殖障碍pdt的光敏剂和/或用于细菌或病毒或真菌光灭活的光敏剂,其符合理想光敏剂的全部标准并且有效地渗透生物学屏障。本发明也公开合成所述光敏剂的过程,通过借助实例说明这些光敏剂杀灭癌细胞和灭活细菌的用途。在本发明的又一实施方式中,本文描述的光敏剂用于过增殖组织的治疗诊断学。治疗诊断学是图像引导治疗的一种模式,其中相同化合物用来使得生物学靶标可视化并且获得所希望的治疗效果。发明概要本发明的意图是提供新的甲酰胺卤化的卟啉衍生物,尤其是菌绿素和二氢卟酚,其能够有效地用来杀灭细菌,甚至当存在于生物膜中时杀灭肿瘤细胞,甚至在局部施用时杀灭真菌和灭活病毒。鉴于目前pdt光敏剂在实现有效透皮递送或穿透生物膜方面的缺点,本发明公开新的卟啉衍生物,尤其是菌绿素和二氢卟酚,其将低分子量、在光照治疗窗口中的强吸收、高光稳定性、ros光产生的高量子产率、适当两亲性和生物可相容性一起结合,并且其能够从低成本原料大量制备。本发明的又一目的是提供在光动力疗法中使用的药物,其中靶标选自:血管内皮组织,新血管系统组织,眼内新血管系统组织,肿瘤的异常血管壁,实体性肿瘤,皮肤肿瘤,头肿瘤,颈肿瘤,眼肿瘤,胃肠道肿瘤,肝肿瘤,乳腺肿瘤,前列腺肿瘤,肺肿瘤,非实体性肿瘤,造血组织和淋巴样组织之一的恶性细胞,血管系统中的创伤,患病骨髓,和患病细胞,其中所述疾病是自身免疫和炎性疾病之一。本发明的又一目的是提供药物,其用于下述治疗:皮肤病学障碍比如牛皮癣、寻常痤疮和酒渣鼻;妇科学障碍比如功能不良性子宫出血;泌尿学障碍比如性病湿疣病毒;心血管障碍比如再狭窄和动脉粥样硬化斑块;用于真菌感染比如甲癣的治疗;用于细菌或病毒的光动力破坏,包括对多种药物有抗性的细菌;用于毛发除去和化妆品;用于抑制器官或组织移植后的免疫应答。采用本文公开的光敏剂通过光动力疗法方法除去细胞的表面层刺激下层皮肤的新细胞生长,随后带来具有美容价值的皮肤外观改善。本发明的又一目的是提供用于心律不齐的药物,其在于通过局部光动力疗法选择性破坏细胞比如心肌细胞,并且恢复心脏的生理学节律。最终地,本发明的又一目的是提供用新的甲酰胺卟啉衍生物、尤其是菌绿素和二氢卟酚来诊断过增殖组织的方法。条件是这些化合物优先蓄积在所述组织中,出于诊断意图需要的额外特性是明确检出很小数量的所述化合物。这些化合物在红色和红外区域具有很明显的吸收带,组织在此范围是最为透明的。这些化合物的选择性激发导致明显荧光,其波长是生物学分子不会发出的。荧光检测能够用很敏感的设备进行,并且能够在生物学培养基中测量亚纳摩尔每升量的菌绿素和二氢卟酚。用于光诊断和光治疗的辐射源是不受限的,但优选激光束,原因是能够选择性应用希望波长范围的密集光线。光线需要具有足够强度以导致化合物发出用于诊断的荧光以及发挥用于治疗的细胞杀灭效果。额外地,在使用氟化的二氢卟酚或菌绿素的情况下,氟-mri(磁共振成像)能够检测这些化合物在身体小区域中的蓄积和跟踪在其从身体清除时形成的代谢物。此外在脉冲激光用于激发的情况下,随后的无辐射衰减过程放热,其产生光声波,而这种波能够通过光声断层摄影检测,提供有关过增殖障碍诊断的进一步信息。在下文的描述中将出现其它目的和技术特征,其仅以示例方式提供而并不对其限制。本发明涉及下式的甲酰胺卟啉衍生物,尤其是菌绿素或二氢卟酚:其中:代表碳-碳单键或碳-碳双键,条件是至少一个代表碳-碳单键;y1,y2各自独立地选自氢,卤化的烷基或卤化的环烷基,其具有6个或更少碳原子,或者卤化的苯基,其中卤素独立地选自f、cl和br,条件是烷基、环烷基或苯基的至少一个位置是卤化的,并且条件是y1、y2中至少一个不是氢,也即y1、y2中至少一个是卤化的烷基或卤化的环烷基,其具有6个或更少碳原子,或者卤化的苯基,其中卤素独立地选自f、cl和br,条件是烷基、环烷基或苯基的至少一个位置是卤化的;r1选自h,i,cl,br或-conr’r”;r’和r”独立地选自氢,具有6个或更少碳原子的烷基,环丙基,环丁基,环戊基,醇,伯胺,仲胺,叔胺,带正电的季胺,羧酸,醚或酯;或其药学上可接受的盐。于是,式(i)化合物可以是下式的菌绿素其中:x1,x2,x3,x4各自独立地选自卤素(f,cl,br)和氢原子,条件是至少x1和x3是卤素;r1选自h,f,cl,br或-conr’r”;r’和r”独立地选自氢,具有6个或更少碳原子的烷基,环丙基,环丁基,环戊基,醇,伯胺,仲胺,叔胺,带正电的季胺,羧酸,醚或酯;或其药学上可接受的盐。本发明的特定优选化合物包括式(ii)的甲酰胺菌绿素,其中x1,x2,x3,x4是氟原子,r1是氢,r’是氢和r”是甲基。另选地,式(i)化合物可以是下式的二氢卟酚其中:x1,x2,x3,x4各自独立地选自卤素(f,cl,br)和氢原子,条件是至少x1和x3是卤素;r1选自h,f,cl,br或-conr’r”;r’和r”独立地选自氢,具有6个或更少碳原子的烷基,环丙基,环丁基,环戊基,醇,伯胺,仲胺,叔胺,带正电的季胺,羧酸,醚或酯;或其药学上可接受的盐。在x1不同于x2和/或x3不同于x4的情况下,式(ii)或(iii)化合物具有阻转异构体,原因是围绕苯基-大环单键的受阻旋转。在这种情况下,阻转异构体能够通过在大环所限定平面的各侧更重原子的数量来区分。式iv说明菌绿素衍生物的两个阻转异构体,其区别是两个氟原子出现在大环平面的同侧(阻转异构体αα)或大环平面的异侧(阻转异构体αβ)其中加粗线指出的是,加粗的原子和附着于此的基团是立体受限的,以便存在于大环所限定的平面之上。式(i)化合物还可以是下式的菌绿素其中:r1选自h,i,cl,br或-conr’r”;r’和r”独立地选自氢,具有6个或更少碳原子的烷基,环丙基,环丁基,环戊基,醇,伯胺,仲胺,叔胺,带正电的季胺,羧酸,醚或酯;或其药学上可接受的盐。本发明的特定优选化合物包括式(xv)甲酰胺菌绿素,其中r1是氢,r’是氢和r”是甲基。本发明也提供药物组合物,包含有效量的本文描述的化合物和药学上可接受的载体。活性成分在本发明药物组合物中的真实剂量水平和给予时间过程可以变化,以获得活性成分的量(该量有效实现特定患者的希望治疗应答)、组成和给药模式,同时对患者没有毒性(或无法接受的毒性)。在使用中,至少一种根据本发明的化合物在药物载体中以药学有效量给予有需要的受试者,其通过静脉内、肌内、皮下、病灶内、或脑室内注射或通过口服给药或局部施用进行。按照本发明,本发明化合物可以单独给予或与第二种不同的治疗剂给予。"与…结合"意指一起地,基本上同时地或依次地。"药学有效量"如本文所用意指本发明化合物的量,其足够高以显著正面地改变所治疗的病症,但是也足够低以避免严重副作用(合理的益处/风险比),这属于合理的医学判断范围。本发明化合物的药学有效量随下述因素变化:所需实现的具体目标,所治疗患者的年龄和生理条件,基础疾病的严重性,治疗持续时间,同时进行的治疗的性质和所用的特定化合物。比如说,给予幼儿或新生儿的治疗有效量的本发明化合物将按照合理的医学判断成比例地减少。本发明化合物的有效量从而是提供希望效果的最小量。额外地在光动力疗法的情况下,药物组合物或化合物的"药学有效量"部分取决于其它因素比如光剂量和氧,两者都需要用来实现治疗结果。从而,在治疗受试者或患者的情况下还存在光以及氧的"有效量"。有助于确定药物、光和氧的"药学有效量"的其它重要因素包括药物-至-光照间隔(在给予药物与光照组织之间的时间)。药物-至-光照间隔是重要的,原因是例如给予50mg/kg的更高药物剂量和在1周之后用光剂量500j/cm2光照组织可以与使用0.01mg/kg的药物剂量和在给药10分钟之后用光剂量0.1j/cm2光照组织一样效率低下或没有效果。在药物-至-光照间隔增加(变得更长)的情况下,在给予药物与光照之间借助有机体的药物消除(代谢)可以降低治疗的有效性。然而,增加药物-至-光照间隔可以导致更有选择性的治疗和更少的不良作用。从而,出于至少上述的原因,药物-至-光照间隔是在确定本发明组合物的"药学有效量"时考虑的重要因素。除了上文讨论的影响药物"有效量"确定的因素、光、氧和药物-至-光照间隔之外,本领域普通技术人员还会考虑光的注量率(每单位面积每单位时间递送的光子数)。注量率是重要的,原因是过快过多地递送光子可以耗尽组织中的氧并且使得治疗效率低下或无效。本发明的决定性实际优势是化合物可以以方便的方式给予,比如通过静脉内、肌内、皮下、口服、病灶内、或脑室内注射途径或通过局部施用,比如在霜剂或胶状物中局部使用来进行。取决于给药途径,包含本发明化合物的活性成分可以需要包覆在材料当中以使得化合物避免可以使得化合物灭活的酶、酸和其它天然条件的作用。为了不通过肠胃外给药来给予本发明化合物,化合物能够用材料包覆或与材料一起给予以预防灭活或改善溶解。本发明也涉及药学组合物,其包含至少一种式(i)衍生物或其药学上可接受的盐,和药学上可接受的载体,所述载体短暂地使皮肤透化、使得药物组合物可渗透通过各皮肤层。本发明的又一目的是如本文描述的化合物在制备药物中的用途,所述药物用于治疗本文描述的障碍或疾病。本发明的又一目的是如本文描述的化合物在治疗本文描述的障碍或疾病的用途。在本文变量的任何定义中化学基团列表的描述包括所述变量作为任何单个基团或所列基团的组合的定义。本文变量的实施方式的描述包括,该实施方式作为任何单个实施方式或与任何其它实施方式或其部分的组合。本文实施方式的描述包括,该实施方式作为任何单个实施方式或与任何其它实施方式或其部分的组合。本发明也涉及上述衍生物或其药学上可接受的盐和包含至少一种所述衍生物的药学组合物在治疗过增殖障碍和/或癌症和/或细菌和/或病毒或真菌感染中的用途。另外还涉及药学组合物在真皮内和透皮治疗中的用途。本发明也涉及包含至少一种上述衍生物或其药学上可接受的盐的药学组合物在过增殖障碍的治疗诊断学中的用途,其中与靶标组织结合的至少一种描述于权利要求1-9的衍生物通过成像技术可视化,并且任选地通过光照所述衍生物在靶标组织中引起希望的治疗效果。在成像技术包括磁共振成像(mri)的情况下,将式(i)衍生物或其药学上可接受的盐暴露于光,所述光的能量足以导致其发荧光,或者包括将式(i)衍生物或其药学上可接受的盐暴露于皮秒或纳秒持续时间的光脉冲,所述光脉冲的能量足以导致化合物发射光声波。显著地,式(i)菌绿素或二氢卟酚的分子量的范围是425da至700da,它们是两性的,形成数个氢键,并且可以有效地扩散通过生物学屏障比如角质层或通过生物膜。这些衍生物技术特征之一在于其低分子量和其导致的通过保护性生物学屏障的增加的通量。又一技术优势是在光照治疗窗口中保藏菌绿素或二氢卟酚(已知强烈吸收光的大环),以及以高量子产率产生ros能力。还又一优势是存在增强还原的卟啉衍生物的光稳定性的取代基,以及在脂质区域中的溶解度和与生物学载体和药物载体的生物可相容性之间的平衡。式(i)菌绿素或二氢卟酚的又一技术特征是它们是显著荧光的、即荧光量子产率高于0.1,这允许它们在靶标中非侵入性造影。这种造影是希望的特性,原因是其使得靶标造影和选择开始治疗的最佳时机成为可能,例如在光敏剂靶标/周围组织比率较高的情况下。式(i)菌绿素或二氢卟酚的治疗诊断学用途还能够在其含有氟原子的情况下通过氟磁共振成像(mri)加以利用,或者在其于脉冲激光下发射光声波的情况下通过光声断层摄影(pat)加以利用。本文中"保护性生物学屏障"的含义应理解为分子和超分子种类在体内扩散的屏障比如皮肤和更特别是角质层,胃肠道屏障以及眼屏障,甲屏障,细胞和细菌外膜,以及微生物产生的生物膜。本领域技术人员无法预计甲酰胺卤化的卟啉衍生物尤其是菌绿素和二氢卟酚能够有效地渗透生物学膜和快速地形成对于所述生物学屏障保护的恶性细胞、细菌或真菌高光毒性的光敏剂。附图说明并不是为了限制本文的公开,本申请展示所举例说明的实施方式的附图,以便于理解。图1:a)式(v),(vi),(vii)和(viii)分子的结构。b)式(xi),(xii),(xiii)和(xiv)分子的结构。图2:式(ix),(xa)和(xb)分子的结构。图3:式(ix)分子在乙醇和dmso中的吸收谱。图4:式(xiv)分子在二氯甲烷中的吸收谱。图5:在用4j/cm2或用10j/cm2光照之后,式(ix)分子对疮疱棒杆菌(propionibacteriumacnes)的光毒性。图6:在辐射(1j/cm2)之后式(ix)分子对癌系a549和ct26的光毒性。图7.经皮下植入ct26肿瘤的小鼠的kaplan-meier生存曲线,其中实线代表未处理对照组,短划线代表用0.3mg/kg式(ix)分子处理的组而虚线代表用0.15mg/kg式(ix)分子处理的组。图8.与皮肤表面垂直切割的皮肤样品的共焦显微术,将其暴露于含有式(ix)分子的局部配制剂30、60和90分钟的温育时间,其中较亮区域揭示光敏剂在皮肤中的荧光。具体实施方式参照附图,在此更加详细地描述任选实施方式,然而并不期望限制本申请的范围。a.前体化合物a.1.5,15-二-(2,6-二氟苯基)卟啉前体5,15-二-(2,6-二氟苯基)卟啉(图1式v)用5,15-二苯基卟啉(9a)制备方法的变型来制备。将可商购2,2’-二吡咯甲烷(dipyrromethane)和2,6-二氟苯甲醛的等摩尔混合物在三氟乙酸(tfa)存在下反应。在用2,3-二氯-5,6-二氰基-1,4-苯醌(ddq)氧化之后,后处理并纯化,以35%收率获得v,在克天平上称量(~5g)。v的表征如下:1hnmr:(400mhz,(cdcl3)δppm:-3.05(s,2h,-nh);7.55-7.79(t,4h,ar-h);7.98-8.05(m,2h,ar-h);9.03(d,j=4.4hz,4h,β-h);9.41(d,j=4.5hz,4h,β-h);10.32(s,2h,meso-h);ms(esi-fia-tof):m/z计算值(c32h19f4n4)[m+h]+535.1540;实测值:535.1536[m+h]+。[5,15-二-(2,6-二氟苯基)卟啉基]锌(ii)(式vi)制备如下:在二氯甲烷:甲醇1:1混合物中,将5,15-二(2,6-二氟苯基)卟啉与乙酸锌(zn(oac)2)复合。磁力搅拌加热溶液直至原料完全消耗。溶液用水洗涤,用无水硫酸钠干燥,过滤,经由旋蒸浓缩;获得4.3g的分离产品,99%收率。分离产品的nmr如下:1hnmr:(400mhz,(cdcl3)δppm:7.41-7.45(t,4h,ar-h);7.81-7.86(m,2h,ar-h);9.13(d,j=4.3hz,4h,β-h);9.50(d,j=4.5hz,4h,β-h);10.37(s,2h,meso-h)。[5-溴-10,20-二-(2,6-二氟苯基)卟啉基]锌(ii)(式vii)通过反应合成如下:将n-溴代琥珀酰亚胺(nbs)(298mg±10mg)溶于二氯甲烷(dcm)(100±20ml),在-6℃滴加至1g的[5,15-二-(2,6-二氟苯基)卟啉基]锌(ii)在dcm(400±50ml)和吡啶(1.35±0.5ml)中的混合物。在1小时之后反应完成,加水(50±20ml)和有机层用0.1m盐酸溶液(3次)和水(3次)依次洗涤。蒸发溶剂和通过柱色谱法用硅胶(dcm/己烷)纯化。获得[5-溴-10,20-二-(2,6-二氟苯基)卟啉基]锌(ii),70±5%收率(790±40mg)。1hnmr:(400mhz,(cdcl3)δppm:7.34-7.38(m,4h,ar-h);7.76-7.79(m,2h,ar-h);8.83(s,4h,β-h);9.26(d,j=4.5hz,2h,β-h);9.70(d,j=4.7hz,2h,β-h);10.13(s,1h,meso-h)。5-甲基酰胺-10,20-二-(2,6-二氟苯基)卟啉(式viii)经由氨基羰基化反应合成。向含有搅拌子的高压釜钢反应器加入4.0g(5.9mmol)的[5-溴-10,20-二-(2,6-二氟苯基)卟啉基]锌(ii),66.0mg(0.3mmol)的乙酸钯(pd(oac)2),155.0mg(0.6mmol)的三苯基膦,0.8ml(5.9mmol)的三甲胺,14.6ml(29.5mmol)的2m甲胺的四氢呋喃(thf)溶液,和60.0ml无水thf。封闭反应器,充入5巴的一氧化碳。在70℃搅拌混合物,允许反应进行15小时。将反应混合物转移至圆底烧瓶,在旋蒸仪中除去溶剂。将粗反应物溶于dcm,加入tfa(10ml)。在室温下搅拌反应混合物2小时。后处理通过液-液萃取用饱和的碳酸氢钠溶液和蒸馏水进行。有机层用无水硫酸钠干燥,过滤和最终在旋蒸仪中除去溶剂。在柱色谱法(硅胶,dcm:乙酸乙酯,20:1)之后获得2.45g的分离产品,70%收率。分离产品的nmr和ms如下:1hnmr:(400mhz,(cd3)2co)δppm:-3.14(s,2h,-nh);3.56(d,j=4.2hz,3h,-ch3);7.63(t,j=8.2hz,4h,ar-h);8.04-8.11(m,2h,ar-h);8.49(bs,1h,-nh);9.09(m,4h,β-h);9.63(d,2h,j=4.5hz,β-h),9.56(d,2h,j=4.7hz,β-h);10.60(s,1h,meso-h)。ms(esi-fia-tof):m/z计算值c34h22f4n5o:592.1760;实测值:592.1751[m+h]+。a2.5,15-二-(三氟甲基)卟啉前体[5,15-二-(三氟甲基)卟啉基]锌(ii)(图1式xi)用预先描述的方法合成(9b)。xi的表征如下:1hrmn:(400mhz,thf-d8)δppm:9.67(d,j=4.0,β-h);9.88(bs,β-h);10.57(s,2h,meso-h)。[5-溴-10,20-二-(三氟甲基)卟啉基]锌(ii)(式xii)通过反应合成如下:将n-溴代琥珀酰亚胺(nbs)溶于二氯甲烷,在-6℃滴加至[5,15-二-(三氟甲基)卟啉基]锌(ii)在二氯甲烷和吡啶中的混合物。在1h之后,反应完成。加水和有机层用0.1m盐酸溶液(3次)和水(3次)依次洗涤。蒸发溶剂至干,将化合物用于后续反应步骤。5-甲基酰胺-10,20-二-(三氟甲基)卟啉(式xiii)经由氨基羰基化反应合成。向含有搅拌子的高压釜钢反应器加入[5-溴-10,20-二-(三氟甲基)卟啉基]锌(ii),乙酸钯,三苯基膦,三乙胺,甲胺和无水thf。封闭反应器,充入压力多至10巴的一氧化碳。在70℃搅拌混合物,允许反应进行15小时。将反应混合物转移至圆底烧瓶,在旋蒸仪中除去溶剂。将粗反应物溶于二氯甲烷,加入三氟乙酸。在室温下在2小时期间搅拌反应混合物。后处理通过液-液萃取用饱和的碳酸氢钠溶液和蒸馏水进行。有机层用无水硫酸钠干燥,过滤和最终在旋蒸仪中除去溶剂。在柱色谱法(硅胶,二氯甲烷:己烷)之后,分离出产品。xiii的表征如下:1hrmn:(400mhz,thf-d8)δppm:-2.84(s,2h,-nh);3.56(d,j=4.2hz,3h,-ch3);8.72(bs,1h,-nh);9.66-9.68(m,4h,β-h);9.80(bs,4h,β-h);10.62(s,1h,meso-h)。b.材料和方法元素分析在lecotruspecchns元素分析仪上进行。1h-nmr和19f-nmr和谱图在brukeravance400mhz上记录。1h赋值用2dcosy和noesy实验进行,esi-fiatof高分辨率质谱数据用micromassautospec质谱仪获得。hplcshimadzuprominence配有二极管阵列(模型spd20av)。随后于743nm、23℃在半制备型柱inertsil-苯基(250*10mm;5μm)上分离。光吸收:uv-vis-nir光吸收用agilentcary5000uv-vis-nir分光光度计记录、确定摩尔吸收系数,另外用shimadzuuv-2100光谱仪进行惯例测量。在300nm直至800nm的波长记录吸收谱。荧光发射:荧光发射谱图在自制设备中记录,所述设备由用来激发样品的horiba-jobinfluoromax4和其通过光纤连接的样品架构成。在样品架中,与激发纤维垂直地连接光纤以驱使发射光进入分光光度计检测器avantes模型sensline,提供avasoft7.7.2。激发狭缝设置为2mm而积分时间是3s,平均数是3。从200nm直至1100nm收集谱图,使用1cm光路的标准池。获得荧光量子产率(φf):将样品的积分荧光与已知φf的参比荧光化合物的积分荧光比较。荧光寿命:荧光寿命在自制设备中测定,所述设备由产生激发样品的光脉冲的led,样品架,检测器和光学装置构成。激发波长设为373nm并且于737nm收集发射光。用1024通道,每通道28.5ps的时间尺度收集信号。瞬态吸收:三线态-三线态瞬态吸收在appliedphotophysicslks.60激光快速光解光谱仪中记录,采用hewlett-packardinfinium示波器和spectra-physicsquanta-raygcr-130nd:yag激光作为激发源。脉冲激发设为355nm。单线态氧量子产率:实验在室温下用nd-yag激光spectra-physicsquanta-raygrc-130进行。在用600线分级的单色器选择波长之后,在于液氮室中冷却至193k,于355nm激发溶液,于1270nmhamamatsur5509-42光电倍增器中收集单线态氧磷光。非那烯酮用作单线态氧发生物质的参比。在发射中使用newport滤器模型10lwf-1000-b以避免分散和荧光。光声量热法:在电子激发之后释放的热能通过时间分辨的光声量热法用正面辐射光声池和ekspland:yag泵送的eksplaopo模型pg-122来测量。信号检测用2.25mhzpanametrics换能器进行。于690nm激发,将薁用作光声量热法参比。正辛醇:pbs分配比:用振摇-烧瓶方法的变型来确定光敏剂在等体积混合的正辛醇和磷酸缓冲盐水(pbs)中的平衡浓度,使用相同光敏剂的典型荧光带和校准曲线。光漂白实验在甲醇:pbs(3:2)和在有机溶剂中进行。溶液在池中用1cm光路辐射,使用omicronlaserage的于749±3nm发出的cw激光。总输出功率是212mw或244mw。对于各化合物,以数分钟至数小时的辐射时间间隔收集吸收率。对细菌的光毒性:用适当波长的光对疮疱棒杆菌(6919-remel,lenexa,ks,usa)进行体外评价。在加强的梭状芽胞杆菌培养基中(oxoid,basingstok,uk)在厌氧气氛下在37℃培养疮疱棒杆菌。厌氧生长条件用厌氧罐获得,其中具有产生厌氧条件的小袋(anaeroculta,merck,darmstadt,德国)。疮疱棒杆菌悬浮液用培养基稀释至光密度于620nm为1.3,相应于大约1x107cfu/ml(菌落形成单元每毫升)。稀释的悬浮液于13000rpm离心10分钟,再悬浮于pbs。将试验化合物储备溶液溶于peg400:dmso(丙二醇400:二甲亚砜)(55:45),用pbs稀释至适当浓度。试验化合物与疮疱棒杆菌的温育在平底透明的dbfalcon黑色96-孔板(franklin湖泊,nj,usa)、避光、在30分钟期间进行。在温育时间段之后,用led灯辐射该板,该灯来自marubeni(模型l740-66-60-550),于740nm的最大发射为fwhm=25nm,其适于激发菌绿素,总光剂量为4或10j/cm2。在辐射之后,将各孔的内容物于13000rpm离心10分钟和再悬浮于培养基。在厌氧气氛下,将具有疮疱棒杆菌的板在37℃温育24小时。在温育时间段之后,评价疮疱棒杆菌的存活率。板孔中的细菌悬浮液用培养基稀释,并接种在具有加强的梭状芽胞杆菌琼脂的培养皿中(oxoid,basingstok,uk),用于后续cfu计数。在厌氧气氛下,将培养皿在37℃温育至少72小时。对癌细胞系的光毒性:用a549(人类肺腺癌)和ct26(小鼠结肠腺癌)细胞系进行体外评价。细胞在补充有10%热灭活胎牛血清和1%青霉素的dulbecco修饰eagles培养基中培养(dmem)。细胞分别以20,000/孔和15,000/孔的密度在平底96-孔板中铺板。在后续一天,制备试验化合物的稀释溶液(1mm储备)并加至细胞进行30-min温育。peg400:dmso(55:45)的浓度在培养基中不超过1%。各孔用pbs洗涤2次,在30-min温育之后用所述led灯辐射。光剂量是1j/cm2。在辐射之后将培养基用新鲜培养基替换,将板温育24小时,在此时通过刃天青方法用微量培养板分光光度计(synergyhtbiotek)评价细胞存活率。光动力疗法:携带肿瘤的雌性balb/c小鼠的疗法由nationalveterinaryauthority批准(dgva批号0420/000/000/2011)。将重18-20g的小鼠(charlesriver实验室,巴塞罗那,西班牙)保持在标准实验室膳食,自由获取饮用水。肿瘤模型建立如下:在0.1mlpbs中取350.000ct26细胞(crl-2638tm,atcc-lcg标准,巴塞罗那,西班牙),在各小鼠的右股经皮下接种细胞。用于体内pdt的光源是模型ldm750.300.cwa.l.m的定制二极管激光,控制器1201-08p和激光头1201-08d(omicron,rodgau,德国),其偶联至具有固定发散透镜的模型fd光纤,直径2mm(medlight,ecublens,瑞士)。皮肤渗透:用含有苯甲醇(23%),kolliphorel(17%),transcutol(50%)和水(10%)的局部配制剂评价。加至该配制剂的光敏剂对应于1.85%的加入前质量,而加入的胶凝剂(二氧化硅气凝胶200)对应于5%的加入前质量。将光敏剂首先溶于transcutol并暴露至涡旋器3min和超声5分钟。然后加入苯甲醇和kolliphorel的混合物。此后立即将其在ika搅拌器中于200rpm混合5分钟,滴加水10分钟。最终混入胶凝剂二氧化硅气凝胶200,获得微乳剂凝胶。皮肤渗透研究用从5月龄猪收集的样品在猪皮肤中进行。在渗透研究之前,除去毛发以及底部脂肪层。c.化合物的特性化合物的吸收性在μm范围的数个浓度测量,并且在全部情况中都观察到符合比尔-朗伯定律。额外地,红外最大吸收波长(λmax)在研究的浓度范围内不变。这指示可忽视的分子间团聚,其在所研究的溶剂中在这些浓度下大部分作为单体存在。表1代表典型的式(i)甲酰胺卤化的菌绿素衍生物在乙醇中的红外摩尔吸收系数(εmax)和最大波长。该表也提供在空气和n2饱和溶液中的三线态寿命(τt),荧光寿命(τs),荧光量子产率(φf),三线态形成量子产率(φt),和乙醇中的单线态氧产生量子产率(φδ),和甲醇:pbs(3:2)中的光降解量子产率(φpd)。三线态衰减明显是单指数的而在空气饱和的乙醇中三线态寿命的范围是200至300纳秒。所述值符合从光敏剂三线态向分子氧通过电荷-转移相互作用的扩散限制能量转移(8)。试验化合物在光漂白研究中的吸收强度符合单指数的降低,其是光照时间的函数。表1:式ix甲酰胺菌绿素在乙醇中的光物理和光化学特性和在甲醇:pbs(3:2)中光分解量子产率,以及在细菌中(疮疱棒杆菌,与2μm温育和用10j/cm2辐射)和在癌细胞(a549和ct26,用1j/cm2辐射)培养物中的光生物学特性。式(i)甲酰胺卟啉衍生物尤其是菌绿素或二氢卟酚的典型光物理、光化学和光生物学特性弥补了前文所述的pdt中所用的现有光敏剂的缺点。尤其是,式(i)分子能够具有低分子量并且可以获得经过生物学膜的高通量。用于获得表1所述的光毒性的温育时间是仅30分钟,而为了获得上文讨论的卟吩姆钠和替莫泊芬ic50值使用了18小时的温育时间。此外,式(i)菌绿素或二氢卟酚的ic50值能够比卟吩姆钠或替莫泊芬的那些低数个数量级,这意味着式(i)菌绿素或二氢卟酚以低数个数量级的浓度获得与临床批准光敏剂相同的光毒性。该将允许所述光敏剂在接触保护性生物学屏障的短时间段内就达到引起治疗效果需要的浓度。此外,甲酰胺基团为生物可相容性和越过生物学屏障引入了适当两亲性,亦即导致logpow1至3的值。该取代基与meso位取代基中的卤素原子一起也有助于增强式(i)卟啉衍生物的可与临床批准光敏剂比拟的光稳定性。光稳定性、在光照治疗窗口中强吸收、ros高收率和两亲性的结合向式(i)卟啉衍生物提供又一有利的技术特征:对细菌和癌细胞很高的光毒性。表1显示根据式(i)的光敏剂的实例,其以2μm浓度与疮疱棒杆菌菌落温育并用10j/cm2光(在红色吸收带被吸收)光照,将细菌cfu数降低9个数量级。对肿瘤细胞的光毒性同样令人惊讶。在1j/cm2光剂量下,在体外杀灭大于50%的癌细胞群体的光敏剂药物剂量(ic50)低于10nm。式(i)卟啉衍生物尤其是菌绿素或二氢卟酚跨越保护性生物学屏障和快速扩散至其靶标的能力,与它们在光照治疗窗口中用光光照的高光毒性相组合,使得这些菌绿素或二氢卟酚特别适于人或动物用途的抗癌和/或抗微生物和/或抗病毒和/或抗真菌药物,其将本发明的一种或数种卟啉衍生物用作主要活性剂。该类型药物,尤其在pdt使用的那些,还可以含有一种或数种药学上可接受的赋形剂。在pdt中,含有一种或数种本发明化合物的药物配制剂局部、经口或全身地给予受试者,和在一段时间之后(药物-至-光照间隔),将靶标组织用卟啉衍生物优选菌绿素或二氢卟酚吸收的光光照。光敏剂在局部配制剂中的百分比可以从0.01%变化至15%。用来活化局部施用的光敏剂的光剂量也可以变化,并且可以需要1至100j/cm2的剂量。这些光剂量可以用匹配光敏剂在光照治疗窗口中的吸收带的光源递送,条件是这些光源在热效果开始之下就具有辐照,其接近250mw/cm2。另选地,光剂量能够在长时间段给予,包括利用施用局部配制剂的区域的阳光暴露。pdt中使用的光敏剂全身性给药用药学上可接受的载体进行,获得的光敏剂剂量范围是0.1至10微摩尔/kg体重。在范围可以是与给予药物同时直至在给药之后5天的药物-至-光照间隔之后,将光剂量递送至靶标。受光照的光敏剂分子产生的反应性氧类触发化学和生物学过程级联,其结束于细胞和/或细菌和/或病毒的死亡。本发明化合物还可以以高量子产率和在光照治疗窗口中发荧光。表1通过φf=0.20的光敏剂实例。该典型荧光能够用来检测化合物在靶标组织中的存在和提供用本发明化合物诊断血管或过增殖障碍的可能性。本发明化合物也通过高量子产率的无辐射过程失去能量。表1通过φf=0.20和φt=0.45的光敏剂实例,其必须具有φic=0.35的内部转化量子产率。在单线态3.2ns寿命中损失的热能产生快速的热弹性膨胀,其发射强烈的光声波。超声换能器能够用来检测光声波,如上文对光声量热法的描述。另选地,它们能够通过光声断层摄影检测并且用于诊断血管或过增殖障碍。d.化合物制备方法的描述本发明的又一目的在于制备上文描述的衍生物的方法。非对称5,15-二取代的卟啉用修饰下述的方法制备如下:在dcm中,在惰性气氛下,用tfa作催化剂将可商购的2,2’-二吡咯甲烷(dipyrromethane)与卤化醛缩合-环化(10),随后步骤是用ddq作氧化剂将卟啉原氧化为相应卟啉。后续步骤涵盖5,15-二取代的卟啉与乙酸锌在dcm/甲醇(1:1)溶液中金属化(11),随后进行10或10,20-卟啉位置的一卤化或二卤化。卟啉化锌(ii)配合物用nbs溴化,用n-氯代琥珀酰亚胺(ncs)氯化,用二(三氟乙酰氧基)碘苯或2,6-二氯-1-氟吡啶鎓三氟甲磺酸盐碘化(9a)。尽管氨基羰基化反应是从芳基卤或芳基三氟甲磺酸和胺制备甲酰胺的标准过程,卟啉的氨基羰基化是并不常见的(12)。甲酰胺卟啉制备如下:在低压力的一氧化碳(1-10巴)下和50-100℃的温度,在碱存在下,并且使用过渡金属配合物(mln)催化剂,用甲胺将相应卤化前体、优选溴化前体氨基羰基化。金属能够选自钼,铬,镍或优选钯。过渡金属配合物中的配体能够选自1,2-二(二苯基膦基)乙烷(dppe),4,5-二(二苯基膦基)-9,9-二甲基呫吨(xantphos),1,2-二(二苯基膦基)丙烷(dppp)1,2-二(二苯基膦基)丁烷(dppb),2,2'-二(二苯基膦基)-1,1'-联萘(binap),二-[2-(二苯基膦基)苯基]醚(dpephos),2-二-叔丁基膦基-2′,4′,6′-三异丙基联苯(叔-buxpho),三正烷基膦或优选三苯基膦(pph3)。碱能够是无机碱和选自碳酸盐,磷酸盐或氟化物。碱还能够是有机碱和选自胺,优选三乙胺。溶剂能够选自甲苯,二噁烷,n-甲基-2-吡咯烷酮(nmp),二甲基甲酰胺(dmf),dcm或thf。还可以使用co的备择来源,亦即(m(co)n),其中m是mo或co。图示地,卟啉前体的制备可以描述如下其中:y1,y2各自独立地选自氢,具有6个或更少碳原子的卤化的烷基或卤化的环烷基,或卤化的苯基,其中卤素独立地选自f、cl和br,条件是烷基、环烷基或苯基的至少一个位置是卤化的,和条件是y1、y2中至少一个不是氢;r1选自h,f,cl,br或-conr’r”;r’和r”独立地选自氢,具有6个或更少碳原子的烷基,环丙基,环丁基,环戊基,醇,伯胺,仲胺,叔胺,带正电的季胺,羧酸,醚或酯。然后将甲酰胺卤化的卟啉前体用来获得相应的还原的菌绿素或二氢卟酚。还原基于二酰亚胺还原方法,其用酰肼优选用对甲苯磺酰基酰肼(对-tsh)作为氢源,无机或位阻有机碱,在选自dmf、甲苯、二甲苯、吡啶和皮考啉的溶剂中,用修饰的pct/ep2005/012212公开的方法进行。还原还能够在不存在溶剂和不存在碱的情况下发生,用修饰的pct/pt2009/000057公开的方法进行。甲酰胺卟啉还原为相应的菌绿素或二氢卟酚可以描述如下:其中:代表碳-碳单键或碳-碳双键,条件是至少一个代表碳-碳单键。实施例本发明更加详细地描述于下述非限制性实施例中,参考下述附图:实施例1.制备5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)二氢卟酚的程序合成5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)二氢卟酚进行如下:在惰性气氛下将对-甲苯磺酰基酰肼(504±10mg)与5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)卟啉(viii)(100±10mg),碳酸钾(374±10mg)和吡啶(15ml)反应,或另选不用溶剂,在100℃至150℃加热2小时。在冷却至室温后,加入dcm(≈50ml),有机层用盐酸溶液(0.1m)(3次)和水(3次)洗涤。有机相用无水硫酸钠干燥,过滤然后浓缩。将固体溶于乙酸乙酯(20ml)和加入氯醌(0.6当量)的乙酸乙酯(5ml)溶液。在45℃,将最终溶液保持搅拌。在菌绿素的uv-vis吸收峰(≈740nm)消失时停止反应。蒸发溶剂,将粗制品溶于dcm(50ml),然后用饱和碳酸氢钠溶液、蒸馏水洗涤,然后在无水硫酸钠上干燥。蒸发溶剂,通过柱色谱法用硅胶(dcm)纯化。获得5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)二氢卟酚,含有示于图2的两种异构体(式xa和xb),80±5%收率(80±5mg)。分离产品的nmr和ms如下:式xa:1h-nmr(400mhz,(cd3)co)δ(ppm):-1.89(s,1h,nh);-1.59(s,1h,nh);3.34(d,j=4.6hz,3h,ch3);4.33-4.37(m,2h,β-h);4.76-4.80(m,2h,β-h);7.49-7.55(m,4h,ar-h);7.89-7.99(m,2h,ar-h);8.29(bs,1h,nh)8.44(d,j=4.4hz,1h,β-h);8.48(d,j=4.4hz,1h,β-h);8.82(d,j=4.2hz,1h,β-h);8.99(d,j=4.5hz,1h,β-h);9.06(d,j=4.2hz,1h,β-h);9.25(s,1h,meso-h);9.27(d,j=4.5hz,1h,β-h)。19fnmr:(376.5mhz,(cd3)2co)δppm:-110.47(s,2f,ar-f);-111.53(s,2f,ar-f)。msesi-fia-tof:(c34h24f4n5o)[m+h]+计算值:594.1911,[m+h]+实测值:594.1911。式xb:1h-nmr(400mhz,(cd3)co)δ(ppm):-1.79(s,1h,nh);-1.63(s,1h,nh);3.37(d,j=4.6hz,3h,ch3);4.33-4.37(m,2h,β-h);4.68-4.72(m,2h,β-h);7.50-7.56(m,4h,ar-h);7.90-8.04(m,3h,ar-h+nh);8.46(d,j=4.4hz,1h,β-h);8.52(d,j=4.2hz,1h,β-h);8.83(d,j=4.6hz,1h,β-h);8.97(d,j=4.6hz,1h,β-h);9.05(d,j=4.3hz,1h,β-h);9.37(d,j=4.4hz,1h,β-h);10.05(s,1h,meso-h)。19fnmr:(376.5mhz,(cd3)2co)δppm:-110.47(s,2f,ar-f);-111.52(s,2f,ar-f)。msesi-fia-tof:(c34h24f4n5o)[m+h]+计算值:594.1911,[m+h]+实测值:594.1912。实施例2.制备5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)菌绿素的程序固态方法:5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)菌绿素(ix)的合成进行如下:在低于6x10-1毫巴的压力,在加热(140±1℃)下,将对-甲苯磺酰基酰肼(2.52±0.05g)与5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)卟啉(0.2±0.05g)反应60分钟。在冷却至室温后,将粗反应物溶解,通过色谱法纯化。获得5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)菌绿素,80±5%收率(160±20mg)。溶剂方法:5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)菌绿素(ix)的合成进行如下:在惰性气氛和加热(110±2℃)下,将对-甲苯磺酰基酰肼(12.5±0.05g)与5-甲基甲酰胺-10,20-二(2,6-二氟苯基)卟啉(1±0.05g),碳酸钾(4.6±0.05g),2-甲基吡啶(20ml)和甲苯(40ml)反应3小时。在冷却至室温后,加入dcm(≈400ml),用盐酸溶液(0.1m)(3次),水(3次),氢氧化钠(0.05m)(3次)和水(3次)依次洗涤。有机相用无水硫酸钠干燥,过滤然后浓缩。蒸发溶剂,通过色谱法纯化。获得5-甲基甲酰胺-10,20-二-(2,6-二氟苯基)菌绿素,75±5%收率(750±50mg)。ix在乙醇和dmso中的吸收谱示于图3。分离产品的nmr、ms和ea如下:1h-nmr(400mhz,(cd3)co)δ(ppm):-1.52(s,1h,nh);-1.56(s,1h,nh);3.30(d,j=4.7hz,3h,ch3);4.11-4.16(m,4h,β-h);4.43-4.45(m,2h,β-h);4.53-4.57(m,2h,β-h);7.44-7.48(m,4h,ar-h);7.81-7.90(m,3h,ar-h+nh);8.14-8.16(m,1h,β-h);8.22-8.23(m,1h,β-h);8.63-8.65(m,1h,β-h);8.78-8.80(m,1h,β-h);8.94(s,1h,meso-h)。19fnmr:(376.5mhz,(cd3)2co)δppm:-110.70(s,2f,ar-f);-111.76(s,2f,ar-f)。msesi-fia-tof:(c34h26f4n5o)[m+h]+计算值:596.2066,[m+h]+实测值:596.2057。元素分析(c34h26f4n5o.1/2(h2o)):计算值c67.37,h4.33,n11.58,实测值c67.37,h4.13,n10.99。实施例3.制备5-甲基甲酰胺-10,20-二-(三氟甲基)菌绿素的程序5-甲基甲酰胺-10,20-二-(三氟甲基)菌绿素(式xiv)的合成进行如下:使用实施例2中描述的溶剂方法的合成和纯化条件。xiv在二氯甲烷中的吸收光谱示于图4。分离产品的nmr表征如下:1hnmr:(400mhz,cdcl3)δppm:-1.00(s,1h,nh);-1.07(s,1h,nh);3.30(d,j=4.7hz,3h,ch3);4.44-4.48(m,2h,β-h);4.52-4.55(m,2h,β-h);4.61-4.65(m,2h,β-h);8.05(bs,1h,-nh);8.75-8.76(m,1h,β-h);8.84-8.86(m,1h,β-h);8.96(bs,2h,β-h+meso-h);9.03-9.05(m,1h,β-h)。实施例4.在光辐射之后对疮疱棒杆菌(propionibacteriumacnes)的体外光毒性该实施例描述在光辐射之后式ix甲酰胺菌绿素的体外光毒性评价,以及它们在治疗寻常痤疮中用于pdt应用的潜力。光毒性根据材料和方法部分的描述测量。ix的正辛醇:pbs分配比率是pow=2.9±0.5。该甲酰胺菌绿素的适当配制剂是peg400:dmso(55:45)。试验化合物的光毒性与相对未处理对照的疮疱棒杆菌存活抑制成比例,并且示于图5中,其形式为在4和10j/cm2的光剂量下作为光敏剂浓度的函数的cfu降低。实施例5.在光辐射之后对a549和ct26癌细胞系的体外光毒性该实施例描述在光辐射之后式ix甲酰胺菌绿素的体外光毒性评价,以及它们用于癌症pdt的潜力。所用的配制剂与实施例4相同。将试验化合物与a549或ct26细胞系避光温育30分钟并未显示毒性征兆,直至40μm。光毒性根据材料和方法部分的描述来测量。对于各种浓度的试验化合物,按照细胞存活百分比评价试验化合物的光毒性:温育所述试验化合物30分钟,随后用pbs洗涤,加入培养基并用1j/cm2光剂量光照。图6显示,在光敏剂浓度达到50nm的情况下,几乎全部细胞被杀灭。实施例6.对balb/c小鼠中植入的ct26皮下肿瘤的体内抗肿瘤pdt效力该实施例描述携带在右股植入的ct26皮下肿瘤的小鼠的pdt。在肿瘤最大直径达到5mm的情况下,将肿瘤用式ix甲酰胺菌绿素处理,采用的是血管方案。该治疗方案在于静脉内注射经定义剂量的配制剂中的式ix光敏剂,所述配制剂包含kolliphorel:乙醇:nacl0.9%(0.6:3:96.4,v/v/v),在15分钟后用749±3nm激光进行对肿瘤的光照。材料和方法部分描述处理所用的动物模型和激光和光纤。光纤与肿瘤表面垂直放置,以便照亮1.33cm2的与肿瘤同心的面积,递送40j/cm2的光剂量,辐照度130mw/cm2。给予的式ix甲酰胺菌绿素的剂量虑及样品纯度来计算。在pdt之后,跟踪小鼠以评价它们对治疗的应答直至其肿瘤最大直径达到15mm。在该点(人道主义终点)将动物处死。效力结果按照kaplan-meier生存曲线展示在图7中。该实施例显示该工作中公开的光敏剂是极度光毒性的。实际上,0.3mg/kg的光敏剂剂量是如此光毒性的,以致动物在pdt后不到72小时就死于对治疗的急性应答。在另一治疗组中所用的0.15mg/kg光敏剂剂量得到很良好的耐受。在pdt后的天数中,在光照区域的局部应答显示水肿和红斑,其涉及急性炎性反应的发作,伴随肿瘤破坏和形成坏死的疮痂。一旦坏死的疮痂消退,就可以观察到肿瘤已完全消退和实现100%的治愈。另一方面,肿瘤在对照(未处理组)中连续生长,肿瘤接种的27天内必须处死全部动物。用0.15mg/kg光敏剂剂量处理的组的生存曲线在统计学上不同于未处理的对照组,后者展示19天的中位数存活时间(log-排名试验,p<0.05)。实施例7.皮肤渗透该实施例描述式ix甲酰胺菌绿素在猪皮肤中的渗透。局部配制剂和动物模型描述于材料和方法部分。渗透从两方面评价,一方面是在局部配制剂与皮肤之间经过指定的接触时间(温育时间)之后光敏剂在皮肤中的量,另一方面是在皮肤中的渗透深度。在各温育时间之后评价式ix甲酰胺菌绿素在皮肤中的量牵涉下述步骤:(i)将0.30ml配制剂施用于1cm2面积的小型猪皮肤中,对于温育时间30、60和120分钟进行6次独立测量;(ii)在温育时间终点清洁皮肤表面;(iii)将皮肤切为小片,在2ml二氯甲烷借助分散设备浸软;(iv)用10ml二氯甲烷在falcon管中萃取6小时;(v)用乙醇以5倍因子稀释。将200μl体积的试验溶液重复三份加至96孔板,用biotek(california,usa)的synergyht微读板器参照校准曲线检测荧光强度,其配有508/20nm的激发滤光片和760/35nm发射滤光片。将用相同清洁方法获得的空白信号从样品信号扣除,参照校准曲线获得光敏剂在各样品中的浓度。结果概要能够参见表2。光敏剂向皮肤的通量在1.5小时内达到jmax=4x10-8mol/(cm2h),对于mw=594da的光敏剂来说其令人惊讶地高。该实施例显示,本文公开的卤化二氢卟酚和菌绿素的低分子量甲酰胺衍生物特别能够越过生物学屏障。在各温育时间之后,式ix甲酰胺菌绿素在皮肤中的渗透深度评价牵涉下述步骤:(i)与配制剂温育30、60和120分钟的组织的活检样品冷冻收集在干冰中;(ii)在低温恒温器中,将冷冻的组织安装在具有组织-teko.c.t.化合物的支架上(sakurafinetekeuropeb.v.,zoeterwoude,荷兰),切为厚度25μm的条片;(iii)将皮肤切片收集在显微镜载玻片中并保持冷冻,用于显微技术。菌绿素的共焦荧光术用lsm510meta(carlzeiss,jena,德国)共焦显微镜来进行,其具有×63油浸物镜(plan-apochromat,1.4na;carlzeiss),使用λex=514nm、λem≥650nm,激光功率5%并放大40×。展示在各温育时间之后光敏剂在皮肤中的荧光的图像示于图8。以相同条件但不将配制剂与皮肤温育而进行的对照实验并未显示任何荧光和在图8条件下是全黑色。增加温育时间导致光敏剂在皮肤中的更深穿透,其可以在90分钟内达到40μm深度并覆盖绝大部分表皮。该实施例显示,本文公开的卤化二氢卟酚和菌绿素的低分子量甲酰胺衍生物特别能够在生物学组织中扩散并快速达到其靶标。表2.在各温育时间之后式ix甲酰胺菌绿素在皮肤中的量。自然地,本实施方式并不以任何方式局限于本文描述的实施方式和实施例,并且本领域普通技术人员能够预见许多可能的变化但不偏离其主旨,如权利要求中所述。引用的文献1.a.n.bashkatov,e.a.genina,v.i.kochubey,v.v.tuchin,opticalpropertiesofhumanskin,subcutaneousandmucoustissuesinthewavelengthrangefrom400to2000nm.j.phys.d:appl.phys.38,2543-2555(2005).2.p.agostinis,k.berg,k.a.cengel,t.h.foster,a.w.girotti,s.o.gollnick,s.m.hahn,m.r.hamblin,a.juzeniene,d.kessel,m.korbelik,j.moan,p.mroz,d.nowis,j.piette,b.c.wilson,j.golab,photodynamictherapyofcancer:anupdate.cacancerj.clin.61,250-281(2011).3.m.r.hamblin,t.hasan,photodynamictherapy:anewantimicrobialapproachtoinfectiousdisease?photochem.photobiol.sci.3,436-450(2004).4.l.huang,m.krayer,j.g.roubil,y.y.huang,d.holten,j.s.lindsey,m.r.hamblin,stablesyntheticmono-substitutedcationicbacteriochlorinsmediateselectivebroad-spectrumphotoinactivationofdrug-resistantpathogensatnanomolarconcentrations.j.photochem.photobiol.b:biol.141,119-127(2014).5.n.dragicevic-curic,s.winter,m.stupar,j.milic,d.krajisnik,b.gitter,a.fahr,temoporfin-loadedliposomalgels:viscoelasticpropertiesandinvitroskinpenetration.int.j.pharm.373,77-84(2009).6.b.m.magnusson,y.g.anissimov,s.e.cross,m.s.roberts,molecularsizeasthemaindeterminantofsolutemaximumfluxacrosstheskin.j.invest.dermatol.122,993-999(2004).7.h.a.benson,transdermaldrugdelivery:permeationenhancementtechniques.curr.drugdeliv.2,23-33(2005).8.l.g.arnaut,m.m.pereira,j.m.dabrowski,e.f.silva,f.a.schaberle,a.r.abreu,l.b.rocha,m.m.barsan,k.urbanska,g.stochel,c.m.brett,photodynamictherapyefficacyenhancedbydynamics:theroleofchargetransferandphotostabilityintheselectionofphotosensitizers.chem.eur.j.20,5346-5357(2014).9a.s.g.dimagno,v.s.y.lin,m.j.therien,facileelaborationofporphyrinsviametal-mediatedcross-coupling.j.org.chem.58,5983-5993(1993).9b.d.fan,m.taniguchi,z.yao,s.dhanalekshmi,j.s.lindsey,1,9-bis(n,n-dimethylaminomethyl)dipyrromethanesinthesynthesisofporphyrinsbearingoneortwomesosubstituents.tetrahedron61,10291-10302(2005).10.j.s.lindsey,i.c.schreiman,h.c.hsu,p.c.kearney,a.m.marguerettaz,rothemundandadler-longoreactionsrevisited:synthesisoftetraphenylporphyrinsunderequilibriumconditions.j.org.chem.52,827-836(1987).11.a.d.adler,l.sklar,f.r.longo,j.d.finarelli,m.g.finarelli,amechanisticstudyofthesynthesisofmeso-tetraphenylporpyrin.j.heterocycl.chem669-678,(1968).12.m.ptaszek,d.lahaye,m.krayer,c.muthiah,j.s.lindsey,denovosynthesisoflong-wavelengthabsorbingchlorin-13,15-dicarboximides.j.org.chem.75,1659-1673(2010).当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1